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A Few Off-the-Beaten-Track Observations...
This chapter from the forthcoming second edition of Shaving With Occam’s Razor contains 
thoughts, questions, and projects that have occurred to me in recent years. The answers to some of 
the questions may be well-known.  

Note: I am deeply indebted to Ed Boyda, a young physicist, for his extensive and insightful 
responses, via email, to many of the items in this chapter.  His responses are identified by his initi-
tals, “E. B.”

 I will welcome hearing from other readers with relevant information.

Economics
Note: Further observations on economics will be found in “Politics and Economics” in John 

Franklin’s collection of essays, Thoughts and Visions, on thoughtsandvisions.com.

Mass Production
Why is an assembly line, with each worker performing the same task over and over, more effi-

cient for producing large quantities of the same product?  Assuming that a worker who made the 
product entirely himself were equally skilled at performing all stages of the work, is the advantage 
of the assembly line that there is, for all practical purposes, no cost in time of converting from one 
stage of the work to another?  Give answer in mathematical terms.

The Two-Investment Problem
A person has two investments, one earning interest at a lower rate than the other.  Interest is 

compounded every interest period and immediately thereafter an amount is withdrawn from one 
or both investments.  The amount is always the same.  Suppose the amount is greater than the 
interest produced each period by the lower-interest investment.  Should the investor (a) make up 
the difference by withdrawing, each period, from the interest yielded by the higher-interest invest-
ment, or (b) should he draw down the lower-interest investment first, and only then start with-
drawing from the interest yielded by the higher-interest investment?  Many people argue that (b) 
is the correct answer.  

Assume inflation and taxes and bank fees are all zero.  Assume, also, that no money can be 
deposited into the higher-interest investment apart from interest earned by it during a given 
period.  (Otherwise, the problem becomes trivial.)  In other words, the higher-interest investment 
is like an IRA except that not even a $2,000 annual deposit is allowed.  Money can be deposited 
into the lower-interest investment provided it comes from the higher-interest investment.

Assume that the initial investment amounts, the interest rates,  and the withdrawal amount can 
take any value greater than or equal to 0, subject to the indicated constraints.  (Of course, if the 
withdrawal amount is too large, the solution becomes trivial. ) This means that the set of all possi-
ble cases is continuous, i.e., for any case under discussion, we can specify a case (many cases!) 
arbitrarily close to, but different from, it in one or more of the parameters.

An argument that (a) is the best answer under certain circumstances is the following: Suppose 
that the withdrawal amount is just “slightly” larger than the interest earned each period by the 
lower-interest investment.  Furthermore, suppose that, by transferring a very small amount once 
from the larger-interest  investment to the smaller, the investor can make the withdrawal amount 
exactly equal the interest earned each period by the lower-interest investment.  Then, after the 
transfer: (1) the investor can continue to withdraw that amount forever from the lower-interest 
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investment, and (2) the higher-interest investment will grow forever, and, furthermore, it will 
grow only “slightly” less fast than it would have without the transfer.  But this is clearly not the 
same as (b), above.

Unfortunately, this argument doesn’t show that this is the best strategy, meaning, that it will 
result in the largest total investment in the long run — or, more precisely, that from some point on, 
the total investment will grow more rapidly than will the total investment under all other strate-
gies for the same initial parameters.  It only suggests that the strategy permits the total investment 
to grow arbitrarily large with time.  

A Good Way to Distribute Money into Investments of Varying Risks and Returns
Investment advisors tell us that the first rule of responsible investing is to diversify our invest-

ments, and, in particular, never to invest a large proportion of our money in investments that are 
risky.  But at least in the popular press, and on TV programs devoted to financial management, we 
never hear anything more precise than that.  The question is, can we in fact be more precise about 
distributing our money among investments of varying risks and returns?

Suppose we have a certain amount M of money we want to invest, and suppose we have n 1 
different choices for investments, each with a certain risk and a certain rate of return.  We will 
denote our investments inv1, inv2, ..., invn, and we will denote the risk associated with invi, 1  i  
n, by risk(invi), and the rate of return of invi by return(invi).

The question immediately arises, how will we assign a numerical value for risk to each of our 
investments?  We normally assume that risk “is proportional” to return, but we are seldom if ever 
more precise than that.  Does risk increase linearly with return, so that, e.g., twice the return 
implies twice the risk? What does “twice the risk” mean?  That we are twice as likely to lose all of 
our investment, or twice as likely to suffer any loss at all, or ...?  Or is the relationship non-linear, 
so that, e.g., risk goes up as, say, the square of the return?  I know of no generally-agreed-upon 
answer to these questions, so, initially at least, let us assume that risk increases linearly with 
return, and that the proportionality constant is 1.  We will arbitrarly assign a risk value of 1 to our 
safest investment, then, to compute the risk value for any other investment, we will apply the for-
mula,

 risk(invi) = return(invi)/return(inv1)

Thus, if our safest investment returns 6%, (hence, by assumption has a risk of 1), then if we 
have an investment that returns 12%, we will assign a risk of 2 to it.

We now must decide on a total return that we want.  Clearly, it must be our lowest return, 
and our largest return.  But, as far as I know, there is no generally-agreed-upon formula that, 
given a set of risk/return pairs, will tell us which such pair is “best” for us.  So we must make the 
decision ourselves, based on our needs and the risks we are prepared to run.  The program out-
lined below will examine all possible combinations of investments and amounts of money for 
each investment, and tell us all the combinations that give us the return we have specified, along 
with the risks associated with each.  We can then choose the combination or combinations that 
have the lowest risk.
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Before I describe the very simple program, I would like to mention an idea that occurred to me 
during the course of writing this sub-section.  It is this: that instead of regarding a high rate of 
return as a way to make a lot of money on a given principal, instead, we regard a high rate of 
return as a way to invest less money to achieve a given absolute amount of dollars in return.  If we 
begin by deciding on the overall rate of return we want from our investments, then this idea sug-
gests that a program such as we are about to describe will, in fact, enable us to achieve the lowest 
possible risk for the rate of return we have specified, because the program will be able to assign 
the smallest proportions of our money to the highest risk investments, these small proportions 
producing as many dollars as large proportions of low risk investments.

So now to our program, which is written in pseudo-Pascal.  We give the top level only.

desired-total-return is the return we have decided we want.
num-segments is the number of segments into which we choose to break down our total 

amount M of money to be invested. The larger that num-segments is, the finer the discrimination 
between investment possibilities.

a partition of M is a grouping of connected segments of M.  There are 2num-segments - 1 possible 
such groupings because there are num-segments - 1 dividing lines between two successive seg-
ments.  Assigning 0 to such a dividing line if the two successive segments are to be in the same 
group of segments, and 1 if the two are to be in separate segments, the total number of possible 
groupings is seen to be 2num-segments - 1 .

begin program

for each possible partition of M do
     for each possible assignment of investments to each grouping in the partition do
          begin
              Compute total-return for that assignment of investments;
              Compute total-risk for that assignment of investments;
              Save total-return and total-risk in next location in return-risk table along with 
                   assignment of investments and partition;
          end

Go through return-risk table and print out the rows that have the desired-total-return.

end program

The program at its conclusion gives us all the investment combinations that give us the total 
return that we desire.  We can then choose the one, or several, among these, that have the lowest 
risk.  Observe from the program that it is possible that one or more of these desired-total-return 
investment combinations might not include all n of our investments.

As far as I know, no such program is readily available on the commercial market, and yet it 
enables us to sharpen our investment decisions considerably.
4



A Few Off-the-Beaten-Track Observations...
Physics — Special Relativity

Note: probably the most interesting sub-section in this section is the one that questions a basic 
precept of Special Relativity: “Conjecture on Detecting Whether or Not an Inertial Frame is Mov-
ing.” on page 12  

Plausibility Arguments for Some Basic Facts of Special Relativity
A neighbor of mine said he would be willing to learn something about Einstein’s Special The-

ory of Relativity as long as it could be done with no math, no drawings, and no required reading 
or study on his part.  It was a challenge I couldn’t resist. The following is a written version of my 
attempt (which, although I had to use a few numbers, he tentatively felt was successful).  

The Two Basic Assumptions of Special Relativity
Einstein began with several assumptions, among which are: (1)  that the speed of light — 

186,000 miles per second, or 300,000,000 meters per second — is a constant throughout the uni-
verse, and (2) that nothing can travel faster than the speed of light.  

Evidence that (1) was in fact true had been obtained in the 1880s through the Michelson-Mor-
ley experiment, “which Einstein later said repeatedly had no direct effect on him, and of which he 
may not even have been aware”1.  To say that the speed of light is constant is to say that, no matter 
where you measure the speed of light — whether, e.g., you are at a stationary point, and the light 
beam is traveling in a rocket ship moving at a fixed velocity, or whether, e.g., you are traveling in 
a rocket ship moving at a fixed velocity and the light beam is traveling from a stationary point, or 
whether you and the light source are both stationary relative to each other, or whether you and the 
light source are moving — you must always get the same value.

The Three Basic Facts Established by Special Relativity
Working from assumptions (1) and (2), Einstein came up with three conclusions, namely, that 

as an object — say, a spaceship — approaches the speed of light:

(A) time in the object slows down relative to a stationary observer; 
(B) the length of the object decreases, relative to a stationary observer, in the direction it is 

traveling; and
(C) the mass of the object, relative to a stationary observer, approaches infinity2.

I will now attempt to show, under the restrictions that my neighbor laid down, that at least (A) 
and (B) must be true.  Then I will quote an argument, under the restrictions, for the truth of (C), as 
made by a physics graduate student . 

1. Miller, Jr., Franklin, College Physics, 4th ed., Harcourt Brace Jovanovich, Inc., N.Y., 1977, p. 154.
2. “There are, of course, other effects besides A, B, C: Einstein’s original paper, for instance, was titled “On 
the Electrodynamics of Moving Bodies”, and focused on how electromagnetic fields transform under change 
of reference frame.” — E. B.
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Plausibility Argument that Time Slows Down...1

Suppose we have a rocket ship that is 186,000 miles long.  Aboard this ship are two mirrored 
plates that are parallel to the direction of movement when the ship is moving.  A pulse of light 
travels from some fixed point on one plate, perpendicularly to the mirrored surface on the other 
plate, from which it is reflected back to the first plate.  Each moment the pulse returns to the first 
plate, we consider to be a “tick” of the clock.  

 Assume now that our ship is at a steady speed that is near the speed of light. Since by our 
assumption the speed of light is constant throughout the universe, it will clearly take the light 
pulse longer to travel to the mirrored surface and back, because the pulse will travel a diagonal 
path due to the forward movement of the ship, instead of the simple vertical path it would travel if 
the ship were stationary.  So the clock aboard the ship will run slower relative to an observer who 
is stationary relative to the motion of the ship.  A shipboard observer will detect no change in the 
clock’s speed.

Can we ignore the mirrored-surfaces model, and say that the reason that time slows down is 
simply that, if a speed s of something, e.g., light, is d/t, where d is distance and t is time, and we 
decrease d  by some amount, that is, multiply it by a real number r, where 0 < r < 1, then to keep s 
the same, we must also multiply t by r, i.e., we must slow down time?

Plausibility Argument that Object Lengths Shrink With Speed
Imagine that there is a light source at the rear end of the rocket ship.  Assume the ship is 

parked in front of the on-the-ground observer’s lab so that the midpoint of the ship is directly in 
front of the observer.  Assume that when the light pulse is emitted down the length of the ship, 
another light pulse is emitted from the rear of the ship toward the on-the-ground observer.  Then, 
when the pulse reaches the other end of the ship, a light pulse is simultaneously emitted from the 
front of the ship toward the on-the-ground observer.  

When the ship and the on-the-ground observer are both stationary relative to each other, the 
observer must observe at least a  1-second interval between the sending of the pulse from the rear 
of the ship and the arrival of the pulse at the front.  

