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Is There a “Simple” Proof of Fermat’s Last Theorem? Part (3)
Introduction
In this Part, we collect descriptions of failed attempts at a proof of FLT that are based on some 

of the ideas in Part (1) of our paper (web site occampress.com).   We collect these descriptions 
because we believe that there are readers who would like a clear, concise description of some of 
the difficulties we have run into.

For each attempt, we first give the argument (“Faulty Argument”), then we point out some of 
the errors (“Discussion”).

Attempt to Use Basic Factoring
Faulty Argument 1

Assume a counterexample xp + yp = zp exists, where (without loss of generality) x, y, z are rel-
atively prime in pairs, x < y < z,  and p is a prime.  We assume that the counterexample is a mini-
mum counterexample (see Part (1) of this paper, on occampress.com). But then we can write 

(1)
(zp/2 + yp/2)(zp/2 – yp/2) = zp – yp = xp.

Now if both z, y are not perfect squares, then zp/2 and  yp/2 are each irrational, and if the sum 
and difference of two different irrational numbers is irrational, and if the product of two different 
irrational numbers is irrational, then we have our proof,  because the left-hand side of (1) is irra-
tional, whereas the right-hand side is rational.

In attempting to prove that both z, y are not perfect squares, we can assume that, to the con-
trary,  they are: say z = u2 and y = v2.  Then we have (u2)p – (v2)p = xp, hence (up – vp)(up + vp) = 
xp.  Now up – vp cannot equal sp for some s, because then we would have another counterexample, 
namely, up – vp = sp or vp + sp = up,  and since u < z, the counterexample would be a smaller one  
than our minimum counterexample.  Furthermore, up + vp cannot equal tp for some t, because then 
we would have another counterexample, namely, up + vp = tp, but since v < y, the counterexample 
would be a smaller one than our minimum counterexample.  It is tempting to say that these two 
facts prove that z, y are not perfect squares.  However, this would not be correct unless
 (up – vp) and (up + vp) can be shown to be relatively prime.  On the other hand, the literature 
might already contain the result that z, y are not perfect squares.

Here is an attempt at proving that (up – vp) and (up + vp) are relatively prime.  Assume the con-
trary.  Then there exists a k > 1 such that (up – vp) = kU, and (up + vp) = kV.  Adding the two equa-
tions yields 2up = k(U + V).  Subtracting the first equation from the second yields 2vp = k(V – U).  
We ask if k can be a multiple of 2.  The answer is no, because then we would have up = 
(k/2)(U + V) and vp = (k/2)(V – U), which implies that u, v have a factor in common, namely, k/2.  
But this is impossible since u2 = z and v2 = y and by assumption x, y, z are relatively prime in 
pairs. So (U + V) and (V – U) must each be divisible by 2. But then we would have up = 
k((U + V)/2) and vp = k((V – U)/2), which again implies that u, v have a factor in common, namely, 
k, which is impossible since u2 = z and v2 = y and by assumption x, y, z are relatively prime in 
pairs.  If our reasoning is correct, we have proved that  (up – vp) and (up + vp) are relatively prime, 
which implies that z, y are not perfect squares.  That in turn implies that x p/2 and  yp/2  are each 
irrational, which implies what we have stated in the paragraph immediately following (1) above.

Discussion
It is not true in general that the product of two different irrationals is an irrational.  Consider, 
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for example (32)(3 –2).  The value is 3 – 2 = 1.  Furthermore, even though, by assump-
tion, (zp/2 + yp/2)(zp/2 – yp/2) = zp – yp = xp, we cannot infer that  (zp/2 + yp/2) and (zp/2 – yp/2) have 
prime factors.  For example, although (262)(26 –2) = 26 – 2 = 24, we cannot infer that 
either factor contains 2, or 3.  The reason is that the presence of irrational square roots takes us out 
of the domain of the integers, in which every integer has a unique factorization into prime powers, 
and into the domain of the reals, where this is not necessarily the case.

However, it is possible that our proof that z, y cannot be squares is valid.

Faulty Argument 2

1. By basic algebra, since p is a prime greater than 2, hence odd, we have that  (x + y) divides 
(xp + yp).  Since, by assumption of a counterexample,  xp + yp = zp, this implies x + y divides zp.

2. By Lemma 0.0 in Part (1) of this paper, on occampress.com,  we know that x + y > z.  By 
part (a) of  Lemma 1.0 of this paper, on occampress.com, x < y < z.  Thus it follows that (x + y) < 
2z.

3.  Now since x + y divides zp we know that each prime factor of x + y must be a prime factor 
of z.  (Of course, z may have other prime factors.  Let M denote the set of these.  It may be empty.) 

