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A Solution to the 3x + 1 Problem
Abstract

 The 3x + 1 function is the basis for the 3x + 1 Problem, which asks if  repeated iterations of 
the function C(x) = (3x + 1)/(2a) always terminate in 1.  Here x is an odd, positive integer, and a = 
ord2(3x + 1), the largest positive integer such that the denominator divides the numerator.  The 
conjecture that the function always eventually terminates in 1 is the 3x + 1 Conjecture.

In this paper we present a structure of the function that is very orderly despite the function’s 
being, in a technical sense, chaotic.  It is much simpler than the structures that appear in the litera-
ture, where they are sometimes called directed subgraphs of the Collatz graph or simply Collatz 
graphs.  For example, see:

https://www.fq.math.ca/Scanned/40-1/andaloro.pdf, 
http://go.helms-net.de/math/collatz/aboutloop/collatzgraphs.htm
The structure has two parts: one (“tuple-sets”) for the function in the “forward” direction, the 

other (“y-trees”) for the function in the “inverse” direction.  The structure, along with the fact that 
calculations of all odd, positive integers less than at least 1018, have been found, by computer test, 
to terminate in 1, deserves investigation as a basis for a proof of the 3x + 1 Conjecture. 
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A Solution to the 3x + 1 Problem
Introduction

Statement of Problem
For x an odd, positive integer, set

where ord2(3x + 1) is the largest exponent of 2 such that the denominator divides the numerator.  
Thus, for example, C(17) = 13 (ord2(3(17) + 1) = 2) , C(13) = 5 (ord2(3(13) + 1) = 3), C(5) = 1 
(ord2(3(5) + 1) = 4). Each of these constitutes one iteration of the 3x + 1 function.  The 3x + 1 
Problem, also known as the 3n + 1 Problem, the Syracuse Problem, Ulam’s Problem, the Collatz 
Conjecture, Kakutani’s Problem, and Hasse’s Algorithm, asks if repeated iterations of C always 
terminate at 1. The conjecture that they do is hereafter called the 3x + 1 Conjecture, or sometimes, 
in this paper, just the Conjecture. We call C the 3x + 1 function; note that C(x) is by definition 
odd.

An odd, positive integer such that repeated iterations of C terminate at 1, we call a non-
counterxample.  An odd, positive integer such that repeated iterations of C never terminate at 1, 
we call a counterexample.

Other equivalent formulations of the 3x + 1 Problem are given in the literature; we base our 
formulation on the C function (following Crandall) because, as we shall see, it brings out certain 
structures that are not otherwise evident.

Summary of Research on the Problem
As stated in (Lagarias 1985), “The exact origin of the 3x + 1 problem is obscure.  It has circu-

lated by word of mouth in the mathematical community for many years.  The problem is tradition-
ally credited to Lothar Collatz, at the University of Hamburg.  In his student days in the 1930’s, 
stimulated by the lectures of Edmund Landau, Oskar Petron, and Issai Schur, he became inter-
ested in number-theoretic functions.  His interest in graph theory led him to the idea of represent-
ing such number-theoretic functions as directed graphs, and questions about the structure of such 
graphs are tied to the behavior of iterates of such functions.  In the last ten years [that is, 1975-
1985] the problem has forsaken its underground existence by appearing in various forms as a 
problem in books and journals...”

Lagarias has performed an invaluable service to the 3x + 1 research community by publishing 
several annotated bibliographies relating to the Problem (these are accessible on the Internet) and 
by publishing his book, The Ultimate Challenge: the 3x + 1 Problem1.

 

On the Structure of This Paper
To enhance readability, we have placed proofs of all lemmas in “Appendix A — Statement 

and Proof of Each Lemma” on page 16.

1. American Mathematical Society (AMS), 2010.

C x( ) 3x 1+

2ord2 3x 1+( )
--------------------------=
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A Solution to the 3x + 1 Problem
On Terminology
Some of our terminology differs from that in most of the 3x + 1 literature.  This is intentional 

on our part, to avoid confusion that might result from the different (though equivalent) definitions 
of the 3x + 1 function in the literature and in this paper.

Thus, for example, according to the definition1 of the function that is often used in the litera-
ture, the iterates of the function beginning with the argument 13 constitute the trajectory, or for-
ward orbit, of 13, and is 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.  On the other hand, we represent the 
iterates of the definition of the function that we use (Crandall’s, which we call C) by the tuple 
<13, 5, 1> .  

In Memoriam
Several of the most important lemmas in this paper were originally conjectured by the author 

and then proved by the late Michael O’Neill.  He made a major contribution to this research, and 
is sorely missed.

1. This is the one that accompanied the original statement of the 3x + 1 Conjecture: here, each iteration is 
either 3x + 1 (if x is odd), or x/2 if x is even.
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A Solution to the 3x + 1 Problem
Tuple-sets: The Structure of the 3x + 1 Function in the “Forward” 
Direction

Brief Description of Tuple-sets

1. We use the definition of the 3x + 1 function in which all successive divisions by 2 are col-
lapsed into a single exponent of 2 (see “Statement of Problem” on page 3).  Thus, for example, the 
tuple <9, 7, 11> represents the fact that 

9 maps to 7 in one iteration of the function, via the exponent 2, because (3(9) + 1)/22 = 7 ;
7 maps to 11 in one iteration of the function, via the exponent 1, because (3(7) + 1)/21 = 11.

2. We see that the sequence of exponents associated with the tuple  <9, 7, 11> is {2, 1}.

3. A tuple-set TA is the set of all finite tuples that are associated with the exponent sequence A 
(and “approximations” to A, but this is not important for our proofs of the 3x + 1 Conjecture).  In 
our example, A = {2, 1}.  