Now assume that the ship goes past the on-the-ground observer at close to the speed of light, 
and that when the ship is exactly at the position it was in its previous stationary position, a light 
pulse is sent from the rear of the ship toward the front, and a second pulse is sent toward the on-
the-ground observer as before.  And similarly when the pulse reaches the front of the ship.

But the on-the-ground observer now reasons as follows: “It will take the pulse much longer to 
reach the front of the ship because of the speed of the ship.  (If the ship were going at the speed of 
light, the pulse would never get to the front.)  Therefore I would measure the speed of light as 
slower than before.  But this contradicts the fact that the speed of light is always measured to be 
the same, namely, 186,000 miles per second.  So the only possibility is that the length of the ship 
decreases.  

A Seeming Contradiction
Now suppose that the above rocket ship is traveling at close to the speed of light. Suppose that 

no light pulse from the rear of the ship is fired, but that a pulse from the front is fired toward the 

1. This argument is derived from a display at the Albert Einstein exhibit at the New York Museum of Natural 
History, Feb., 2003, but appears in many popular treatments of relativity.
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rear.  This pulse travels much faster, relative to the ship, than it would have if the ship were 
parked in front of, say, a laboratory.

But for an observer aboard the ship, the speed of light is constant.  So it must be that the length 
of the ship increases and the on-board clock speeds up, so that, for the on-board observer, the 
speed of light remains constant. He observes no change in the length of the ship and the speed of 
his clock.  An external observer, however, would observe the increase in the length of the ship.

We seem to have a contradiction between this case and the case that a light pulse is fired from 
the rear of the ship.  How can it be explained?

A physicist strongly disagreed that we seem to have a contradiction, but I found his argument 
incomprehensible.  Like all physicists I have communicated with, he seemed not to understand 
the concept of closing speed.  Let me explain it briefly. 

 
The Concept of Closing Speed

Suppose car A is traveling at 100 mph down a straight level road.
Suppose car B is heading directly toward car A on the same road at 100 mph.  
Then their closing speed is 200 mph.  Note that the closing speed is different from the speed of 

either car.
If car B is stopped some distance directly in front of car A, then their closing speed is 100 

mph.
Suppose car B is following directly behind car A.  Suppose car A is traveling at 100 mph.  

Then: 
If car B is traveling at 200 mph, their closing speed is 100 mph.
If car B is traveling at  100 mph, their closing speed is 0 mph.
If car B is traveling at less than 100 mph, their closing speed is negative, meaning that car B 

will never catch up to car A.

Another explanation is the following:
Suppose there is a train, call it train A, on a straight, level track.  The train is 100 feet long.  

Suppose there is a duplicate train, call it train B, on an adjacent straight, level parallel track.   Sup-
pose the front of train A is adjacent to the front of train B. Now suppose that train A instanta-
neously starts moving forward at 100 feet per minute.  Train B remains motionless.  Then in  one 
minute, the front of train A will be adjacent to the rear of train B.

Now suppose instead that the moment that train A starts moving forward at 100 feet per min-
ute, the front of the train B starts moving (in the opposite direction from the movement of train A) 
at 100 feet per minute.  Then in half a minute the front of train A will be adjacent to the rear of 
train B. The reason is that in half a minute, the movement of train B reduced to 50 feet the dis-
tance that the front of train A had to travel in order to be adjacent to the rear of train B, and train A 
travels 50 feet in half a minute.

Observe that the speed of train A was the same in both cases.  The closing speed of the two 
trains, however, increased from 100 feet per minute to 200 feet per minute.  

The physicists I have communicated with believed that the speed of train A had to increase to 
200 feet per minute, which is clearly nonsense.

The physicist to whom I sent the above scenario also seemed to believe that, even though it is 
meaningful to say that the length of the ship shrinks (as measured by an external observer) and the 
7
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on-board clock slows down when the light pulse is fired from the rear of the ship to the front, the 
length of the ship does not increase (as measured by an external observer) when the light pulse is 
fired from the front of the ship to the rear.  

I will only read comments on this that explain, step by step, what the author of the comments 
believes an external observer sees and does in each case.  We know that an internal observer will 
see no change in ship length or clock speed in either case.

Plausibility Argument that Mass Increases With Speed
“I don’t know of a similarly intuitive derivation of how energy/mass depends on velocity, but 

at least the following makes sense: a massive particle cannot go as fast as the speed of light — it 
would take an infinte force to accelerate a massive particle to the speed of light — so a particle’s 
mass must approach infinity as it accelerates to the speed of light.” — E. B.

Some Things That Bother Me About Events Leading to Special Relativity
The Assumed Need for an Ether in the First Place

In the 19th century, light was believed to share properties of both waves and particles.  Physi-
cists found this troubling.  They felt that a medium, called the “ether”, must exist to “support” 
light waves, just as a medium (namely, molecules) exists to support waves in air and water.

Why didn’t physicists just assume that particles of light were sufficient to support light waves, 
just as particles (molecules) of air and water are sufficient to support waves in air and water?

Suppose Michelson Had Simply Declared His Experiment Showed There Is No Ether?
If I had been Michelson, I would have concluded from the surprising results of my and Mor-

ley’s  experiment — namely, the results that showed that motion through the supposedly-existing 
ether has no effect on light — that the ether  doesn't exist!  Suppose that Lorentz and FitzGerald 
and all other leading physicists had agreed with me.  Then there would have been no need for 
Lorentz to come up with the Transformation he did to show that objects shrink with speed.

Then that would have left Einstein with the fact (established by the Maxwell equations) that 
the speed of light is constant.  From there, he would have been able to deduce the relativity of 
simultaneity via his famed railway train example .  

Now it is inevitable that physicists would have wondered what the relationship is between the 
values of x, y, z, t in different inertial frames, e.g., one relatively stationary frame, and another rel-
atively moving frame.  Perhaps then physicists would have derived the transformation equations I 
have derived in “Appendix C — Is There an Alternative to the Lorentz Transformation?” on 
page 67

These equations, like the Lorentz Transformation, show that length (in the direction of travel)  
shrinks with speed, and time slows down with speed.  So these remarkable facts about Special 
Relativity would not have been lost due to the alternative transformaion. 

Some Things That Bother Me About Special Relativity
Measuring the Speed of Light
8
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If we ask how exactly we would go about measuring the speed of the light pulse as the rocket 
ship in “Plausibility Argument that Object Lengths Shrink With Speed” on page 6 goes past at 
close to the speed of light, we find that the answer is not so simple.  The reason is that we must 
take into account the time it takes for the pulses that are sent to the observer, to reach the observer.  
We must also have a way of knowing exactly how far the center of the ship was from the observer 
when at least one of these pulses was sent.

Therefore I ask physicists to describe exactly how the speed of light in the rocket ship (a rela-
tively moving frame) would be measured from a stationary point (a relatively non-moving frame).

(A physicist has written to me stating the following: “An observer never makes measurements 
in someone else’s frame.”)

The Constancy of the Speed of Light
Thinking about these matters, it seems unavoidable to ask: what exactly does it mean to say 

that the speed of light is constant in a universe in which rulers shrink and clocks slow down in an 
object whose increasing speed approaches that of light?

In trying to answer this question, it might occur to us to ask what exactly we mean when we 
say that the length of objects shrinks as objects approach the speed of light. In “Plausibility Argu-
ment that Object Lengths Shrink With Speed” on page 6 we used a deductive argument and con-
cluded that the length of the ship must shrink.  But suppose, in accordance with the basic 
assumption of Special Relativity, namely, that the speed of light is constant throughout the uni-
verse, we were to ask, Could we measure the shrinkage of the ship (as opposed to simply deduc-
ing that the shrinkage must occur)?  

When the ship is traveling at near the speed of light, it takes longer than a second for a photon 
to travel the length of the ship, just as, if there is a train moving in a straight line at a constant 
speed v over flat ground, and we roll a ball at a speed v + 5 (relative to the ground) from the back 
of the train to the front, the ball is only traveling at 5 mph relative to the floor of the train. The 
smaller the difference between the train’s speed relative to the ground and the ball’s, the slower 
the ball travels relative to the floor of the train.  (Here, the train is analogous to the rocket ship and 
the ball is analogous to a photon.)

But then it takes much more than one second for the ball to travel the length of the train.
Yet the speed of light must be constant, no matter under what circumstances it is measured.  

One way to assure this is if the length of the rocket ship shrinks so that a photon travels from the 
back of the ship to the front (a much shorter distance, because the ship has shrunk) in one second 
as measured by the observer aboard the ship. 

But what about the external observer?  He sees the photon having traveled only this short dis-
tance from the back of the ship to the front.  Since the speed of light is constant, he computes that 
the time to travel that short distance is only a fraction of a second.  But he sees that the observer’s 
clock aboard the ship, reads one second for the proton to travel that same distance.  Does he say 
that the observer’s clock has “slowed down”?  Is he correct in reasoning that if the observer’s 
clock takes one second to cover the same amount of time that his clock covers in a fraction of a 
second, then the observer’s clock has slowed down?

On the other hand, if instead of the ship shrinking, suppose that the observer’s clock slows 
down sufficiently so that it measures one second from the time that the photon leaves the back of 
the ship, to the time it reaches the front (because the photon is moving at a snail’s pace). 
9
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So it appears that the shrinking ship or the slowing of the observer’s clock (one or the other, 
but not both), are two ways to enable the observer to measure the correct speed of light even 
though the speed of the ship increases.

We ask again: what exactly does it mean to speak of a fixed speed (namely, that of light) in a 
world (universe) in which length decreases and time slows down in any object as it approaches 
the speed of light?  (For example, in an object whose length is being used to measure a fixed 
speed?)  Contrast this with the following: we have a pistol that fires bullets whose speed is always 
the same.  So no matter where we go on Earth, and no matter how we measure the speed, we 
always come up with the same result — a result that is given by the formula: speed of bullet = 
(distance that bullet travels)/(time it takes to travel that distance), because no matter where we go 
on Earth, a centimeter, an inch, a foot, a meter, etc. always has a constant length.  This seems per-
fectly straightforward.  The speed-of-light case does not seem to be. 

Why the Speed of Light is Constant
For some reason, physicists — and even Einstein, it seems — do not explain the obvious rea-

son why the speed of light is a constant.  It is because of a simple definition:

(the wave velocity of light) = ( the speed c of light )= (f)(, where f is the frequency of a 
given light ray, and is the wavelength. See, e.g., Giancoli’s Physics1, pp. 288, 529.

The speed of light is approximately 186,000 miles/sec = approximately 300,000 km/sec.

On the Shrinkage of Objects With Speed
Suppose there is a space ship.  I know its length when it is parked in front of my laboratory.  I 

now arrange to have the ship pass from East to West at a known distance from my laboratory, 
while I am facing North with a camera.  The ship's speed is close to the speed of light, but I have 
programmed my camera to take a picture of it at the moment it is directly in front of me.  

Since I know the distance to the ship when the photo was taken, I can do a little trigonometry 
on the photo, and determine the length of the ship when it passed.

Would I compute the length to be less than the length when it was parked in front of my labo-
ratory?  A physicist has written me that the answer is Yes.  However, the following is an editor’s 
footnote on p. 13 of Lillian Lieber’s s The Einstein Theory of Relativity2:

Until 1959 the Lorentz contraction of a sphere into an ellipsoid was believed to appear just as 
Prof. Lieber describes.  That year, R. Penrose and J. Terrell independently showed that a pho-
tograph taken of a very rapidly moving sphere would show, surprisingly, a sphere.  R. 
Penrose, "The Apparent Shape of a Relativistically Moving Sphere", Proc. Camb. Philos. Soc. 
55 (1959); J. Terrell, "Invisibility of the Lorentz Transformation," Phys. Rev. 116 (1959): 
1041-1045.