4. We now ask how it is possible for z < x + y < 2z.  From step 3, we claim that the power of at 
least one prime factor q of x + y must be larger than the power of q in z.  For if the power of each 
prime factor r of x + y  the power of r in z, then x + y  z, contrary to step 2.  (

The worst case for our purposes is that q is 2 and that the power of q in x + y is 2 times the 
power of q in z.  But this implies that x + y  2z, whereas step 2 states that x + y < 2z.  If this con-
tradiction is valid, then we have a proof of FLT.

Discussion
The last paragraph is wrong.  For example, consider
z = 32 • 5;
x + y = 3 • 52;
2z = 2 • 32 • 5.

We see that x + y and z fulfill the conditions up to the last paragraph.  And yet x + y < 2z, as 
required in step 2.

(I am indebted to a graduate student for pointing out the error in Faulty Argument 2.)

Attempt to Use Fermat’s Little Theorem
The following is one of the attempts discussed under  “Original Motivation for Approaches 

via The “Lines-and-Circles” Model of Congruence” in Part (4) of this paper.

Faulty Argument
Assume a counterexample xp + yp = zp exists.  Without loss of generality we can assume that 

(x, y) = (y, z) = (x, z) = 1.  By Lemma 0.0 in Part (1) of this paper, we know that x + y > z. There-
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fore x + y not z mod p.  
But then, by Fermat’s Little Theorem, xp + yp not zp mod p, which, since (informally) “non-

congruence implies non-equality”, implies xp + yp  zp .  This contradiction gives us a proof of 
FLT.

Discussion
First, Fermat’s Little Theorem requires that (x, p) = (y, p) = (z, p) = 1, whereas it is entirely 

possible that one of x, y, z contains a factor p (see, e.g.,  Ribenboim, Paulo, 13 Lectures on Fer-
mat’s Last Theorem, Springer-Verlag, N.Y., 1979, pp. 3-4). 

If xp + yp = zp, then not only is x + y > z, that is, x + y = z + d, where d is a positive integer, but 
d must contain a factor p (parts (a) and (b) of “Lemma 0.2: Statement and Proof” in Part (2) of this 
paper on occampress.com).  We then have x + y  z mod p, hence, by Fermat’s Little Theorem, 
xp + yp  zp mod p  This means that there exists an integer r such that xp + yp + rp = zp.  If r 0, 
then we have no counterexample.  But if r = 0, we do, and at this elementary level, there is no way 
of knowing which case holds.

A more promising attempt to use Fermat’s Little Theorem is given in Appendices A and B in 
Part (4)  of this paper on occampress.com

Attempt to Apply the “Pushing-Away” (“Pushing-Up”) Strategy
This strategy is discussed in “Original Motivation for Approaches via The “Lines-and-Cir-

cles” Model of Congruence” and in subsequent sections.

Faulty Argument
1. Assume xp + yp = zp is a minimum counterexample. By Lemma 4.0.5, Lemma 0.0, and 

Lemma 0.2,  we know that for all positive integers k other than p, xk + yk  zk.  Therefore, for all 
such k, there exists a non-zero integer uk such that xk + yk  –  zk  =  uk .  Furthermore, we know by 
Lemma 1.5 that uk < xk.  

2.  Let q be the smallest prime greater than x + y, hence (by Lemma 0.0) greater than z.  Then, 
clearly, (x, q) = (y, q) = (z, q) = 1.  Furthermore, since u1 < x1, u1  is not a multiple of q, so x1 + y1 
is not  z1 mod q.

3. Now for all k  1, if x + y < q, then xk + yk < qk.  (Proof: if  x + y < q, then (x + y)k < qk    But 
by the binomial theorem, (x + y)k = xk + U + yk, where U is positive. So xk  + yk  < (x + y)k < qk .

Since q2 > z2, (x, q2) = (y, q2) = (z, q2) = 1 and since u2 < x2,  u2 is not a multiple of q2, so x2 + 
y2 is not  z2 mod q2.

...

3.  We proceed in this manner up to and including the modulus qp, at which point the counter-
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example xp + yp = zp “touches down” (is first less than a modulus, here  qp ).  But since each pair  
<xk + yk, zk>, 1  k < p, is a  non-congruent base element of a necessarily non-congruent C-set, it 
follows that 
the element <xp + yp, zp>, a congruent pair, must be in one of those C-sets, hence we have a con-
tradiction and a proof of FLT.

Discussion
The error lies in the assumption that <xp + yp, zp> must be an element of a C-set having 

<xk + yk, zk> as base element.  Since each C-set mod m is constructed using Fermat’s Little Theo-
rem, elements <xi + yi, zi> such that  i not j mod (m) are not in any C-set mod m.  Thus if the 
counterexample element is one of these <xi + yi, zi>,  the “pushing-away” strategy cannot work — 
there are no elements below the counterexample element in any C-set. In the case of our moduli m 
= qk, (qk)= qk–1(q –1).  But since p < x < q, the element <xp + yp, zp> cannot be in any C-set hav-
ing <xk + yk, zk> as base element if  1  k < p.  