In addition to the tuple <9, 7, 11> , the tuple-set TA = T{2, 1} contains the tuples <25, 19, 29> , 
<41, 31, 47>, and an infinity of others, each associated with the exponent sequence {2, 1}.  (See 
“Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9.)

4. Facts about tuple-sets:

An i-level tuple-set TA, i  2, contains (among other tuples, see previous step) all (i + 1)-ele-
ment tuples that are associated with the exponent sequence A.

There is an infinity of tuples in each tuple-set.

The set of all tuple-sets contains tuples representing all finite iterations of the 3x + 1 function.

Full Description of Tuple-sets

Definitions

Iteration
An iteration takes an odd, positive integer, x, to an odd, positive integer, y, via one application 

of the 3x + 1 function, C.  Thus, in one iteration C  takes 17 to 13 because C(17) = 13.

Tuple
A (finite) tuple is a finite sequence of zero or more successive iterations of C, that is, <x, C(x), 

C2(x), ..., Ck(x)>, where k  0.
A finite tuple is the prefix of an infinite tuple.  If x is a non-counterexample, then x is the first 

element of an infinite tuple <x, y, ..., 1, 1, 1, ... >.  Of course, if x is a range element of C, then x 
can be an element other than the first in another non-counterexample tuple.  If x is not a range ele-
5



A Solution to the 3x + 1 Problem
ment, it is a multiple-of-3 (“Lemma 4.0: Statement and Proof” on page 23), and can only be the 
first element of a tuple.

In the literature, a tuple (finite or infinite) is usually called a trajectory or an orbit.
If x is a counterexample, then x is the first element of an infinite tuple <x, y, ... > which does 

not contain 1. Of course, if x is a range element of C, then x can be an element other than the first 
in another counterexample tuple.

A counterexample tuple must be one of two types: either there is an infinitely-repeated finite 
cycle of elements (none of which is 1) in the infinite tuple having the counterexample x as first 
element, or else there is no such cycle, but there is no 1 in the infinite tuple having the counterex-
ample x as first element — in other words, there is no upper bound to the elements of the infinite 
tuple.

Exponent, Exponent Sequence
If C(x) = y, with y = (3x + 1)/2a,  we say that a is the exponent associated with x. In more for-

mal language, this can be expressed as ord2(3x + 1) = a.  Sometimes we simply write e(x) = a.  
The sequence A = {a2, a3, ..., ai}, where a2, a3, ..., ai are the exponents associated with x, C(x), ..., 
C(i - 1)(x) respectively, is called an exponent sequence.  We number exponents beginning with a2 
in order that the subscript corresponds to a level number in the corresponding tuple-set.  See 
“Levels in Tuples and Tuple-sets” on page 7. For all i  2, there are always i – 1 exponents in the 
exponent sequence associated with an i-level tuple-set.  

We say that x maps to y via ai if C(x) = y and ord2(3x + 1) = ai .  By extension, we say that x 
maps to z if z is the result of a finite sequence of iterations of C beginning with x, that is if the 
tuple <x, y, ..., z> exists.

Tuple-set1

Let A = {a2, a3, ..., ai} be a finite sequence of exponents, where i 2The tuple-set TA  con-
sists of all and only the tuples that are associated with all successive approximations to A.  Thus 
TA consists of all and only the following tuples.  (Note: First elements x in different tuples are dif-
ferent odd, positive integers.  No two tuples in a tuple-set have the same first element.) 

all tuples <x> such that x does not map to an odd, positive integer via a2;

all tuples <x, y> such that x maps to y via a2 but y does not map to an odd, positive integer via 
a3;

all tuples <x, y, y> such that x maps to y via a2 and y maps to y via a3, but  y does not map to 
an odd, positive integer via a4; 

...

1. The literature contains several results that establish properties of the 3x + 1 function that are equivalent to 
some of those for tuple-sets. However, the language is very different, and the definition of the 3x + 1 func-
tion that is used is not ours, but the original one, in which each division by 2 is a separate node in the tree 
graph representing the function. 
6



A Solution to the 3x + 1 Problem
all tuples <x, y, yy(i – 3)y(i – 2)> such that x maps to y via a2 and y maps to y via a3  and ... 
and y(i – 3) maps to y(i – 2) via the exponent ai.  (The longest tuple in an i-level tuple-set has i ele-
ments.)

In other words, for each i-level exponent sequence A:

there are tuples <x> whose associated exponent sequence is a prefix of A for no exponent of A, 
and

there are other tuples <x, y> whose associated exponent sequence is a prefix of A for the first 
exponent of A, and 

there are other tuples <x, y, y> whose associated exponent sequence is a prefix of A for the 
first two exponents of A, and

...
there are other tuples <x, y, z, ..., y(i – 2)> whose associated exponent sequence is a prefix of A 

for all i – 1 exponents of A.  

Tuples are ordered in the natural way by their first elements.
The set of first elements of all tuples in a tuple-set is the set of odd, positive integers (see proof 

under “The Structure of Tuple-sets” on page 9). Thus, there is a countable infinity of tuples in 
each tuple-set.

For each i 2, tuple-sets are a partition of the set of all i-level tuples. 

Levels in Tuples and Tuple-sets
In an i-level tuple-set, where i  2, the longest tuples have i elements.
Thus, <7, 11, 17, 13> is a longest tuple in a 4-level tuple-set.  We say that it is a 4-level tuple.

The i-level exponent sequence defining an i-level tuple-set, where i  2, is denoted 
{a2, a3, ..., ai}

1, 
where:
a2 is the exponent that maps to each level 2-element in tuples having at least 2 elements;
a3 is the exponent that maps to each level 3-element in tuples having at least 3 elements;
...
ai is the exponent that maps to each level-i element in tuples having i-elements.