1. Giancoli, Douglas, Physics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980.
2. Paul Dry Books, Philadelphia,, PA, 2008.
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Robert J. Buenker in his Relativity Contradictions Unveiled1, states: “In order to satisfy the 
light-speed constancy postulate, it is essential that lengths expand when clocks slow down, and in 
exactly the same proportion.”2

That is, since distance = rate  time, if we let rate = c, the speed of light, we have c = distance/
time.  Now c is constant, so if time slows down (i.e., increases in value, so that, e.g., 1 second now 
becomes 10 seconds), then the only way for c to remain constant is for distance to increase.  But 
this is in direct contradiction to the basic precept of Special Relativity that lengths decrease as an 
object’s speed approaches the speed of light.

Permanence of Slowing of Clocks, Non-Permanence of Shrinking of Objects
We are familiar, from science fiction literature and films, with the phenomenon of a person 

who has been on a space trip at speeds close to the speed of light, having aged much less, when he 
returns to earth,  than those he left behind.  But why is it that the person, and objects he had with 
him, do not also show the shrinkage that took place when they were near the speed of light?  Why 
does this shrinkage “go away”, whereas the effect of the slowing of clocks, remains?

Why is it that the masses of the person and the objects are not considerably greater on return, 
than they were when they left?

The Relativity of Simultaneity
Early in 2007, I wrote the following email to the physicist E.B.:

The following occurred to me re the standard argument against simultaneity being absolute in 
the universe.  I am referring here to the argument about lightning bolts striking in front of and 
in back of a train, and there being an observer on a hill equidistant from the points at which the 
lightning bolts strike, another observer at the front of the train, another at the back. 

I don’t dispute that the bolts will appear to strike simultaneously for the observer on the hill, 
or that the bolt in front of the train will appear to strike before the one at the back for the 
observer in the front of the train, etc.  But I dispute that the observers must necessarily be so 
naive as to go solely by what they see!

Suppose I’m an astronomer.  One night, looking through my telescope, I see two supernovas 
that appear to occur simultaneously.  My reaction would be to say to myself: “How interest-
ing!  I have just become aware of an infinity of possibilities regarding two supernovas. The 
only fact I can assert is that the light from two supernovas reached me at the same time.  The 
possibilities are all the ways this could happen: one supernova could be close, so that the 
actual explosion took place only a few years ago, while the other supernova could be far, so 
that its actual explosion took place many years ago, but the light only reached me now.  A 
table, or a graph, representing all these possibilities, is all I can hope to come up with, barring 
further information.”

Similarly, in Special Relativity, every observation should result in a table that represents all 
the possible ways the observed event could have occurred.  So, for example, the guy in the 

1. Apeiron, Montreal, 2014
2. ibid., back cover summary of p. 34
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front of the train should say to himself, “Hmmm.  The lightning bolt that struck in front of the 
train appears to have struck before the bolt that struck in back of the train.  Now let me try to 
represent all the ways this could have happened...”  and then, since he knows the speed of the 
train and the length of the train and the speed of light and the observed time lapse between the 
two bolts, one of the possibilities in his table will be that in fact the bolts struck simultane-
ously, as perceived by the guy on the hill.

E.B. replied as follows:

Your comment is well within the spirit of relativity —  an observer realizes that what he sees 
“naively” is only one of an infinity of possible descriptions of the event, and he knows how to 
adjust his “naive” description so to be consistent with any of the others.  the only problem 
with what you say is in implying that one description is more “naive” than another —  i.e. that 
there is one “correct” description —  in fact, all descriptions are equally valid and equivalent.

But I have trouble accepting E. B.’s statement. At least part of his reply is based on the basic 
assumption of Special Relativity that it is not possible for an occupant of an inertial frame to 
know if the frame is moving (at a steady rate) of if it is motionless.  

Precept Regarding the Determination  of Frame Movement From Within a Frame
The Precept says, in full, that it is impossible to determine, by a mechanical experiment within 

an inertial frame, whether or not the frame is moving.
I interpret “mechanical experiment” to mean “experiment involving objects having mass.”  I 

do not dispute this.  However, I believe it is possible to determine, by an experiment involving 
only photons, which have no mass, if an inertial frame is moving. 

I must make a special request to physics graduate students and physicists to read and think 
about what I have actually written, as opposed to what, at first glance, they think I have written.  I 
also must make clear that I have no interest in proving that Einstein was wrong.  My only interest 
is in finding out if the argument presented in this section is valid, and if it is corroborated by the 
Test described at the end of the section.

Conjecture on Detecting Whether or Not an Inertial Frame is Moving.

Preliminaries
I will assume that the reader is familiar with Einstein’s moving-train model to show the rela-

tivity of simultaneity, that is, the fact that two events may appear to occur simultaneously to one 
observer, but not to another.  This model is described in virtually all popularizations and also in 
more in-depth treatises of Special Relativity. A translation of Einstein’s description of his model 
can be found on pp. 25-26 of his book, Relativity1. 

To quickly review: in the model, a lightning bolt strikes at a distance d in front of a train mov-
ing in a straight line on a level track at constant speed v, at the same moment as another lightning 
bolt at a distance d behind the train also strikes.  “At the same moment” means relative to an 

1. translation by Robert W. Lawson, Prometheus Books, N.Y., 1995.
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external observer on a nearby embankment who is sitting on a line perpendicular to the center of 
the train at the moment the bolts strike.  This observer sees the bolts as occurring simultaneously 
because the speed of light is constant, and the distance from each bolt to the observer is the same.  

However, an observer sitting in the middle of the train sees the bolt in front as occurring 
before the bolt behind.  The reason for this difference is that because the photons from the front of 
the train are moving toward the middle of the train, and the middle of the train is moving toward 
the photons from the front, the time for the photons to reach the middle of the train is less than the 
time for the photons from behind the train to reach the middle.

Some readers have trouble understanding this difference in arrival times at the middle of the 
train, so let me express it in terms of closing speeds.  In the case of Einstein’s train model, the 
closing speed of the photons from the front of the train, and the middle of the train, is c + v, where 
c is the speed of light.  But the closing speed of the photons from behind  the train, and the middle 
of the train, is c – v.  Since the distance to be traveled by the photons in each case, is the same, 
namely, d + (½)r, where r is the length of the train, the photons from the front of the train will 
reach the middle, hence reach the observer, before the photons from behind the train. 

Around 2015 I began asking myself, Suppose that instead of the two lightning flashes, there 
had been simultaneous flashes of light from lightsources at the end of each of two metal rods  pro-
jecting equal distances d from the front and rear of the train.  (It is a well-known fact that clocks 
(timers) can be synchronized within an inertial frame — in this case, to set off the flashes simulta-
neously.1) What would  the observer in the middle of the train have seen? 

It seemed to me clear that the observer would have seen exactly what he saw in Einstein’s 
original model.

But I realized that that implied that it is possible, from within an inertial frame (the train), to 
determine if the frame is moving, which is an exception to one of the basic precepts of Special Rel-
ativity!

I devised a possible proof of my Conjecture. It follows.   (Note: A much shorter, and, I 
believe, clearer, version of the First Possible Proof is given under “Second Possible Proof of Con-
jecture” on page 14.)

First Possible Proof of Assertion
The possible proof is presented in an informal style, though I believe it is logically valid.
1. The only difference between my train model, and Einstein's original one, is that the flashes 

in mine come from two metal rods projecting from the front and rear of the train, whereas in Ein-
stein’s they come from two lightning bolts striking the ground.  Otherwise everything is the same.  

1. Proof:
Assume  there are  two identical timing devices, A and B —  identical in parts, assembled in one and the 
same shop.
Assume that in that same shop, the starting time in each device is set at 0 min..
Assume that the Start button on each device is  simultaneously pressed.  The devices are observed ticking at 
the same rate, and are observed to reach the successive time figures (e.g., 1 min., 2 min., 3 min., … ) at the 
same time.
One of those running timing devices  is then placed next to and connected to the front lightsource, and the 
other running timing device is placed next to and connected to the rear lightsource.
The same time figure on each device can then be set to cause the lightsources to flash simultaneously at that 
time.
13
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The reader may find it helpful to imagine the two experiments being conducted in parallel, mean-
ing, in particular, that the photons are released by the lightning bolts at the same moment that they 
are released from the lightsources on the metal rods.

2.  The only way that the observer at the middle of the train could see something different in 
my model, would be if the speed of the photons as a result of their having been emitted from a 
moving source, was different from the speed of the photons  in Einstein's model, which are emit-
ted from fixed sources.

3. But the photons have one and only one speed.  In fact, there is no difference in the behavior 
of the two models from the moment after the photons are released. The constancy of the behavior 
of photons is another Basic Precept of Special Relativity.  Therefore, to argue that it is different in 
the case of the flashes from the two rods, is to argue against that Basic Precept of Special Relativ-
ity.

So the observer sees what he saw in Einstein’s model.  Therefore it is possible to tell, from 
within a moving inertial frame, that the frame is moving.    

Note: If, instead of photons, we had used billiard balls rolling along a track inside the train  
and running the length of the train, it would have been possible to get the balls to arrive at the 
observer at the same time,  All we would have had to do was roll the balls at the same speed rela-
tive to the floor of the train.  

If I am right about the passenger in the modified model seeing exactly the same thing he saw 
in the unmodified model, then all I have really shown is that:

No tests performed solely with objects that have mass, can reveal, to persons in an inertial 
frame, if the frame is moving or not relative to an external observer.

Second Possible Proof of Conjecture
1. Assume an inertial frame has a lightsource in front of it and a lightsource in the rear.  

2. Assume there are light detectors in the middle of the frame, one to detect light from the 
front lightsource, one to detect light from the rear one.

3. Assume the lightsources are programmed to emit light at the same time, and that timers in 
the light detectors are programmed to record when the light from each source reaches the detector.

4. If the detector for the front lightsource receives light before the detector for the rear light-
source, then the frame is moving (in a line in the forward direction).  If not, the frame is not mov-
ing.

Responses of Physicists Who Were Told About the Possible Exception to the Precept
I sent emails to at least seven physicists at various universities.  In these emails, I described 

my modification of Einstein’s model, and stated that if the observer in the middle of the train saw 
14
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what he saw in Einstein’s model, namely, the flash from the front before the flash from the rear, 
then that would imply an exception to a basic precept of Special Relativity (see above). I had no 
idea the reaction would be what it was. 

Several physicists said in no uncertain terms that any suggestion that there might be an excep-
tion to a basic precept of Special Relativity could only come from a crackpot.

Two said that the error in my thinking can only become clear via higher mathematics.  The 
error could not be explained at the photon level of Einstein’s train model. 

But several other physicists said that higher math is not required.  I am simply confusing the 
various inertial frames involved. (But I am using only one inertial frame, namely, that of the 
train.) 

Others said that the error in my thinking is well-known, and is explained in most textbooks.  
(But I have looked at six textbooks, plus a variety of Google articles, and found nothing about my 
version of Einstein’s train model.) 

One physicist said he performs “frequently” in the lab in his apartment, an equivalent experi-
ment and always finds that the photons from the front and the back arrive at the observer at the 
same time.  (But his apartment is not moving at a constant speed v.  When I questioned his exper-
iments, he said I was never, ever to write him another email.)

Another physicist said that my error is my claim that light has two speeds, c + v and c – v, 
whereas it is known that light has only one speed.  But I make no such claim: the two speeds are 
closing speeds of photons and the observer, as is clearly explained.  The speed of light, c, is the 
same in both. I pointed this out to the physicist.  He ignored my argument.  He then said that I was 
merely re-inventing “Galilean invariance”. This is the principle, set forth by Galileo in the early 
1600s, that it is not possible to tell, from within a closed space moving at a constant speed, if the 
space is moving or not.  Galileo’s closed space was the interior of a ship moving at a constant 
speed within completely calm waters.

 When I asked him to explain how I was doing that, he said that my refusal to accept his criti-
cism as correct, whether or not I understood it, was “breathtakingly arrogant” and that I was never 
to write him again.