Attempt to Use Relationship Between x + y and z

First Faulty Argument
1. Assume a counterexample xp + yp = zp  exists, where (x, y) = (y, z) = (x, z) = 1.  By part (a) 

of Lemma 0.2 in Part (1) of this paper, on occampress.com, we know that 

x + y = z + pR,                                                                                                                     (1)

where pR is positive and  contains a prime factor q that is also a factor of z.  

2. By the binomial theorem, from (1) we have
  
(x + y)p = xp + pK + yp = (z + pR)p = zp + pL + (pR)p .                                                    (2)

By assumption of a counterexample, we have, from (2)

pK  = pL + (pR)p .                                                                                                            (3)

3. Divide through (3) by p.  Now since, by step 1, q is a factor of z and of pR, it follows from 
the binomial theorem that L in the right-hand side of (3) contains a factor q.  Therefore the right-
hand side contains a factor q.

But since, by step 1, (x, y) = (y, z) = (x, z), the left-hand side of (3) does not contain a factor q .  
This contradiction gives us a proof of FLT.

Discussion
The error lies in assuming that a sum of products each of which does not contain a prime q, 

cannot itself contain a factor q.  The error can be seen immediately using congruences.  We have:

x + y = z + pR, where both z and pR contain a prime factor q.  Therefore
5



Is There a “Simple” Proof of Fermat’s Last Theorem? Part (3)
x + y  0 mod q.
z  0 mod q, hence
x + y  z mod q.

Hence, by the binomial theorem,

(x + y)p = xp + pK + yp  zp mod q.

By assumption of a counterexample, this yields

pK  0 mod q.

Second Faulty Argument
1. By basic algebra, since p is a prime greater than 2, hence odd, we have that  (x + y) divides 

(xp + yp).  Since, by assumption of a counterexample,  xp + yp = zp, this implies x + y divides zp.

2. By Lemma 0.0 in Part (1) of this paper, on occampress.com, we know that x + y > z.  By 
part (a) of  Lemma 1.0 in Part (1), x < y < z.  Thus it follows that (x + y) < 2z.

3.  Now since x + y divides zp we know that each prime factor of x + y must be a prime factor 
of z.  (Of course, z may have other prime factors.  Let M denote the set of these.  It may be empty.) 
We do not make any claims about the powers of the prime factors in  x + y and z.

4. We now ask how it is possible for z < x + y < 2z.  From step 3, we claim that the power of at 
least one prime factor q of x + y must be larger than the power of q in z.  The worst case for our 
purposes is that q is only 2 and that the power of q in x + y is 2 times the power of q in z.  But this 
implies that x + y  2z, whereas step 2 states that x + y < 2z.  If this contradiction is valid, then we 
have a proof of FLT.

Discusion
The following is derived from an email from a graduate student.
The implication in step 4, that  x + y  2z, is not valid.  For assume:

z = (32)(5) = 45, so 2z = 90;
x + y = (3)(52) = 75;

Here we have z < x+ y < 2z, and each prime factor of x+ y divides z, hence divides zp. Also, the 
power of 5 in x + y is larger than it is  in z.  But the power of 3 in z is larger than in x + y, so we 
have x + y is (5/3)z, which is less than 2z.

Attempt to Use Congruences Based on Assumed Counterexample
Consider a C-set having <xp + yp, zp> as base element mod q, where q is an odd prime.  Such 

a C-set has an infinity of elements ap + bp  cp mod q where a = x + dq, b = y + eq, and c =  z + fq. 
We are free to choose the integers d, e, and f as we please, although all must be positive, since x, y, 
z are each less than q, and we are dealing only with positive integers.  So let us choose d = x, e = y,  
6
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f = z.  Then we have:

or, factoring,

which we can write as

Dividing through by (1 + q)p yields

But since by assumption, xp + yp =  zp , this implies 

which seems to be a contradiction, but which is not, since it simply implies that m = 0, which fol-
lows from the fact that if xp + yp = zp, then xp(1 + q2)p + yp(1 + q2)p = zp(1 + q2)p . 

Attempt (1) Based on Manipulation of Inequalities

By part (a) of Lemma 1.5 in Part (1) of this paper we know that 

xp – 1+  yp – 1  >  zp– 1  .

It certainly follows that

x xq+ p
y yq+ p mq+ + z zq+ p

=

x 1 q+  p y 1 q+  p mq+ + z 1 q+  p=

x
p

1 q+ p y
p

1 q+ p
mq+ + z

p
1 q+ p=

x
p

y
p mq

1 q+ p
-------------------+ + z

p
=

mq

1 q+ p
------------------- 0=
7
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x•xp – 1 +  x•yp – 1  >  x•zp– 1 

And it certainly follows that 

xp + yp > x•zp– 1

We ask now if it is possible that 

xp + yp = x•zp– 1 +  (z – x)zp– 1  = zp?  The answer is yes, hence we have no contradiction.