An i-level tuple-set is denoted TA, where A = {a2, a3, ..., ai},
Thus, our tuple <7, 11, 17, 13>  is a 4-level tuple in the 4-level tuple-set denoted TA, where A 

= {1, 1, 2}, because 
7 maps to 11 via the exponent 1;
11 maps to 17 via the exponent 1;
17 maps to 13 via the exponent 2.

Let TA be the tuple-set determined by A. Then, by definition of tuple-set, there exist j-
level tuples in TA, where 1  j  i, that is, tuples t = <x, y, ..., z>, where x is the 1-level element of 

1.  No tuple-set has only one level, because that would mean it is associated with no exponent sequence.
7



A Solution to the 3x + 1 Problem
t, y is  the 2-level element of t, ..., and z is the j-level element of t. We sometimes speak of the set 
of j-level tuple-elements in TA, where 1  j  i. 

For 2   j   i, two tuples are said to be consecutive at level j if no j-level or higher-level 
tuple exists between them.

Example of Tuple-set
As an example of (part of) a tuple-set: in Fig. 1, where A = {a2, a3, a4} =  {1, 1, 2} and where 

we adopt the convention of orienting tuples vertically on the page, the tuple-set TA includes:

 the tuple <1>, because e(1) = 2 a2 = 1);  
 the tuple <3, 5> , because e(3) = (a2 = 1), but e(5) = 4  (a3 = 1); 
 the tuple <5>, because e(5) = 4 a2 = 1);   
 the tuple <7, 11, 17, 13> because e(7) = 1 (a2 = 1) and e(11) = 1 (a3 = 1) and e(17) = 2 
      (a4 = 2);
etc.

Fig. 1.  Part of the tuple-set TA associated with the sequence A = {1, 1, 2}

The number 18 between the arrows at level 3 and the number 4 between the arrows at level 1 
are the values of the level 3 and level 1 distance functions, respectively, established by Lemma 1.0 
(see “Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)” on page 9). 

In each i-level tuple-set TA, where i 2, for each odd, positive integer x there exists a tuple 
whose first element is x.  The tuple may be one-level (<x>), or 2-level (<x, y>), or ... or i-level
 (<x, y, yy(i – 3)y(i – 2)>).  Thus each tuple-set is non-empty.

Graphical Representation of the Set of All Tuple-sets
It is clear from the definition of tuple-set that the set of all tuple-sets can be represented by an 

1 3 5 7 9 11 13 15 17 19 21 23 25 27

5 11 17 23 29 35 41

...

...
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35 53
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...
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A Solution to the 3x + 1 Problem
infinitary tree in which each node is a tuple-set.  We can imagine the tuple-set (which contains an 
infinity of tuples) extending into the page.

The Structure of Tuple-sets
It is important for the reader to understand that the structure of each tuple-set is unchanged by 

the presence or absence of counterexample tuples.  Regardless if counterexample tuples exist or 
not, the set of first elements of all tuples in each tuple-set is always the same, namely, the set of 
odd, positive integers.  Proof: Let x be any odd, positive integer and let A = {a2, a3, ..., ai}, where 
i 2,  be any exponent sequence.  Then there are exactly two possibilities:

(1) x maps to a y in a single iteration of the 3x + 1 function, C, via the exponent a2, or 
(2) x does not map to a y in a single iteration of C via the exponent a2.

But if (1) is true, then a tuple containing at least two elements, with x as the first, is in TA; if (2) 
is true, then the tuple <x> is in TA.. There is no third possibility.

For each tuple-set, the first element of the first tuple is 1, the first element of the second tuple 
is 3, the first element of the third tuple is 5, etc.

It can never be the case that, if counterexample tuples exist, then somehow there are “more” 
tuples in a tuple-set than if there are no counterexample tuples1.  

Furthermore, the distance functions defined in “Lemma 1.0: the “Distance” Functions d(i, i) 
and d(1, i)” on page 9 are the same regardless if counterexample tuples exist or not. 

Extensions of Tuple-sets
Since there is a tuple-set for each finite sequence A of exponents, it follows that each tuple-set 

TA has an extension via the exponent 1, and an extension via the exponent 2, and an extension via 
the exponent 3, ...  In other words, if A = {a2, a3, ..., ai}, then there is a tuple-set TA´, where A´ = 
{a2, a3, ..., ai, 1}, and a tuple-set TA´´, where A´´ = {a2, a3, ..., ai, 2}, and a tuple-set TA´´´, where 
A´´´ = {a2, a3, ..., ai, 3}, ...

All this is true whether or not the tuple-set TA and/or any of its extensions contains counterex-
ample tuples or not. 

For further details on extensions of tuple-sets,  see “How Tuple-sets ‘Work’” and the proof 
that there exists an extension for each tuple-set (“Lemma 3.0 Statement and Proof”) in our paper, 
“Are We Near a Solution to the 3x + 1 Problem?” on occampress.com. 

Lemma 1.0: the “Distance” Functions d(i, i) and d(1, i)
(a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  t(r), t(s) be tuples 

consecutive at level2 i in TA.  Then d(i, i) is given by: 

1. To make this statement more precise: in no tuple-set does there ever exist a first element of a tuple, regard-
less how large that first element is, such that there are more tuples in that tuple-set having smaller first ele-
ments if counterexamples exist, than if counterexamples do not exist.
2. For 2   j   i, two tuples are consecutive at level j if no j-level or higher-level tuple exists between them 
(see “Levels in Tuples and Tuple-sets” on page 7.
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A Solution to the 3x + 1 Problem
(b) Let t(r), t(s) be tuples consecutive at level i in TA.  Then  d(1, i) is given by:

Proof: see “Lemma 1.0: Statement and Proof” on page 16

It follows from part (a) of the Lemma that the set of all i-level elements of all i-level first 
tuples in all i-level tuple-sets is {z | 1  z < 2 • 3i – 1}, where z is an odd, positive integer not divis-
ible by 3.