Possible Explanation for Physicists’ Criticisms Having Little To Do With What I Actually 
Wrote

No physicist ever bothered to explain where the error in my assertion lay.  It seemed clear that 
once a physicist knew that I was setting forth a possible exception to a basic precept of Special 
Relativity, he felt no need to actually read and think about the modified version of Einstein’s 
model that I presented. Since there could be no exceptions to the basic precepts of Special Rela-
tivity, virtually anything could serve as a valid criticism. For example,  I was amazed to learn that, 
after some six months of communicating with me about my assertion, and presumably thinking 
about it, one physicist revealed that he wasn’t sure if the train in my version of the model, was 
moving!

How I Got the Physicists To Agree I Was Right Without Admitting It
In June, 2017, I sent the following email to 12 physicists at several universities:

Prof. ...:
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You are no doubt  familiar with the train model that Einstein used to establish the relativity of 
simultaneity.

Suppose that instead of the two lightning flashes, there had been simultaneous flashes of light 
from lightsources at the end of each of two metal rods  projecting equal distances from the 
front and rear of the train.  (It is a well-known fact that clocks (timers) can be synchronized 
within an inertial frame -- in this case, to set off the flashes simultaneously.) What would  the 
observer in the middle of the train have seen? 

If I do not hear from you, I will assume that you believe the observer would have seen what he 
saw in Einstein's original model, namely,  the flash from the front of the train before the flash 
from the rear.

If I do hear from you, please be assured that I guarantee complete confidentiality in all com-
munications, and that I will not argue with anything you say.

Regards,

-- Peter Schorer

Note that I did not mention the possible exception to the basic precept of Special Relativity. 
Ten out of 12 of the physicists I wrote to did not reply, so I assume they agreed I was right.
 Two did reply.  One of these replies I didn’t understand, in the other one the physicist said that 

the observer would see both flashes at the same time.  When I asked him how he arrived at that 
conclusion, he said an explanation wasn’t possible via email(!).

  I then wrote to two of the physicists who had not replied, informing them of the implication, 
and asking for their thoughts. I told them I guaranteed complete confidentiality. Neither replied. 

 One morning at Peet’s Coffee and Tea store near Rick & Ann’s restaurant, in Berkeley, CA, 
where I often went for breakfast, I was sitting at the high, narrow table facing the window.  A man 
came up, asked me what I was studying.  I said mathematics. I asked him if he was a mathemati-
cian.  He said no, a physicist.  He worked at a major lab in the area.   I  immediately told him I 
would welcome his answer to a physics question I had.   I described my modification of Einstein’s 
model, then asked him what the observer would see, and without a moment’s hesitation he said he 
would see the same thing as before.  I then told him what this meant for a basic precept of Spacial 
Relativity.  He smiled, and nodded thoughtfully.  We shook hands, I told him my name, he told me 
his, which I immediately forgot, and he left.  I forgot to ask him for an email address, so I have 
been unable to contact him again. 

But in any case, I now believe I may have discovered something important.

A Test of the Validity of My Assertion
Given the accuracy of today’s atomic clocks, it seems that a test of my claim could be per-

formed aboard a long jetliner (or a long train!) with lights flashed simultaneously from the front to 
the center and from the rear to the center.  A forward-facing detector at the center would record 
the elapsed time since the front light was flashed, and a backward-facing detector would record 
the elapsed time since the rear light was flashed.  If the time for the forward-facing detector were 
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less than the time for the backward-facing detector, then we would have reason to believe that my 
assertion might be valid.

Light As a Measuring Tool in Inertial Frames
Writers on Special Relativity spend considerable time on the meaning of measurement in an 

inertial frame.  Lengths are stated as being measured by end-to-end placement of a ruler, clocks 
are stated as having hands, and the problem of synchronization of the clocks is then dealt with at 
length. Why cannot a finite set of clocks be synchronized by (1) the clocks all being identical 
mechanically, and (2) the clocks all being set at the same time when the clocks are in the same 
place, and are then moved to where they are to register the time?

But why is it necessary to employ such crude means, when we have a tool that can be regarded 
as the best possible, namely, light.  The speed of light is a constant, regardless of the movement of 
the frame in which it is emitted.  It would seem that, from the basic physical fact that distance (x) 
= speed (v) times time (t), we can let the speed be that (c) of light.  Then to find the distance 
between two points in an inertial frame, we need only determine how long it takes a light pulse to 
travel from one to the other.  To determine the speed of an object in a frame, we simply divide the 
distance it travels between two points by the time it takes light to traverse the distance.

There is, of course, something circular about this.  To measure a distance, we need to know a 
time.  To measure  a time, we need to know a distance, etc.  The question is, can this apparent cir-
cularity be overcome?

On the other hand, in the traditional treatments involving rulers and clocks, we must ask: why 
do we believe that the ruler lengths are what we believe them to be?  Why do we believe that the 
clock ticks are what we believe them to be?  In other words, why is there no circularity in the tra-
ditional treatments?

Now that we are in a time when atomic clocks and radio clocks exist, it seems that measure-
ments in, and between, inertial frames would far better be expressed in terms of these devices.

Presentations of Special- and General-Relativity
Several Popularizations

As any reader knows who looks at the physics section of a college bookstore, or of any good 
used-book store, or who probes the  Internet, there have been very many attempts to present Spe-
cial- and/or General-Relativity at various levels of detail.

As far as popularizations are concerned, among the best I have come across is Martin Gard-
ner’s The Relativity Explosion1.  The main reason for the book’s quality is, I’m sure, Gardner’s 
long experience in writing for a wide, technically-literate audience, which is no doubt also why he 
chose to include so many illustrations.  Bertrand Russell’s celebrated  The ABC of Relativity, is, in 
my opinion, not as good as Gardner’s work. Although Russell was one of the best expositors of 
technical concepts in the 20th century, his geometric explanations of the space-time interval, and 
of the derivation of the Lorentz Transformation, are an embarrassment (for him). I challenge any 
reader to write down a clear explanation of the latter explanation. These explanations make one 
think that Russell knew far less about the formal presentation of mathematical proofs than we 
assumed.  

1. Vintage Books, N.Y., 1976.
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Lillian Lieber wrote an excellent text, The Einstein Theory of Relativity1.  (Unlike the over-
whelming majority of physics and mathematics textbooks, this one gives the justification for each 
statement.) However, the first part of her derivation of the Lorentz Transformation is, at least for 
me, baffling.

My attempt to derive the Lorentz Transformation using the simplest means possible is given 
in  “Appendix C — Is There an Alternative to the Lorentz Transformation?” on page 67.

Towards a Mathematically-Rigorous Presentation of Special Relativity
 A major problem with popularizations, including those that use some mathematics, is that the 

authors believe that the subject can be made less intimidating by explaining as much as possible 
in prose.  But this is simply not true — we can call it the Popularizer’s Fallacy —  once the discus-
sion gets down to basic operations such as the synchronizing of clocks, the measurement of 
lengths and times in inertial frames, etc.  The reader feels, on the one hand, that he certainly 
should be able to understand matters as simple as clocks and the use of unit-length measuring 
rods, but on the other hand, if he allows questions about what he has read to emerge in his mind, 
he finds that he is not at all sure how to answer them.  

After a good deal of struggle trying to understand Special Relativity, I have come to believe 
that the only remedy is a mathematically-rigorous presentation of the subject using only the level 
of mathematics that is necessary to understand, and prove, the Lorentz Transformation. I have 
never come across one. There are, of course, sophisticated presentations of Special Relativity that 
use mathematics considerably more advanced than that required for the Transformation.  I am not 
interested in these as long as popularizations continue to imply that Special Relativity can be 
understood  at the Transformation level.  

The kind of presentation of the Theory of Special Relativity that I have in mind would have 
the following characteristics:

Characteristics of the Presentation
clear statement by the author, at the beginning, of the minimum knowledge he is assuming 

among readers.  The presentation must then provide proofs for all facts not part of this minimum 
knowledge.

structured proofs (analogous to structured programs in computer science) wherever appro-
priate.

justification (either explicit or by reference) for each and every statement, whether the state-
ment is in a proof or not. (See the chapter “Proofs” in William Curtis’s How to Improve Your Math 
Grades on occampress.com.)

complete, thoroughly cross-referenced index, including an index of symbols and of fre-
quently-occurring expressions.

1. Paul Dry Books, Philadelphia,, PA, 2008.
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testing of the finished presentation on randomly-selected readers having the minimum 
knowledge the author specified.

A rigorous presentation would all but eliminate the need for the endless explanations and 
plausibility arguments and examples-designed-to-convince-the-reader and long-winded prose that 
characterize so much of the commonly available literature on Special Relativity1.  The answers to 
most questions about the subject would be simply a reference to one or more definitions and/or 
proofs in the presentation.  

Questions that Definitions in the Presentation Must Answer
I feel that the all the following questions must be answered in the presentation.  If any of the 

questions are irrelevant, then the reason why must be stated.

Speed of Light — what exactly does it mean to say that the speed of light is constant in a uni-
verse in which rulers shrink and clocks slow down in an object whose increasing speed 
approaches that of light?   (See “Why the Speed of Light is Constant” on page 10.)

Inertial Frame —
What is the formal definition of an inertial frame? 
 
Does a frame have boundaries, and if so what are they?  If not, how do we know where one 
frame begins and the other ends?

Can a frame occupy an infinite space?  If not, then why are the two three-dimensional sets of 
Cartesian coordinates that are routinely diagrammed in derivations of the Lorentz Transfor-
mation, called “frames”?

Can one frame be inside another frame?

Can an observer in one frame observe events in another frame? (A physicist has told me that 
the answer is No.  But in Einstein’s Relativity2, p. 117, we read “In order to see how the points 
of the x´-axis appear as viewed from K, we only require to take a ‘snapshot’  of K´  from K.” 
(K and K´  are separate inertial frames.))

Is a frame a single, continuous, connected entity?

1. Robert J. Buenker’s book, Relativity Contradictions Unveiled, which was mentioned in the section, “The 
Constancy of the Speed of Light” on page 9, is an example of a controversial work that suffers greatly from 
the fact that its claims are not presented in the context of a mathematically-rigorous presentation of Special 
Relativity. As a result, the few physicists who deign to look into the book (anyone who dares to question 
Special Relativity is regarded by physicists as a crackpot) will be able to come up with counterarguments, 
counterexplanations, counterexamples, to which, I am sure, Buenker will reply with more of the same.  Each 
side will become convinced that it is right and the other is wrong, the whole exchange being, in my opinion, 
a waste of time that could largely have been avoided by a mathematically-rigorous presentation.
2. Einstein, Albert, Relativity, Prometheus Books, Amherst, N.Y., 1995.
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Does a frame need to have an observer inside it?
If so, then where is the observer in a frame located?

How does an observer recognize an event in his own frame, and in another frame?  Are there 
speed-of-light considerations that must be taken into account if distances between observer 
and event are sufficiently large, even in one frame?

What are all the tasks that can be performed by an observer in his frame, and in another 
frame? Is it even possible for an observer in frame F1 to perform tasks in another frame F2?  
(See “Appendix B — On Basic Tasks in Special and General Relativity” on page 63.)

Coordinate Systems —
Is the coordinate system in each frame always the same?  If so, is it always Cartesian coordi-
nates?

Where is the origin of the coordinate system located in each frame?  Near the “front” of the 
frame?  Anywhere at all?  

Is a frame more than just a set of coordinates, and, if it is, what else is contained in a frame?

In the Lorentz Transformation, what exactly do the terms, x, y, z, t, and x´, y´, z´, t´, represent?

 What determines t = 0, t´ = 0?  Do the terms always pertain to a specific event, e.g., a light-
ning flash, or do they pertain to a continuous sequence of events, e.g., the outward movement 
of the spherical wavefront from a flash of light?

To put the questions in another way: if  x, y, z, t, are the coordinates in the relatively stationary 
frame F1, and x´, y´, z´, t´ are coordinates in a frame F2 moving at a speed v relative to F1, 
what exactly does the first equation of the Lorentz Transformation say to the observer in F2?  
Does it say, “If an event in your frame (F2) occurs that has the coordinates x, y, z, t in the other 
frame (F1), then the coordinate x´ in your frame, of the event,  will be given by 

where

And does the last equation of the Lorentz Transformation say to the observer in F2? “If an 
event in your frame (F2) occurs that has the coordinates x, y, z, t in the other frame (F1), then 
the coordinate t´ in your frame, of the event,  will be given by 
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This would seem to imply that the observer in F2 can see into F1, and that, in particular, he can 
somehow know not only what the event is, but also what the values x, y, z, t are.  Does the 
speed of light become relevant here?  Suppose the frames are several light years apart?