Attempt (2) Based on Manipulation of Inequalities
In Approach of Adding Inequalities, sub-section “Second Implementation of Approach”, we 

have (3) = (1), that is

(3) in “Second Implementation..”

(1) in “Second Implementation”

Multiplying through by (x– 1)(y – 1)(z – 1)), we get:

(1) in this Attempt

(2) in this Attempt

It is clear that the first, second, and third terms of (1) are less than the first, second, and third 
terms, respectively, of (2).  That does not quite give us the inequality we need, however, since the 
last term is preceded by a minus sign. Can this potential obstacle be overcome?  Let us move (1) 

x
p

1–  y 1–  z x–  y
p

1–  x 1–  z y– – x 1–  y 1– +
x 1–  y 1–  z 1– 

------------------------------------------------------------------------------------------------------------------------------------------------------ =

x
p

1–  y 1–  z 1–  y
p

1–  x 1–  z 1–  z
p

1– – x 1–  y 1– +
x 1–  y 1–  z 1– 

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------

x
p

1–  y 1–  z x–  y
p

1–  x 1–  z y– – x 1–  y 1– + =

x
p

1–  y 1–  z 1–  y
p

1–  x 1–  z 1–  z
p

1– – x 1–  y 1– +
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over to (2)’s side of the equation expressed by (1) and (2), and get

(3)

or
     (4)

 or, given our assumption that a counterexample exists, and hence that xp + yp – zp = 0,

which is not a contradiction.

Attempt to Use the Vector Inner Product
The following is an early version of the approach discussed under “Fifth Approach Using 

Inner Products”.

Faulty Argument
1. As we stated in the “Second Approach Using Inner Products”, the ordered triples <x, y, z>, 

and <xk, yk, zk> where 1  k  p – 1 can each be regarded as a vector in 3-dimensional space.

2. Assume a counterexample exists. Then the inner product <x, y, z> <xp, yp, zp> = xp

+ yp zp= 0.  By a basic fact of linear algebra, this implies that the angle between the two vectors 
is 90 degrees.  

3. It follows that, for each  j, 1  j  p  1, there is a pair of vectors <xj, yj, zj>,
<xp j, yp j, zp j> that are at an angle of 90 degrees to each other.  But this is impossible within 
one octant.  Hence FLT is proved.

Discussion
The error lies in the claim that the vectors <xj, yj, zj>,<xp j, yp j, zp j> are both in one 

octant.  In fact, <xj, yj, zj> lies in the octant <+, +, – > whereas the vector <xp j, yp j, zp j> lies 
in the octant <+, +, +>.  A right angle can exist between two such vectors.

x
p

1–  y 1–  x 1–  y
p

1–  x 1–  y 1–  – z
p

1–  x 1–  y 1– + 0=

x 1–  y 1–  x
p

1–  y
p

1–  z
p

2– –+  0=

x 1–  y 1–  0  0=
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Attempt at a Continuity Argument

Faulty Argument
1. Seeking a contradiction, assume that a counterexample xp + yp  – zp exists, and without loss 

of generality, assume it is a minimum counterexample.  By part (a) of Lemma 1.5, we know that 

(1)
xp – 1 + yp – 1 – zp – 1

is greater than 0.  Call the value of this expression T.

2. By part (a) of Lemma 1.0, we know that x < y < z.  If we multiply through (1) by x, we get a 
value U that is greater than T.

 If we multiply through (1) by y, we get a value V that is greater than U, hence greater than T.

 Finally, if we multiply through (1) by z, we get a value W  that is greater than V, hence greater 
than U and hence greater than T.

3.  Now let u increase continuously and monotonically, say linearly, from u = x to u = z.  For 
each value of u, we multiply through equation (1).  Then if the value of u times (1) is, say, R, then 
the value of (u + u) times (1), where u is an arbitrarily small, but positive, increase in u, will be 
greater than R.

4. Consider now (1) multiplied through by u = z.  The value S must be positive.  If we decrease 
the z that multiplies the x term until it is x, and if we decrease the z that multiples the y term until 
it is y, we are decreasing the value of S.  By assumption of a counterexample, we should have the 
resulting value 0.  But this is not possible, given the monotonically increasing values of (1) as a 
result of multiplication by u.

Discussion
The error lies in assuming that two continuous functions having the same starting and ending 

values, must have the same intermediate values.   The two functions in our case are (A)  (1) multi-
plied through by u for all u in the range x  u  z , and (B) (1) with continuous, but independent 
increments in the values of xp – 1, yp – 1 and  zp – 1.
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