Remark: Relationships similar to those described in parts (a) and (b) of the Lemma hold for 
successive j-level tuples, where 2  j < i. The following table shows these relationships for (i – j)-
level elements of tuples consecutive at level (i – j) in an i-level tuple-set, where 0 j (i – 1). The 
distances are easily proved using Lemma 1.0. 

Further details can be found in the section,  “Remarks About the Distance Functions” in our 
paper, “Are We Near a Solution to the 3x + 1 Problem?”, on occampress.com.

Lemma 2.0 Counterexample tuples in tuple-sets if counterexamples exist
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity 

of i-level counterexample tuples and an infinity of i-level non-counterexample tuples.

Table 1: Distances between elements of tuples consecutive at level i

Level
Distance between (i – j)-level elements 

of tuples consecutive at level (i – j), 
where 0 j (i – 1)

i

i  1

i  2

i  3

... ...

2

1 ...  

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =

2 3i 1–

2 3i 2– 2ai 

2 3i 3– 2ai 1– 2ai 

2 3i 4– 2ai 2– 2ai 1– 2ai 

2 3 2a32ai 1– 2ai 

2 2a2 2a3 2ai 1– 2ai
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Proof:  See “Lemma 2.0: Statement and Proof” on page 21.
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A Solution to the 3x + 1 Problem
y-Trees: The Structure of the 3x + 1 Function in the “Backward”, or 
Inverse, Direction

Definition of the y-Tree
Let y be a range element of the 3x + 1 function.  Then y and the set of all odd, positive integers 

that map to y in one or more iterations of the 3x + 1 function, is a tree called the y-tree.

Properties of the y-Tree
 Each root y of a y-tree is mapped to, in one iteration of the 1-tree, either by all even or by all 

odd exponents.  
     Proof:
     1. Assume the root y is mapped to by all even exponents.  Then for each exponent 2k, there 

exists an x such that:
         

     
     2. Multiply numerator and denominator by 22.  Then we have

or 

     3. Our exponent increases by 2, yielding the next even exponent.  A similar argument 
applies if we assume the root is mapped to by all odd exponents. 

Hence an infinity of odd, positive integers, which we call a “spiral”, maps to y.

 Level 1 of a y-tree is the set of all odd, positive integers that map to y in one iteration of the
          3x + 1 function;
   Level 2 of a y-tree is the set of all odd, positive integers that map to all elements of Level 1
           in one iteration of the 3x + 1 function;
   Level 3 of a y-tree is the set of all odd, positive integers that map to all elements of Level 2 
           in one iteration of the 3x + 1 function;
   etc.

Let x be an element of a “spiral”.  Then the next larger element of the “spiral” is 4x + 1.
      Proof: See above proof regarding parity of exponents.  

3x 1+

2
2k

--------------- y=

2
2

2
2

----- 3x 1+ 

2
2k

-------------------- y=

3 4x 1+  1+ 

2
2k 2+

------------------------------------- y=
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A Solution to the 3x + 1 Problem
  The successive elements of a “spiral” are mapped to in accordance with a rule that can be 
expressed as ... 2, 1, 3, 2, 1, 3, ..., where “2” means “is mapped to by all even exponents”, “1” 
means “is mapped to by all odd exponents”, and “3” means “is not mapped to because element is 
a multiple-of-3, hence not a range element (“Lemma 4.0: Statement and Proof” on page 23”). The 
proof in brief is the following:

The reader can substitute the left-hand side of the left-hand equation for x in the right-hand 
side of the right-hand equation, and work through the algebra to see that the two equations in fact 
hold.

The repetition of a multiple-of-3 every third successive element of a “spiral” can be seen from 
the following.  Let 3m be a multiple-of-3.  Then, by the 4x + 1 rule described above in this list of 
properties, we have, for the third successive element after the 3m element:

Each of the two terms on the right-hand side of the equation are multiples of 3, and so we have 
our result.

Finally, we must prove that the next successive element of a “spiral” following a multiple-of-
3 is an element that is mapped to by all even exponents.

Let 3m be a multiple-of-3.  The next successive “spiral” element is 4(3m) + 1.  We ask if there 
exists a w such that 

Multiplying through by 22 we get

Hence w exists.  It is equal to U + 1.

Because each “spiral” contains an infinity of range elements, each y-tree is infinitely deep.

 There is one and only one possible y-tree for each y.  
    Proof: Otherwise, it would be possible for a range element to be mapped to, in one iteration, 

by more than one “spiral”.  But that is impossible by the arithmetic governing the 3x + 1 func-
tion.

3w 1+

2
2

---------------- x
3 2w 1+  1+

2
1

---------------------------------- 4x 1+= =

4 4 4 3m  1+  1+  1+ 64  3  m  21+=

3w 1+

2
2

---------------- 4 3m  1+=

3w 2
2

4  3m  2
2

1 3U 3+=–+=
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A Solution to the 3x + 1 Problem
Can y-Trees and Tuple-sets Be Merged?
The answer is yes.  Pick any node x in a y-tree.  Then the sequence of nodes mapped to y from 

x is a tuple in a tuple-set. 