Speeds — are the following statements correct?

(1) If an object u in a frame is moving at a velocity v relative to that frame, and the frame is 
moving at a velocity w relative to some other, relatively stationary frame, then the total veloc-
ity of r relative to the relatively stationary frame, is v + w — as long as the object u is not a 
photon. For, the speed of the photon is c, the speed of light, which is a constant.  But nothing 
can travel faster than c, and so it would appear that w must be 0, which it is not.  A resolution 
of this seeming contradiction is given under “Another Possible New Precept for Special Rela-
tivity” on page 22.  

(2) If two objects in a frame are moving toward each other, one at a speed v, the other at a 
speed w, then the closing speed of the two objects, as observed from another frame, is v + w.  
If v and w are both greater than 0, then the closing speed is greater than v and greater than w.  
However the speeds v, w are unchanged.  Thus, if v = c, the speed of light, which is a constant, 
we do not have a contradiction here, since closing speed is not the speed of an object.

Shrinkage of Lengths in Direction of Speed of Moving Object — do the lengths “really” 
shrink, or is the shrinkage just an optical illusion?  If they really shrink, how is this possible 
given the molecular and atomic forces in the molecules and atoms composing the object? 

Slowing Down of Time in a Moving Object — does the effect of time’s slowing down (time 
dilation) with an object’s high speed, remain after the speed has slowed down?  Apparently 
the answer is Yes (see, e.g.,the film Close Encounters of the Third Kind, or The Twins Para-
dox in special relativity treatises.)

Assume a spaceship parked before us and pointing in a direction perpendicular to a line 
extending in front of us.  

Suppose it had a window in its side through which we could see a light that flashed, say, each 
second (the flashes constituted the ticks of an onboard clock).  

Now assume that the ship went out into space and gained speed to, say, half the speed of light, 
and then flew past us, at one point being at the same location as it was when we observed the 
clock ticks when it was parked before us.  

Suppose we made a film or video of its passing by. Would the flashes now appear to be occur-
ring much slower, i.e., would they occur, say, every 10 of our seconds?

t  t
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Another Possible New Precept for Special Relativity
Assume a train is moving in a straight line at a speed v.  Assume a ball is rolled forward, inside 

the train, at a speed w, where w <  v.  Then the speed of the ball relative to an observer in a frame 
that is stationary relative to the train, is w + v.

Now assume a spaceship is moving in a straight line at a speed v that is close to the speed of 
light.  Assume a beam of light is flashed from inside the back of the ship, directly towards the 
front of the ship.  The speed of a photon in the beam of light is c.  However the speed of the pho-
ton relative to an observer in a frame that is stationary relative to the spaceship, cannot be c + v, 
because nothing can travel at a speed greater than that of light.  So c + v = c, implying that the 
speed of the spaceship is zero, contradicting our initial statement as to its speed.

We are told, in Special Relativity, to ignore arguments like this, and simply to accept, as a 
basic precept, that nothing can travel faster than light.  However, why shouldn’t we instead say 
that v = 0 simply implies that the speed of light can only be measured by an observer in the same 
frame as the beam of light in question?

Thus all attempts thus far to measure the speed of light are perfectly legitimate, because the 
measurements have all taken place in the same frame in which the light or other electromagnetic 
wave occurs.  Of course, the size of some of the frames is very large — millions of miles in the 
case of electromagnetic waves sent and received from earth to Mars rovers.

Clearly a rigorous presentation of Special Relativity must either accept the above implication 
as a new precept, or else must  include a step-by-step description of how the speed of light, c, in a 
relatively moving frame, can be measured from a relatively stationary frame.

The Need for Annotated Editions of the Classic Early Papers on Relativity
The classic early papers are available in paperback, namely in Einstein, A., Lorentz, H. A., 

Minkowski, H., and Weyl, H., The Principle of Relativity (Dover Publications, Inc., Mineola, 
N.Y., 1952).   The papers were written for the physicists of the time, i.e., of the early 20th century, 
and so the authors had a perfect right to make certain assumptions about what their audience 
could be assumed to know.

But for a person in the early 21st century who is neither a physics student nor a physicist, even 
though he may have had considerable mathematical training, there are many parts of these papers 
that are difficult, if not impossible, to understand.  And yet, because of the importance of the 
papers, it would seem to be a worthwhile service to these readers (and possibly even to physics 
students and physicists!) to make available annotated editions of the papers.  Part I of Einstein’s 
first paper1 on Special Relativity uses only high-school math (well, high-school math before the 
national decline in public schools).  Nevertheless, even these parts are difficult. In fact, an 
advanced graduate student in physics was not able to penetrate the obscurities and omissions in 
this Part.  Part II of the paper requires a knowledge of the elements of vector calculus.

“Appendix A — Obscurities and Omissions in Einstein’s First Paper on Special Relativity” on 
page 59 contains a discussion of the sources of the difficulties in Parts I and II of Einstein’s paper.

The kind of annotated edition I have in mind would be the equivalent of Martin Gardner’s 
superb annotated edition of Alice’s Adventures in Wonderland, namely, The Annotated Alice (New 
American Library, N.Y., 1960).  Among other things, each edition would make clear what was 
already known to physicists of the time, what was controversial, and, most important, it would 

1. “On the Electrodynamics of Moving Bodies”, pp. 37-65, ibid.
22



A Few Off-the-Beaten-Track Observations...
explain the reasoning that is obscure — e.g., the material on the time function  in section 3 of 
Einstein’s first paper on Special Relativity (see “Appendix A — Obscurities and Omissions in 
Einstein’s First Paper on Special Relativity” on page 59).

The goal of the annotated editions should be to decrease, as much as possible, the amount of 
time that a non-physics student or a non-physicist requires to understand the paper.  I am confi-
dent that an annotated edition of Einstein’s first paper on Special Relativity could reduce this time 
by a factor of at least three.

 Needless to say, each edition should be tested on representative members of the intended 
audience before the edition is published. Unquestionably, the task-oriented approach described 
under “Environments Make Relativity Much Easier to Understand” on page 63, would help con-
siderably in overcoming the obscurities that are inevitable (for non-physicists) with the discursive 
approach that is used in the papers.

Did Einstein Get the Idea of General Relativity From Bar Magnets?
It is well known that Einstein was fascinated by a magnetic compass that he received at age 

five from his father.  But we may reasonably ask if he was not also later given, of if he did not also 
later acquire on his own, a bar magnet.  If so, then he almost certainly learned to place the magnet 
on a piece of white paper, sprinkle iron filings around the magnet, and observe the curved patterns 
that the filings make as a result of the magnet’s field.  Perhaps, when he learned that the earth, and 
indeed all heavenly bodies, exerts a force (gravity) that attracts just as the magnet attracts, the idea 
might have occurred to him that gravity might curve space (actually, space-time) just as the mag-
net seemed to curve space and thus make the iron filings form their curved pattern.

Actually, the pattern of iron filings is not representative of the curvature of space-time around 
a massive object in space.  Far more representative is the flow of water past a smooth, submerged 
rock in a stream. 

Physics — Other
Entropy

Which is in a higher state of entropy: a stopped watch or a watch that is five minutes slow?  Or 
are both in the same entropy state?  Clearly, the behavior of both is equally “predictable”.

When a working machine stops working, does its entropy increase? 

“The 19th century classical notion of entropy as ‘disorder’ finally found microscopic basis 
through quantum mechanics in the early 20th century.  Entropy is the logarithm of the number of 
available quantum mechanical states (at a fixed energy, number of particles, and volume, to keep 
things simple).  When you’re talking about, say, an ideal gas of particles, it’s fairly easy to derive 
directly the ‘disorder’  notion of entropy starting from the microscopic definition.  When you start 
talking about things like watches, the connection gets more tenuous due to computational com-
plexity, and oftentimes one slips into the realm of metaphor.  It sounds to me in your watch exam-
ple that you are close to a metaphorical use of ‘disorder’. The underlying quantum states don’t 
care whether the watch is running slow or on time.  That said, if there were a mechanical reason 
for a watch to start running slow, when it originally was running fast, there could be some entro-
pic issues behind it.  For instance, a battery that is using up its electrolytes is increasing its entropy 
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all the time.  Similar considerations apply for the working machine that stops:  if it stops because 
some fuel source is used up, you’re at a higher entropy state.  If it stops because you flip a power 
switch and you can flip that switch back on, its entropy probably hasn’t changed significantly.” — 
E.B.

The Heisenberg Uncertainty Principle
The Heisenberg Uncertainty Principle says that you can’t simultaneously measure both the 

position and velocity of an electron to any degree of accuracy you want. The more precise you 
want to measure the position, the less precisely you can measure the velocity.  And vice versa.

Einstein was bothered greatly by this limitation in physics, and by the fact that probabilistic 
knowledge is the best one can hope for in certain areas of quantum mechanics.  He apparently felt 
that probabilistic knowledge is incomplete knowledge, and reflects our inability to know how to 
penetrate to the core of the underlying reality.

But suppose we are limited to probabilistic knowledge when — to put it in computer terms — 
there simply aren’t enough bits “to go around”.  In computer science, it is known that there are 
functions that can never be computed — not because we aren’t smart enough to figure out how to 
write programs to compute them, but because there are more functions than there are programs: 
there is an uncountably infinite number of functions, and only a countably infinite number of pro-
grams — in total.  Similarly, there are mathematical states of affairs whose existence  can never be 
proved — not because we aren’t smart enough to figure out the proofs, but because there are more 
states of affairs  than there are proofs: there is at least an uncountably infinite number of mathe-
matical states of affairs involving just the real numbers, and only a countably infinite number of 
mathematical proofs — in total.  Thus, for example, the fact that the set Z is the union of the set X 
and Y is a state of affairs.  But there is an uncountably infinite number of these states of affairs if 
X, Y, and Z are each sets of real numbers, and only a countably infinite number of proofs — in 
total.

Suppose we have an 8-1/2-by-11-inch piece of transparent paper that has been ruled with a 
small rectangular grid.  Suppose we are given some black squares, each the size of a square in the 
grid, except that the number of black squares is significantly less than the total number of squares 
on the piece of paper.  Now place an  8-1/2-by-11-inch photograph of Lincoln behind the piece of 
paper.  Our goal is to copy, as well as we can, Lincoln’s image using an appropriate arrangement 
of the black squares.  Now since the number of black squares is signficantly less than the number 
of squares on our paper, we cannot hope for arbitrary accuracy everywhere on our paper.  We can 
use all our squares to reproduce as accurately as our grid allows, a portion of the photograph, but 
the rest of our paper will be blank.  Or we can distribute our squares over the entire sheet of paper, 
and derive a poor reproduction of the entire photograph.  Or we can choose some distribution in 
between.  

Suppose, at the quantum level, the problem we face is similar: there simply aren’t enough 
black squares to go around. It has nothing to do with our lack of knowledge as to the “underlying 
reality”.  Suppose we say to physicists: “Look, you can’t have everything!  You can’t have infinite 
mass at every point in the universe.  You can’t have massive bodies traveling at the speed of light. 
And you can’t have more black squares than Nature provides.  Period.  End of  story.”

Another expression of the same idea.  Suppose all matter consisted of stones of a certain size 
and shape.  Suppose further that if I wanted to make a model of the mountain I was standing at the 
base of, I would have to take some of the stones from those that made up the mountain.  It seems 
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clear that the smaller the stones, the more accurate could be my model for a given total weight of 
stones to be used in the model.  The bigger the stones, the less accurate.  Of course if I were 
allowed to increase the total weight of stones to be used, then I could make my model more accu-
rate — but I would have to take more of the stones that made up the mountain.  