The 1-Tree
The 1-tree is a y-tree, where y = 1.  The 1-tree contains all and only the odd, positive integers 

that map to 1.  There is a possibility that the 1-tree can be the basis for a proof of the 3x + 1 Con-
jecture. See “Lemma 3.0: Statement and Proof” on page 21 for more details on the 1-tree.
14
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A Solution to the 3x + 1 Problem
Appendix A — Statement and Proof of Each Lemma

Lemma 1.0: Statement and Proof
Definition: let TA be an i-level tuple-set, where i  2.  Let t(r), t(s) denote tuples consecutive at 

level i, with r < s in the natural ordering of tuples by first elements. Let t(r)(h), t(s)(h) denote the 
elements of t(r), t(s) at level h, where 1  h  i. Then we call |t(s)(h) -  t(r)(h)| the distance between 
t(r) and t(s) at level h.  We denote this distance by d(h, i) and call d the distance functions (one 
function for each h).

Lemma 1.0
 (a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  t(r), t(s) be tuples 

consecutive at level i in TA.  Then d(i, i) is given by: 

(b) Let t(r), t(s) be tuples consecutive at level i in TA.  Then  d(1, i) is given by:

Thus, in “Fig. 1. Part of the tuple-set TA associated with the sequence A = {1, 1, 2}” on 
page 8, the distance d(3, 3) between t8(3) = 35 and t4(3) = 17 is 2 ꞏ 3(3-1) = 18.  The distance d(1, 2) 
between t12(1) = 23 and t10(1) = 19 is 2 ꞏ 21 = 4.

Proof:
The proof is by induction.

Proof of Basis Step for Parts (a) and (b) of Lemma 1.0:
Let t(r) and t(s) be the first and second 2-level tuples, in the standard linear ordering of tuples 

based on their first elements, that are consecutive at level i = 2 in the 2-level tuple-set TA, where A 
= {a2}.  (See Fig. 2 (1).)

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =
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Fig. 2 (1).  Illustration for proof of Basis Step of Lemma 1.0.

Then we have:

                                                                                                                                                 (1.1)

                                                       

and since, by definition of d(1, 2),

we have:

                                                                                                (1.2)           

Therefore, since, by definition of d(i, i), 

level

1

2

3

4

d(2, 2) = 

(1, 2) = dt(r)(1)

t(r)(2)

t(s)(1)

t(s)(2)

tuple tr

tuple ts

2 •

2 •2 a2

3t r  1  1+

2a2

-------------------------- t r  2 =

t s  1  t r  1  d 1 2( )+=

3 t r  1  d 1 2( )+  1+

2a2

----------------------------------------------------- t s  2 =

t r  2  d 2 2( )+ t s  2 =
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A Solution to the 3x + 1 Problem
we can write, from (1.1) and (1.2):

By elementary algebra, this yields:

Now d(2, 2) must be even, since it is the difference of two odd, positive integers, and further-
more, by definition of tuples consecutive at level i, it must be the smallest such even number, 
whence it follows that d(2, 2) must = 3 • 2,  and necessarily 

A similar argument establishes that d(2, 2) and d(1,2) have the above values for every other 
pair of tuples consecutive at level 2.

Thus we have our proof of the Basis Step for parts (a) and (b) of Lemma 1.0.

Proof of Induction Step for Parts (a) and (b) of Lemma 1.0

Assume the Lemma is true for all levels j, 2  j  i and that TA is an i-level tuple-set, where A 
= {a2, a3, ..., ai}.

Let  t(r) and t(s) be tuples consecutive at level i, and let t(r) and t(f)  be tuples consecutive at 
level i +1.  (See Fig. 2 (2).)

3t r  1  1+

2a2

-------------------------- d 2 2( )+
3 t r  1  d 1 2( )+  1+

2a2

-----------------------------------------------------=

2a2d 2 2( ) 3 d 1 2( )=

d 1 2  2 2
a2=
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A Solution to the 3x + 1 Problem
Fig. 2 (2).  Illustration for proof of Induction Step of Lemma 1.0.

Then we have:

and since, by definition of d(i, i), 

 for some g  1, we have:

                                                                                            
                                                                                                                                              

level

1

2

3

i

i + 1

tuple

tr

tuple
ts

tuple
tf

d(i+1,i+1) = 2•3i

d(i, i)=2•3i-1

d(1, i) =

2 2a22a32ai

t f  i 1+  t r  i 1+  d i 1 i 1++( )+=

t f  i  t r  i  g 2 3i 1– +=
t(r)(i)

t(r)(i + 1)

3t r  i  1+

2ai 1+

------------------------- t r  i 1+ =

t f  i  t r  i  g d i i( )+=

3 t r  i  g d i i( )+  1+

2ai 1+

--------------------------------------------------------- t f  i 1+ =
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A Solution to the 3x + 1 Problem
Thus, since

 we can write:

This yields, by elementary algebra:

As in the proof of the Basis Step, d(i+1, i+1) must be even, since it is the difference of two 
odd, positive integers, and furthermore, by definition of tuples consecutive at level i+1, it must be 
the smallest such even number.  Thus d(i+1, i+1) = 3 • d(i, i), and 

.
 Hence

Now g is the number of tuples consecutive at level i that must be “traversed” to get from t(r) to 
t(f).  By inductive hypothesis, d(1, i) for each pair of these tuples is:

 
hence, since 

we have

.
A similar argument establishes that d(i+1, i+1) and d(1, i+1) have the above values for every 

pair of tuples consecutive at level i+1.

Thus we have our proof of the Induction Step for parts (a) and (b) of Lemma 1.0.  The proof of 
Lemma 1.0 is completed. 

t r  i 1+  d i 1 i 1++( )+ t f  i 1+ =

3tt r  i 
1+

2ai 1+

----------------------- d i 1+ i 1+( )+
3 tt r  i 

gd i i( )+  1+

2ai 1+

---------------------------------------------------=

2a i 1+ d i 1+ i 1+( ) 3 gd i i( )=

g d i i  2
ai 1+ d i i =

g 2
ai 1+=

d 1 i  2 2
a2 2

a3   2
ai =

g 2
ai 1+=

d 1 i 1+  d 1 i  2
ai 1+=
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A Solution to the 3x + 1 Problem
Lemma 2.0: Statement and Proof
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity 

of i-level counterexample tuples and an infinity of i-level non-counterexample tuples.

      Proof:

      1. Assume a counterexample exists. Then:

          There is a countable infinity of non-counterexample range elements.
               Proof: Each non-counterexample maps to a range element, by definition of range 
                    element.
                Each range element is mapped to by an infinity of elements
                   ( “Lemma 6.0: Statement and Proof” on page 25).  A countable infinity of these
                    are range elements (proof of “Lemma 7.0: Statement and Proof” on page 27).

          There is a countable infinity of counterexample range elements.
               Proof: same as for non-counterexample case.

      2. For each finite exponent sequence A, and for each range element y, non-counterexample or 
counterexample, there is an x that maps to y via A possibly followed by a buffer exponent 
(“Lemma 7.0: Statement and Proof” on page 27).  The presence of the buffer exponent does 
not change the fact that x is the first element of a tuple associated with the exponent sequence 
A. 

Lemma 3.0: Statement and Proof
There is one and only one  possib1e 1-tree, whether or not counterexamples exist.   

Short Proof:

1. “Once a non-counterexample, always a non-counterexample.”  Proof: the proof is a gener-
alization of our canonical example, 13: “13 is a non-counterexample today; if the 3x + 1 Conjec-
ture is proved true tomorrow, it will be a non-counterexample; and if the Conjecture is proved 
false tomorrow it will still be a non-counterexample”.  Similar facts follow for all non-counterex-
amples by definition of the 3x + 1 function (no odd, positive integer can map to two or more dif-
ferent values in one iteration of the function.)  

2. “Once a non-counterexample, always a non-counterexample” can be expressed as the state-
ment of Lemma 3.0. 

Longer Proof:

Proof of “There is one and only one possible 1-tree...”

The 1-tree  =
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A Solution to the 3x + 1 Problem
(Level 1 = {odd, positive integers y | y maps to 1 in one iteration of the 3x + 1 function}1) 
(Level 2 = {odd, positive integers y | y maps to an element of Level 1 in one iteration of the 
      3x + 1 function}) 
(Level 3 = ({odd, positive integers y | y maps to an element of Level 2  in one iteration of the
      3x + 1 function} 
...

Since 1 is a range element of the 3x + 1 function, it is the root of a y-tree (in this case, the 1-
tree).  Each y-tree has several basic, well-defined properties.  (For full details, and references to 
the elementary proofs, see “Properties of the y-Tree” on page 12 and “y-Trees: The Structure of 
the 3x + 1 Function in the “Backward”, or Inverse, Direction” on page 12):

Each y is mapped to by an infinity of odd, positive integers in one iteration of the 3x + 1 func-
tion.  We call this infinity of odd, positive integers, a “spiral”.

If x is an element of a “spiral”, then 4x + 1 is the next larger element.
Each “spiral” contains an infinity of range elements, and an infinity of multiples of 3, which 

are not range elements because they are not mapped to by any odd, positive integer.  
Each “spiral” element maps to y (in one iteration of the 3x + 1 function), by either all odd 

exponents, or by all even exponents.
The sequence of these types of “spiral” elements is given by a rule that can be expressed as ... 

2, 1, 3, 2, 1, 3, ..., where “2” means “is mapped to by all even exponents”, “1” means “is mapped 
to by all odd exponents”, and “3” means “is not mapped to because element is a multiple-of-3, 
hence not a range element”.  

Because of the infinity of range elements in each “spiral”, it is clear that the structure of each 
y-tree is the result of an infinitely recursive process.  Thus each y-tree is infinitely deep.

Proof of “...whether or not counterexamples exist
If an odd, positive integer x maps to 1 (that is, if x is a non-counterexample, hence an element 

of the 1-tree), then it maps to 1 regardless if counterexamples exist or not.  Informally, we say, 
“Once a non-counterexample, always a non-counterexample.” Thus, for example,

13 maps to 1 today;
if the 3x + 1 Conjecture is proved true tomorrow it will still map to 1;
if the 3x + 1 Conjecture is proved false tomorrow it will still map to 1.

If it were not the case that “Once a non-counterexample, always a non-counterexample”, 
some odd, positive integers could map to two different odd, positive integers, contrary to the defi-
nition of the 3x + 1 function. 

Remark 1
Some readers claim that the Lemma is trivial, “unnecessary”.  But this claim is based on a 

false assumption.  These readers assume (correctly) that 1 is mapped to by all exponents of only 
one parity, but they assume (incorrectly) that there are nevertheless two possibilities: (1) the 1-tree 
contains all odd, positive integers, or (2) the 1-tree contains only a proper subset of the odd, posi-
tive integers.  

1. This set is S = {1, 5, 21, 85, 341, ... }.  
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A Solution to the 3x + 1 Problem
However, that implies that a given range element, although it is mapped to by one and only 
one exponent (in one iteration of the 3x + 1 function), nevertheless can be mapped to by two dif-
ferent odd, positive integers via that one exponent!  But that is impossible, given the definition of 
the 3x + 1 function.  