Still another expression of the same idea: suppose that there is an upper limit to the amount of 
information that can be transmitted through a volume of space per second.  This upper limit is a 
physical limit, and thus is not a function of how clever we are in developing  communications 
devices.  Suppose, now, that the amount of information we, at one end of the craps table, would 
need in order to predict how a pair of dice thrown at the other end, will fall, is simply greater than 
the upper limit for transmission of information through the volume of space in between.  Then we 
could not make an accurate prediction, and although the reason would be that we didn’t know 
enough, it would also be that it was impossible to know enough.

Waves
“So what is this mind of ours: what are these atoms with consciousness?  Last week’s pota-

toes!  They now can remember what was going on in my mind a year ago — a mind which has 
long ago been replaced.

“To note that the thing I call my individuality is only a pattern or dance, that is what it means 
when one discovers how long it takes for the atoms of the brain to be replaced by other atoms.  
The atoms come into my brain, dance a dance, and then go out — there are always new atoms, but 
always doing the same dance, remembering what the dance was yesterday.” — Feynman, Rich-
ard, What Do You Care What Other People Think?, W. W. Norton & Company, N.Y., 1988, p. 
244.

“‘The wave is not the water.  The water told you about the wave going by.  But the wave has a 
patterned integrity of its own — absolutely weightless.’” — Fuller, Buckminster, quoted in Ken-
ner, Hugh, Bucky: A Guided Tour of Buckminster Fuller, William Morrow & Company, Inc. N.Y., 
1973, p. 98.

Research project: find out as many applications as you can of the phenomenon — of the idea 
— of “beats”, i.e., the fact that when two sound waves of nearly identical frequencies are sounded 
together, they produce a low-frequency sound, and as the frequencies of the two waves grow far-
ther apart, the beat frequency increases.

“Simple example:  the waa-waa sound you hear when two instruments play out of tune.  more 
generally, “beats” is just a specific example of interference of waves, and that is literally every-
where. Examples:  diffraction, e.g. when a wave passes through an aperture — this puts funda-
mental limits, e.g., on astronomical telescopes. Anti-reflecting coating on glass:  the coating 
reflects an additional wave that interferes with (cancels in this case) the wave reflected off the 
glass.  Etc.” — E. B.

Research project: determine the function (if one exists), that, with suitable parameters, allows 
one to create a wave that moves, at any speed, in either direction, along a horizontal axis.
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“Your function is any function of the form F(x,t) = f(x + vt), where x is horizontal position, v is 
velocity (positive or negative), t is time, and f is any function.  Physicswise, actual information 
transfer is bounded by the speed of light.” — E. B.

Thus we can consider a sine wave in the x-y plane, and then for each t coordinate, with the t 
axis running perpendicular to the x-y plane, and with the positive direction into the page, we can 
imagine the sine wave shifted to the right in proportion to the magnitude of the t coordinate.  So:

F(x, 0) = sin x;
F(x, t) = sin (x - t).

On a windy day, the peaks of the waves moving toward the shore of San Francisco Bay seem 
more or less the same distance apart.  Is there a general relationship between this distance and the 
velocity of the wind, and if so, what is it? 

“Water waves are a very complicated subject, because you’re out of the idealized world phys-
icists sometimes like to play with and into the real world.  Ignoring wind for a moment (i.e. 
retreating to the idealized world), shallow water waves (shallow relative to wavelength) have 
velocity that is proportional to the square root of the depth of the water, whereas deep water 
waves have velocity proportional to the square root of the wavelength.  My guess is that this is the 
dominant determiner of speed, and the wind speed mainly determines amplitude — i.e. when the 
wind is blowing at the natural wavelength for that patch of water, the wind will reinforce the 
waves strongly and make them bigger, a sort of resonance effect.  But this is just a guess.” — E. 
B.

Why have physicists always been so perplexed by the fact that light has particle properties 
(the particles of light are photons) as well as wave properties, when they have no trouble with the 
fact that air and water have both these properties (air and water are each composed of atoms and 
molecules, but they also exhibit wave properties (sound waves, water waves))? 

“Good point:  photons behave most like classical waves when there are lots of photons mov-
ing together coherently.  this sounds pretty similar to the water situation.  But there are a couple of 
key differences:

“i)  The water is happy just sitting there, and then waves are compressions of density or sur-
face waves on top of this pre-existing medium.  Light, on the other hand, is itself a wave.  Until 
around 1900, people thought that there must be something waving with light, so they made up this 
stuff called the “ether”. It turns out that’s not there.  But if it were, the ether would be more anala-
gous to the water, and the light would be analagous to the water waves.

“ii) The photons always have both particle-like and wave-like properties. If you turn down the 
intensity of light enough so that you only let out a single photon at a time, and that photon passes 
through a grid of slits, you will still get wave-like interference on the other side.  A single photon 
interferes with itself!  This is weird.  A single photon still has wavelike properties — it doesn’t 
need to be in a herd of photons.  The same goes for a single electron or neutron etc.  One of my 
professors actually did the experiment with neutrons:  turn down the intensity until only one hits 
the slits at a time, and it still interferes with itself. Cool!!! A single water molecule, on the other 
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hand, will have no wavelike properties.  (Or rather, it would behave like a quantum mechanical 
wave, but this is a distinct wave, with different properties, from the macroscopic water wave.)

“In general on waves, and more generally than that:  I was TA [teaching assistant] this semes-
ter for a class for non-physics undergrads.  The professor had a vision for what this class should 
look like, and he has written a book which is now free on the web (eventually to be published).  
He calls his class ‘Physics for Future Presidents’, and his goal is to teach the material someone in 
government would need to interact intelligently with a science advisor and make policy decisions.  
Global warming, nuclear weapons, aliens, hydrogen economy, lasers, etc.  I can’t say enough 
good things about the book.  I think 30 years from now people will look on it as a revolution in 
science education, much like the Feynman lectures are for physics majors. Anyway, chapter 7 is 
on waves, but the whole book is super.  Go to muller.lbl.gov and click through to the course web-
site.” — E. B.

Water Draining in the Bathtub
And what does make the water go around when it drains in the bathtub or sink or toilet?  Get 

any college physics textbook and work through the formulas for the Coriolis effect — which 
accounts for the vortex patterns of the weather, including hurricanes — and you will easily con-
vince yourself that the same forces are far too weak to exert such a strong effect over the short dis-
tances involved in tubs, sinks, and toilets.  Some obvious experiments suggest themselves: (1) 
Beginning with an empty tub, allow only a very little water to enter the tub and drain, then gradu-
ally increase the amount and observe how the flow pattern changes  — i.e., run the normal course 
of events in reverse; (2) Try different sizes of round drain holes, ranging from, say, the diameter of 
a pencil up to,  say, a diameter of two inches; (3) Do the equivalent with square drain holes; (4) 
Find an expert on fluid mechanics who is willing to talk to you, and discuss the possibility that a 
circular flow may, in fact, be the most efficient way for the typical quantities of water involved, to 
flow through a circular opening — for the molecules to “line up”.

This subject is discussed in Martin Gardner’s The New Ambidexterous Universe (W. H. Free-
man and Company, N.Y., 1990, pp. 48-51).  He concludes, “No one doubts that the Coriolis effect 
is responsible for the strong tendency of cyclones and tornadoes to spin counterclockwise in the 
northern half of the globe and to go widdershins in the other half...As for bathtub vortices, the 
question is still controversial, calling for bigger and better-controlled tubs before any final verdict 
can be rendered.” (p. 51)

“It’s a common fallacy, even among some physicists, that the Coriolis force determines bath-
room drainage.  (The Coriolis force does determine hurricanes’ rotation.)  Physicists I trust say 
(and this makes sense to me) that residual angular momentum in the water is what actually does it:  
since angular momentum is conserved, if there’s only a tiny circular flow far away from the drain, 
it will become a very fast circular flow as it’s sucked in toward the drain.  This initial tiny flow 
could be set up any number of ways, e.g. by you getting out of the tub or lifting the plug or ...” — 
E. B.

What Causes Vortexes?
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Vortexes do not merely occur in bathtubs and sinks, or in certain weather patterns, where they 
can be explained by the movement of air over the rotating earth.  We see them also in space, e.g., 
in the very form that galaxies often take, including our own Milky Way galaxy.  Matter streaming 
into a black hole (as is presumed to exist at the center of our galaxy) seems to follow a vortex pat-
tern.  Is there a relatively simple explanation for this phenomenon?  Why shouldn’t matter simply 
move straight into the black hole from the point at which it first experiences the gravitational 
force of the black hole?  Why take this roundabout way of getting there? 

“Let’s talk about matter going into a black hole (the galaxy situation is analagous):  What’s 
happening here is essentially an orbit:  matter is whizzing by the black hole at high velocity, and 
the black hole sucks it in.  But it only sucks hard enough to bend the trajectory of the matter, 
because the matter is moving so fast.  It keeps on bending the matter towards it, while the matter 
wants to keep on going in the most straight path available to it.  If the gravity is strong enough, the 
sucking eventually wins out; if it’s not strong enough, the matter will fly off into space.  This is 
just what happens when a satellite orbits the earth: the satellite is falling all the time towards earth, 
but its sideways velocity is just big enough that it always misses the earth as it falls. See chapter 3 
of that [online] book I mentioned above.  If the matter started from rest, it would just go straight 
in, no curving.” — E. B.

The Distance from the Earth to the Sun
Each planet, including the earth, follows an elliptical orbit around the sun, with the sun 

located at one focus of the ellipse.  Thus the distance from any planet to the sun is continuously 
varying. So why are children in primary school and secondary school taught that the “distance to 
the sun from the earth is 93 million miles”? 

Why Do Planets Travel in Elliptical, as Opposed to Circular,  Orbits?
I have never come across an explanation, in undergraduate textbooks, or in popularizations, as 

to why planets travel in elliptical orbits.  The kind of explanation I have in mind would begin with 
a planet-sized object at some distance from the sun.  Then among the possibilities are: (1) the 
planet is moving directly toward the sun; (2) the planet is moving continually away from the sun; 
(3) the planet is at a fixed distance from the center of the sun, and not moving relative to the sur-
face of the sun; (4) the planet is moving such that, at any given moment, a component of the vec-
tor of its movement is tangent to the surface of the sun.

Regarding case (4): we know from high-school physics that if we throw a ball in a direction 
parallel to the surface of the earth, then if we throw the ball sufficiently fast, and ignoring air 
resistance, it will go into a circular orbit around the earth.  In effect, the earth keeps “dropping 
away” at a rate equal to the falling rate of the ball.  So if the planet is moving similarly, it should 
be in a circular orbit.  Why isn’t it?  If the tangential speed of the planet is greater than that 
required to make it go into a circular orbit, does it go into an elliptical orbit?  If so, can we attri-
bute the elliptical orbits of planets to the fact that there are more ways for the tangential speed not 
to be the exact speed required for a circular orbit?

Finally, is there a way to prove, by considering only straight-line approximations to the move-
ment of the planet1, and straight-line approximations of the speed-of-light travel of the particles of 
gravity, and Newton’s well-known equation for the force of gravity, F = (Gm1m2)/r2, where m1 is 
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the mass of the sun and m2 is the mass of the planet, to show that the orbit of the planet must be 
elliptical?

Eratosthenes’ Calculation of the Circumference of the Earth
Most histories of science devote a few words to the ingenious calculation, by Eratosthenes (c. 

273 - c. 192) of the circumference of the eath.  The histories describe his method as follows:
When the sun at the summer solstice is directly overhead in Alexandria, it casts a shadow 

from a stick planted vertically in the ground some 500 miles away, at Syene (modern Aswan).  
From the angle that the far end of the shadow makes with the vertical stick, one requires only 
some basic geometry to determine the circumference of the earth.