In actuality, we know that 1 is mapped to by all even exponents.  There is no possibility that it 
might be mapped to by any odd exponents.  Furthermore, for each range element y (and 1 is a 
range element) and each (even) exponent, y is mapped to by one and only odd, positive integer in 
one iteration of the 3x + 1 function.

Hence there is one and only one possible 1-tree, whether or not counterexamples exist.

Remark 2 
The Lemma passes the 3x – 1 Test.  The reason is that the Lemma asserts that there is one and 

only one possible 1-tree, whether or not counterexamples exist.  At the time of this writing, no 
counterexample to the 3x + 1 Conjecture is known, even though all consecutive odd, positive inte-
gers between 1 and at least 1018 –  1 have been found, by computer test1, to be non-counterexam-
ples. But a counterexample to the 3x – 1 Conjecture is known (the smallest is 5), and so it is 
emphatically not true that there is one and only one possible 1-tree for the 3x – 1 function, 
whether or not counterexamples exist.  If no counterexamples to the  3x – 1 Conjecture existed, 
the 1-tree for the 3x – 1 function would certainly be different than the existing one.

Remark 3
The Lemma statement is, of course, very counter-intuitive.  Even we who first stated it, and 

then proved it, found ourselves spending time trying to understand how it could be true.  
But it is true, as the reader can check by going over the proof.

Lemma 4.0: Statement and Proof
No multiple of 3 is a range element.

Proof :
If

    

then  1  0 mod 3, which is false.  

Lemma 5.0: Statement and Proof
Each odd, positive integer (except a multiple of 3) is mapped to by a multiple of 3 in one iter-

ation of the 3x + 1 function.

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All consecutive 
odd, positive integers less than 20  • 258  5.76  •  1018, which is greater than 3.33  • 1016  2 • 3(35 - 1),  have 
been tested and found to be non-counterexamples.

3x 1+
2a

--------------- 3m=
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A Solution to the 3x + 1 Problem
Proof:

Since the domain of the 3x + 1 function is the odd, positive integers, the only relevant genera-
tors are 3(2k + 1), k .  We show that, for each odd, positive integer y not a multiple of 3, there 
exists a k and an a such that

     
                                            ,                                                          (11.1)

where a is necessarily the largest such a, since y is assumed odd.
 Rewriting (11.1), we have:

                                            .                                                                          (11.2) 

Without loss of generality, we can let y r mod 18, where r is one of 1, 5, 7, 11, 13, or 17 
(since y is odd and not a multiple of 3, these values of r cover all possibilities mod 18).  Or, in 
other words, for some q, r, . Then, from (11.2) we can write:      

                                           .                                               (11.3)
                                                                                                 
Since the first term on the left-hand side is a multiple of 9, (2a - 1)r – 5 must also be if the 

equation is to hold.  We can thus construct the following table.  (Certain larger a also serve 
equally well, but those given suffice for purposes of this proof.)

Given q and r (hence y), we can use r to look up a in the table, and then solve (11.3) for inte-
gral k, thus producing the multiple of 3 that maps to y in one iteration of the 3x + 1 function.  

Table 2: Values of r, a, for Proof of Lemma

r a

1 6 27

5 1 0

7 2 9

11 5 171

1
3

4 99

1
7

3 63

y 3 3 2k 1+   1+ 

2
a

----------------------------------------------=

y2a 1– 5– 9k=

y 18q r+=

18 2a 1– q 2a 1– r 5–+ 9k=

2a 1– r 5–
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Lemma 6.0: Statement and Proof
(a) Each range element y is mapped to, in one iteration of the 3x + 1 function, by every expo-

nent of one parity only.  Furthermore,
(b) For each of the two parities, there exists a range element that is mapped to by every expo-

nent of that parity.

Proof of part (a):
Steps 1 and 2 are slightly edited versions of proofs by Jonathan Kilgallin and Alex Godofsky.  

Any errors are entirely ours.  Step 3 is a slightly edited version of a proof by Michael Klipper.  
Any errors are entirely ours.

1. We first show that if y is mapped to by the exponent a, then y is mapped to by every expo-
nent greater than a that is of the same parity as a.  

Let y be a range element, and let x map to y via the exponent a.  Then

We wish to show that there exists an  x´ such that  x´ maps to y via the exponent 2a + 2.   That 
is, we wish to show that there exists an  x´ such that

Rewriting, this gives 

Substituting for y yields

Simplifying, this gives  x´ = 4x + 1.  Since x is an odd, positive integer, clearly  x´ is as well. 

y 3x 1+

2
a

---------------=

y 3x 1+

2
a 2+

-----------------=

x 2
a 2+

y 1–
3

------------------------=

x
2

a 2+ 3x 1+

2
a

--------------- 
  1–

3
-------------------------------------------=
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A Solution to the 3x + 1 Problem
Thus, by induction, if y is mapped to via the exponent a , it is mapped to by every exponent 
greater than a of the same parity. 

2. Next we show that if y is mapped to by the exponent a which is greater than 2, then it is 
mapped to by every exponent less than a that is of the same parity as a.  

Let y be a range element, and let x map to y via the exponent a where a > 2.  Then

We wish to show that there exists an  x´ such that  x´ maps to y via the exponent 2 a – 2.   That 
is, we wish to show that there exists an  x´ such that

Rewriting, this gives 

Substituting for y yields

Simplifying yields  

3.  We must now show that x´ = (x – 1)/4 is an odd, positive integer.  This means we must 
show that  (x – 1) = 4(2k + 1) for some k    0,  or that (x – 1) =  8k + 4, hence that x = 8k + 5.  
Thus, we must prove x  5 mod 8.

y 3x 1+

2
a

---------------=

y 3x 1+

2
a 2–

-----------------=

x 2
a 2–

y 1–
3

------------------------=

x
2

a 2– 3x 1+

2
a

--------------- 
  1–

3
------------------------------------------=

x x 1–
4

-----------=
26



A Solution to the 3x + 1 Problem
We know that x maps to y via a, where a 3.  Thus, y = (3x + 1)/2a, so 2ay = 3x + 1.  Because 
a 3, 2ay is a multiple of 8.  Thus, (3x + 1)  0 mod 8, and 3x 7 mod 8.  This readily implies 
x  5 mod 8.

4. Thus, by induction, if y is mapped to via the exponent a, where a > 2,  then it is mapped to 
by every exponent less than a of the same parity. 

Proof of part (b):
We now show that for each of the two parities there exists a range element that is mapped to 

by every exponent of that parity.

1.  Fix a range element y, and suppose that x maps to y via the exponent a. Now a is either 
even or odd, hence a = 2n + h, where h is either 0 or 1.  Since y = (3x + 1)/2a, it follows that (2a)y 
= 3x+1.  Reduce the equation mod 3, and we get (2h)y  1 mod 3, by the following reasoning: 
(2a)y  1 mod 3 implies (22n + h)y  1 mod 3 implies 22n 2hy  1 mod 3 implies 2hy  1 (mod 3) 
because 22n = 4n 1 mod 3.  

2. Since y is fixed, either y  1 or y  2 mod 3.  (We know that y, a range element, is not a mul-
tiple of 3 by “Lemma 4.0: Statement and Proof” on page 23).  If y  1 mod 3, then we have 2h(1) 
1 mod 3, which implies that h must be 0.  If y  2 mod 3, then we have (2h)(2)  1 mod 3, imply-
ing that h must be 1. 

Lemma 7.0: Statement and Proof
Let y be a range element of the 3x + 1 function.  Then for each finite exponent sequence A, 

there exists an x that maps to y via A possibly followed by a “buffer” exponent.  (For example, if  
y is mapped to by even exponents, and our exponent sequence A ends with an odd exponent, then 
there must be an even “buffer” exponent following A, and similarly if y is mapped to by odd expo-
nents and A ends with an even exponent. However, there are other cases in which a “buffer” 
exponent is required.)

 

Proof:
1. Each range element y is mapped to by all exponents of one parity (“Lemma 6.0: Statement 

and Proof” on page 25).

2. Each range element y is mapped to by a multiple of 3 (“Lemma 5.0: Statement and Proof” 
on page 23).

Each range element is mapped to by an infinity of range elements (“Lemma 5.0: Statement 
and Proof” on page 23).
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A Solution to the 3x + 1 Problem
3. Let y be a range element and let S = {s1, s2, s3, ... } be the set of all odd, positive integers 
that map to y in one iteration of the 3x + 1 function.   In other words, S is the set of all elements in 
a “spiral”.  Furthermore, let the si be in increasing order of magnitude. It is easily shown that si+1 
= 4si + 1.

(In Fig. 18, y = 13, S = {17, 69, 277, 1109, ... }

Fig. 18
(Note: for a graphical representation of part of the tree having 1 as its root instead of 13, see 

“Recursive “Spiral”s: The Structure of the 3x + 1 Function in the “Backward”, or Inverse, Direc-
tion” in our paper, “Are We Near a Solution to the 3x + 1 Problem?”, on occampress.com.)

4. If si is a multiple of 3, then 4si +1 is mapped to, in one iteration of the 3x + 1 function,  by 
all exponents of even parity.

To prove this, we need only show that x is an integer in the equation

Multiplying through by 22 and collecting terms we get

and clearly x is an integer.

13

17 69 277 1109

369 739

22
24

26

28

11

21
22

21

...

4 3u  1+ 3x 1+

2
2

---------------=

48u  4+ 3x 1+=
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A Solution to the 3x + 1 Problem
5. If sj is mapped to by all even exponents, then 4sj + 1 is mapped to, in one iteration of the 3x 
+ 1 function, by all exponents of odd parity.

(The proof is by an algebraic argument similar to that in step 4.)

6. If sk is mapped to by all odd exponents, then 4sk + 1 is a  multiple of 3.
(The proof is by an algebraic argument similar to that in step 4.)

7. The Lemma follows by an inductive argument that we now describe.

Let y be a range element.  It is mapped to by all exponents of one parity.  Thus it is mapped to 
by an infinite sequence of odd, positive integers.  As a consequence of steps 1 through 6, we can 
represent an infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where
“3” means “this odd, positive integer is a multiple of 3 and therefore is not mapped to by any 

odd, positive integer”;
“2” means “this odd, positive integer is mapped to by all even exponents”;
“1”  means “this odd, positive integer is mapped to by all odd exponents”.

Each type “2” and type “1” odd, positive integer is mapped to by all  exponents of one parity.  
Thus it is mapped to by an infinite sequence of odd, positive integers.  We can represent an 
infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where each integer has the same meaning as above.

Temporarily ignoring the case in which a buffer exponent is needed, it should now be clear 
that, for each range element y, and for each finite sequence of exponents B, we can find a finite 
path down through the infinitary tree we have just established, starting at the root y.  The path will 
end in an odd, positive integer x.  Let A denote the path B taken in reverse order.  Then we have 
our result for the non-buffer-exponent case.  The buffer-exponent case follows from the fact that 
the buffer exponent is one among an infinity of exponents of one parity.  Thus y is mapped to by 
an infinite sequence of odd, positive integers.  We then simply apply the above argument.. 
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