The problem is that none of the histories of science that I have seen explain two crucial things. 
(1) How is it possible to know at Syene, when it is 12 noon on the day of the summer solstice at 
Alexandria?  There were no electronic means to communicate from Alexandria, “It is now 12 
noon here,” and there were no clocks.  Even if there were, they would have to be able to keep time 
while being moved from Alexandria to Syene. (It  was not until the late 1700s that a clock was 
developed, by John Harrison, that could keep time while in motion, in this case, aboard a ship on 
the high seas.)

The answer to question (1) is  that it will be high noon in Alexandria when the shadow thrown 
by the stick in Syene, is the shortest1.  The observer can arrive at the shortest length by pressing a 
peg, or moving a white stone, at the end of the shadow throughout the morning.

The second question, (2),  is, How was Eratosthenese able to measure the small angle (around 
7.2 degrees) defined, at the top of the stick, by the length of the shortest shadow?  It seems highly 
unlikely that any instrument available to him was capable of measuring 7.2 degrees.  One answer 
is the following:

He knew the length of the vertical rod.  Call it a.  He could measure the length of the shadow 
at noon.  Call it b.  Then by the Pythagorean Theorem, he could compute the hypotenuse of the 
right triangle so formed, that is, he could compute h = a2 + b2).  

Now, on a sufficiently large, flat, area of fine-grained sand, he could draw a circle of radius h.  
Then he could draw one actual radius in the sand.  

He could then measure the length a of the shadow on this radius, with the one end of the 
length at the center of the circle.  At the other end, he could erect a perpendicular at the end of b 
on the radius (it is reasonable to assume that wooden right triangles were available)  and extend it 
to the circle.at a point p.  He could then exend the first radius until it met the circle at a point q. 

He could now measure, using a rope,  the arc lying running from q to p.  Call this length r. 
Then the circumfernce C of the earth can be found from the equation,

(500)/C = r/(2h)

By this method, Eratosthenes arrived at a value of C that is only a couple of hundred miles 
from what is now considered to be the actual circumference of the earth, namely, 24,800 miles.

1. where the vector of this movement must have a non-zero component parallel to the surface of the sun
1. Stephen Strazdus, in a note on the web site titled  “How did Eratosthenese know the exact, accurate hour 
to measure the difference in sun angle (7 degrees) at 2 cities at the very same time?”, https://www.quora.com 
(5/30/17).  
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The Three-Body Problem
I have never seen explained in any discussion of the three-body- (much less the n-body-) 

problem, why a solution (in this computer age) is not simply to take a typical calculus approach: 
i.e.,  break time, distances and gravitational attraction down into finite units, then make these as 
small as needs require.  We begin with each body in some initial position and moving at some ini-
tial velocity.  We now divide the distances between all the bodies into finite intervals.  In the first 
time interval, starting at time t0,  each body emits its appropriate “gravitational attraction pulse” 
and moves the appropriate number of distance units in the direction prescribed by the body’s cur-
rent velocity.  The gravitational attraction pulse travels the number of distance units prescribed by 
the speed of light.  The process repeats starting at the second time interval, t1.  (How is the n-
body-problem solved in video space-war games?)

“You’re correct, people solve the 3- and n-body problems numerically all the time.  This is a 
lot of what working planetary physicists do.  As a practical matter, this is entirely sufficient — 
you can get as much accuracy as you desire by throwing more and more computing power at it.  
But aesthetically, it bugs people that there is no analytical solution to such a simple problem.” — 
E. B.

Note: The chemist Louis Whaley has informed me, “There is a solution to the 3-body problem 
in Quantum Mechanics; the hydrogen molecule (2 protons and 1 electron) can be solved analyti-
cally in elliptical coordinates.”

Air Flow Over a Wing
The standard explanation of why air flowing over a wing produces lift involves the Bernoulli 

effect: since the distance the air must travel from the front of the wing to the back is less when the 
air flows along the lower surface than when it flows along the upper, the speed of the air along the 
upper surface must therefore be greater than the speed along the lower, and this produces a lower 
pressure on the upper surface than on the lower, resulting in lift.

But this explanation assumes that two air molecules at the leading edge of the wing, one of 
which will pass along the upper surface, and the other of which will pass along the lower,  are 
somehow “obligated” to reach the trailing edge of the wing at the same time.  Why should this be 
so?  Why doesn’t the upper surface molecule travel over the surface at exactly the same speed as 
that of the lower surface molecule, and simply arrive at the trailing edge at a later time?

“Your point might be valid for any given pair of molecules, but if you let this happen in aggre-
gate, you’d get discontinuities in the airflow.  That is, on average not as much air would go along 
the top, so you’d get regions of low pressure up there (vacua), and the pressure would accelerate 
more air in there to make up for it.  That’s a long way of saying that your answer lies in the conti-
nuity equation.

“By the way, my fluid mechanics book says that wing angle — the fact that the wing is tilted 
so that the bottom hits the oncoming air and gets bumped up by it — is as, or more, important than 
the Bernoulli effect.  In practice, you solve air-flow equations which have both effects embedded 
in them in complicated ways.” — E. B.
30



A Few Off-the-Beaten-Track Observations...
Probability and Determinism
Suppose I am standing at one end of a craps table, and I press two fair dice between my thumb 

and index finger, with, say, the 1 and 6 faces pointing up.  Suppose I now slowly move my hand, 
holding the dice with these two faces point up, to the other end of the playing surface of the table.  
While I am doing this, there will be no doubt in the minds of onlookers that, if I continue to hold 
the dice in the same position, when I place them on the playing surface, the 1 and the 6 will be 
point up.  

Now suppose instead that I shake the dice in my hand, then send them flying in the traditional 
way over the playing surface.  Onlookers will accept that they will not know which two faces will 
be pointing up until the dice stop moving.  They will say that the best they can do, as far as pre-
dicting which two faces will be pointing up, is to state the probabilities of each possible pair of 
faces poing up.  Thus, e.g., the probability of a 1 and a 6 is 2/36.

One or more of the onlookers may remark that it is not possible to know in advance which two 
faces will point up.  Someone may remark on non-determinism: there are some things we cannot 
know exactly  in advance.

But suppose someone replies that determinism has nothing to do with it.  The problem is that 
the information highway between the dice in mid-flight and the observer is simply not able to 
convey all the information needed to enable an exact prediction of which two faces will point up.

This problem did not exist when I held the dice pinched between my thumb and index finger.  
But when I threw the dice, I would have needed to know the exact mass of each die, its exact ori-
entation and position above the table  at the moment of release from my hand, and then been able 
to compute the position of each die as it flew through the air.  This would have required consider-
able computation and measurement — the information highway between the dice at any point and 
my eyes, would have been overloaded.

Or suppose that we are receiving a message in Morse code transmitted over a wire.  But there 
is noise in the wire, and so some of the dots and dashes are missing or garbled.  We might argue 
that this is because the message is  inherently not deterministic — there is no unique message, 
only a probabilistic message.  Or we might argue that the transmission line is faulty.

Or suppose we are looking at a person who is physically far away from us.  We might argue 
that the features of the person are inherently not deterministic — there is not a unique person, only 
a probabilistic person.

So perhaps we can argue that the universe is deterministic, always, but the information high-
way between events and observers is sometimes overcrowded.

Negative Probability
Project: write a report, for the mathematically-educated layman, on the subject of negative 

probability, and why such a thing cannot exist.  
“Eine genauere Analyse dieses mathematischen Schemas hat es aber wahrscheinlich gemacht, 

dass jene Grössen, die in der gewöhnlichen Quantentheorie als Wahrscheinlichkeiten gedeutet 
werden müssen, hier unter Umständen negativ werden können, nachdem der Renormierungsproz-
ess durchgeführt ist.  Das würde natürlich eine widerspruchsfreie Deutung des Formalismus zur 
Beschreibung der Materie ausschliessen, denn eine negative Wahrscheinlichkeit ist ein sinnloser 
Begriff.”
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“A more precise analysis of this mathematical approach [to combining relativity and quantum 
mechanics] would probably reveal that every quantity that must be represented, in normal quan-
tum theory, as a probability, could, in some circumstances, become negative, because of the renor-
malization process.  That would of course exclude a contradiction-free interpretation of the 
formalism for the description of matter, since a negative probability is a nonsensical concept.” — 
Heisenberg, Werner, Physik und Philosophie, Ullstein Bücher, Berlin, 1978, p. 135.  (Translation 
mine.)

“If you want probability to mean the number of times some event will happen out of a given 
number of test cases, that number better be positive to make any sense. That is, if you flip a coin a 
hundred times, the number of times you get heads better be a number between 0 and 100.  That’s 
it.  Negative numbers just don’t make sense in this context.  We take it as a basic consistency con-
dition of our quantum mechanical theories that they yield sensible numbers for probabilities (not 
negative, not infinite — restricting to non-infinite probabilities is one of the major constraints we 
have on string theory, actually.)” — E. B.

The Birds-in-the-Truck Problem
Project: write a review of the status of the Birds-in-the-Truck Problem.  The Problem is as fol-

lows: a man is driving a truck full of birds through the countryside.  He comes to a bridge which 
can only hold the weight of the truck without the birds.  What should he do?  Common answer: he 
should scare the birds, e.g., by clapping his hands, so that they fly up from their perches, hence 
remove their weight from the truck, so that he can then drive across the bridge.  Common counter-
argument: the air-presssure from their flapping wings would still increase the weight of the truck.

“I suppose it’s true that momentarily, the birds must exert a force greater than their weight 
down on the truck or on the air around the truck to lift off, but this would only be temporary.  
Maybe it would be easier to think of monkeys which had trampolines they could jump off of.” — 
E. B. 

Math-in-Physics Anxiety
“In Figure 3-19a we see an elevator at rest.  Let us consider an object such as a bag hanging 

from a spring scale as shown.  The scale indicates the downward force exerted on it by the bag.  
The force, exerted on the scale, is just equal and opposite to the force exerted by the scale upward 
on the bag.  We call this force, T.  Since the mass, m, is not accelerating, we apply F = ma to the 
bag and obtain

T – w = 0,

where w is the weight of the bag; thus T = w, and since the scale indicates the force T exerted on it 
by the bag, it registers a force equal to the weight of the bag, as we expect.  Now, if the elevator 
has an acceleration a, when we apply F = ma to the object, we obtain T - w = ma.  We then solve 
for T and obtain

     T = w + ma.”
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— Giancoli, Douglas C., Physics, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980, p. 75. 
I certainly understand that the equation, T – w = ma, means that if I subtract the weight of the 

bag from the force exerted on the scale by the bag, I will be left with the quantity given by multi-
plying the mass by the acceleration.   But when the text says,  “We solve for T and obtain  T = w + 
ma,” that is by no means a worry-free statement for me in physics!  Of course, I know that, 
according to the rules of algebra, I am allowed to move a term from one side of an equation to 
another as long as I change its sign.  But why should I be sure that I can move the weight to the 
other side by changing its sign?  How do we know we are dealing with real numbers that follow 
the rules of mathematical real numbers when we measure physical quantities?  The answer, 
“Because that is how we define physical quantities” does not seem satisfactory.  If  I define certain 
emotional states to be quantities that obey some of the laws of equations (e.g., the law concerning 
changing of signs when terms are moved across the equals sign), and if I then write, e.g., “hope = 
evidence + past experience”, you would probably object if I concluded, “and therefore past expe-
rience = hope – evidence.”

“What does one mean by a force?  something with an amount (of pushing) and a direction (of 
pushing).  It is thus very naturally a vector.  We have algebraic rules for how to manipulate vec-
tors, and they make sense too: T - w = ma says:  the acceleration (times the mass) is given by the 
sum of the forces on the object.  T = w + ma says:  to produce a given acceleration, given that the 
block has a certain weight, what tension do I need to apply? 

“Note that because force is very naturally a vector, adding and subtracting is also very natural.  
This is very different to the situation you have with ‘hope’ and ‘evidence’, which are not in any 
natural way vectors or even numbers.

“But I am sympathetic in general to your concerns.  I wondered for a long time why Newton’s 
equation F = ma is a second-order differential equation in position.  Why not third or higher 
order?  Why is it that the fundamental equations of motion are second order?  I can wave my 
hands now and talk about how the equations come from approximations to the fundamental equa-
tions of quantum mechanics, namely extremization problems on path integrals, but it’s still not 
totally satisfactory.  At some point, you have to retreat as follows:  the job of physics is to give 
equations that can predict the results of experiments.  The ‘why’ of  ‘why do things work like 
this?’ will probably never be completely answered (though we try to do better and better).” — E. 
B.

Custom Graph Paper
Why don’t we plot at least some non-linear functions on the appropriate analogue of log graph 

paper?  Why don’t we have “acceleration paper” to plot the speed of falling (or rising) bodies?  If 
we did have, ready-to-hand, such graph paper for any non-linear function, would that make the 
“problem” of non-linearity largely disappear, and if not, why not?  Why shouldn’t everything 
always be as linear as it can be?

“You could, of course, do this, but we don’t because it’s easier (most seem to think) to look at 
lots of different graphs on the same graph paper than lots of the same graphs on different graph 
papers.  I don't know — the opposite may be true for you.” — E. B.
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Why Don’t Formulas Have Addition Where They Have Multiplication?
Why are the formulas of physics as they are insofar as operations are concerned?  For exam-

ple, why is momentum equal to mass times velocity instead of mass plus velocity?  And similarly 
for force (mass times acceleration), work (force times distance), etc.  The answer sought here is 
not “Because that is the way these quantities are defined,” or “Because that is what experiment 
reveals,” but rather something like the explanation why the force of gravity is an inverse square 
law, namely, because if we think of the gravitational force as radiating from a point mass and 
being measured by the intensity per unit area on successive concentric spheres about the point, 
then in fact that intensity turns out to follow an inverse square law, by definition of the area of a 
sphere.

“First, regarding gravity: there is no a priori reason gravity had to be inverse-square.  It’s con-
venient and cute that there’s a relation to how intensities per unit area fall off, but it didn’t have to 
be that way.  The strong nuclear force actually gets stronger, linearly, with increasing distance (at 
least at some energy scales — the behavior changes with energy).  The weak nuclear force falls 
off exponentially with distance. Different electric and magnetic configurations have forces which 
fall off with various powers of distance (though the fundamental electrostatic interaction between 
point charges is inverse-square).  Furthermore, gravity is only a good approximation to inverse-
square, and there are general relativistic corrections which depend differently on distance.

“I think it’s wrong to discount ‘because that is what experiment reveals’, because the funda-
mental goal of physics is to describe mathematically what happens in an experiment, however you 
get it done.

“We can still make some sense out of things.  Let’s think about momentum.  Momentum is 
just force applied for an amount of time.  But F = ma, and acceleration for a time gives a change 
in velocity, so naturally change in momentum is mass times change in velocity.  Also, the units 
work out.

“Then why F = ma?  Because Newton said so.  But even then, this makes sense:  say you fix 
the mass you’re talking about.  To accelerate it twice as much, you need to push twice as hard, 
right?  So the force better be proportional to acceleration, with some constant of proportionality, 
k:  F = ka.  Well, you do some measurements, and you figure out that all k depends on is the 
mass.” — E. B.

How Do You Discover Something “Is Proportional To” Something Else?
How did physicists in the past decide that one quantity was “proportional to” another?  At 

what point in a series of experiments do I decide that something is proportional, or inversely pro-
portional, to something else?  Don’t I first see the actual ratio, with the constant of proportionality 
already in place?  

“You can determine proportionality without determining the constant. Example:  your average 
spring applies a restoring force to a mass on its end which is proportional to its length:  F = kl, l 
being length.  How would you determine this?  You might hang the spring from the ceiling and 
start hanging different weights from the spring.  you hang a bowling ball from the spring and you 
measure how much it stretches.  You hang 2 bowling balls and note that it stretches twice as 
much.  You hang 3 bowling balls and note that it stretches three times as much.  Now if you know 
how much each bowling ball weighs, you can determine k.  If you don’t know how much each 
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bowling ball weighs, you can’t determine k.  But you have learned that force is proportional to l.” 
— E. B.

“Take the Limit as the Size of Electrons Approaches That of Photons...”
Compare Young’s  double-slit experiment with the one that yields the fundamental dilemma 

of quantum mechanics.  The only difference is that the particles are photons in the one, electrons 
in the other.  But electrons are bigger than photons.  Do we gain any insights if we start with 
Young’s experiment, and then gradually (continuously) deform it into the quantum mechanics 
experiment?

“I don’t know what you mean by saying ‘electrons are bigger than photons’. In the standard 
model of particle physics (including QED [quantum electrodynamics]), both the photon and the 
electron are point particles.  Sometimes people talk about a ‘charge radius’ of the electron, which 
means the following:  the quantum-mechanical vacuum surrounding the electron is actually a very 
active place, and in some sense there are electron-positron pairs appearing and then disappearing 
all the time.  The electron attracts the positrons, and so there is a cloud of virtual positrons around 
the electron.  This reduces the electric field far outside the electron, the positively charged posi-
trons cancelling some of the field of the negatively charged electron.  If you shoot something at 
high speed toward the electron, it can eventually start penetrating the positron cloud and seeing 
the ‘bare charge’ of the electron.  The rough distance from the electron at which this effect 
becomes important is called the ‘charge radius’ of the electron.  But this wouldn’t affect the dou-
ble-slit experiment.

“All that really matters for the double-slit experiment is that both photons and electrons 
behave like waves.  The amount of diffraction caused by the slits depends on the size and spacing 
of the slits relative to the wavelength of the electrons or photons.  The wavelenths of the electrons 
and photons, in turn, depend on their momentum.  You see the same diffraction effect with plain 
old water waves.” — E. B.

Particle Physics, or, the Furniture Maker
Suppose that extraterrestrials conduct a series of experiments to determine what types of fur-

niture exist on earth.  For example, they have an earthling bring plans for a type of chair, call it 
chair type X, that the extraterrestrials haven’t observed before, to a furniture maker.  Within a 
month, the earthling returns to the shop and picks up the chair.  The extraterrestrials conclude, 
“Chairs of type X exist!”  They repeat the experiment with many different types of chairs, tables, 
cabinets.  Each time, they add another furniture type to their growing list of types of furniture that 
exist.

How is this process fundamentally different from physicists’ search for new particles?  What 
does it mean to perform an experiment, observe a particle that has never been observed before, 
and conclude that the particle exists?  What is the difference between saying “Particles of type X 
exist” and “Particles of type X can be created?”

Heat: What Makes the Particles Move in the First Place?
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We all know that heat is the total kinetic energy of particles —  of a liquid or a gas — in some 
region, e.g., in a balloon.  And kinetic energy is a function of the speed and mass of the particles.  
The question is: what gets the particles moving in the first place?  Consider a large empty space (a 
vacuum) surrounded by metal.  Inside there is exactly one gas particle.  Assume it is perfectly still 
relative to the sides of the container, and located in the middle of the container.  Now heat the con-
tainer.  What exactly makes the particle start to move?  We assume that no particles are given off 
by the interior of the container itself.

“[The answer is] radiation.  Anything (at least anything made up of charged particles, meaning 
just about anything but neutrons) heated above absolute zero radiates electromagnetic radiation 
(i.e. light).  Electromagnetic radiation is created by jiggling charges.  You and I are made up of 
jiggling electric charges, and we radiate light.  We radiate at many frequencies, but most of the 
radiation comes out in the infrared, which is too low in frequency for our eyes to detect.  That’s 
what passive infrared goggles pick up: the infrared radiation coming off our bodies. Same thing 
with the box surrounding your atom.  It will be at some non-zero temperature, and so it will radi-
ate.  The atom will absorb some of the radiation, turning the radiative energy into kinetic energy. 
Insterstellar and even intergalactic space are not empty:  There are protons, neutrinos, and photons 
running around (and other stuff).  Everywhere there is at least the radiation left over from the big 
bang.  So no matter what, you always have hot things around, hot things radiate, and so it’s impos-
sible to perfectly isolate any particle.

“That said, physicists can now do a pretty good job:  they cool things with liquid nitrogen (to 
about 70 K), then inside they have another box cooled by liquid helium (about 4K), and then 
inside that they have nice vacua and they let things expand quickly, which cools them, etc.  and 
they can hold things at millikelvin temperatures.  But it’s impossible to get to absolute zero.” — 
E. B.

Is Size a Place?
If we had the ability to shrink things, then we could hide something by making it sufficiently 

small.  Or, if there weren’t enough room for something we wanted, e.g., a big house, we could just 
shrink it (and ourselves).  We could solve the problem of the homeless by simply shrinking them 
at night. 

Why Not Just Combine Quantum Mechanics and General Relativity and Call the 
Result “The Theory of Everything?”

“[It is true that] we can explain every experiment we have done to this point using QM [Quan-
tum Mechanics] or GR [General Relativity].  (There is one exception to this which I’ll mention 
below.) 

“1)  Quantum mechanics is so basic to our understanding of physics and comes from such 
basic principles, that we expect it to be relevant to GR. Quantum mechanics starts from the obser-
vation that “measurement is disturbing.”  If I measure you, say, by collecting a bunch of photons 
bouncing off you into my eye, you are not bothered much, because you are a big macroscopic 
thing made of many electrons and other particles, and I don’t have detailed experimental control 
over what each is doing.  However, if I try to measure a single electron by bouncing a photon off 
36



A Few Off-the-Beaten-Track Observations...
of it, the photon will disturb what it’s doing, and I can have enough  experimental control over the 
electron to notice this.  One of the consequences is Heisenberg’s uncertainty principle:  You can't 
simultaneously measure with perfect accuracy the position and velocity of the electron.  Since it 
stems from such a simple (and in retrospect clear) idea that “measurement is disturbing”, we 
expect similar principles to apply in gravitational situations.

“2) So, let’s try to make GR a quantum mechanical theory.  Turns out that it’s not so easy to do 
this.  The quantum mechanical particle that would carry gravitational force in a quantum theory of 
gravity is called the graviton.  If you compute the probability for two gravitons to scatter off one 
another in the most naive formulation of quantum gravity, the probability turns out to be infinite.  
This is bad, clearly.  The naive theory is failing.

It’s not so easy to explain intuitively why this is happening, but it’s something like this:  one 
of the consequences of QM is that a particle never has perfectly-well-defined energy.  And in par-
ticular, it has some (very small) probability of having arbitrarily high energy.  But the strength of 
the gravitational force depends on the energy (which, as Einstein taught us, is the same thing as 
mass).  So arbitrarily large forces appear in your problem, and even at very suppressed probabili-
ties, these muck things up for you.

“3) So one thing you could try to do is to explicitly cut off the range of energies you allow in 
your problem.  We do this all the time in quantum field theory (the version of quantum mechanics 
that we use now), and we can do it rigorously (following the procedure of Wilson):  you start with 
a theory valid at arbitrarily high energies, and there is a procedure (Wilson’s) for taking account of 
all the high-energy effects and arriving at a different low-energy theory with a cut-off range of 
energies.  The two are equivalent but different descriptions of the low-energy phenomena.

“This is what we do, essentially, when we do chemistry:  we use the low-energy theory of 
molecular interactions, already having taken account of the high-energy nuclear processes.

“4)  The problem with this approach is that if you want to do nuclear physics, say, your effec-
tive molecular theory isn’t worth much.  If you don’t know it, you need to “guess” the nuclear the-
ory which “completes” the low-energy picture.

“This is analagous to where we are now with QM and GR.  We do have a perfectly good quan-
tum theory of GR, but it is an effective one, with an explicit cutoff in energy ranges.  This is theo-
retically unsatisfactory because we know there must be some more fundamental theory valid at all 
energies, and it may eventually be experimentally unsatisfactory if we can do experiments at 
much higher energies than we can do now (say, near a small black hole).

“5) In summary, for this part of it, the underlying principles of QM are so simple that we 
expect them to be applicable to gravity, and we have a consistent quantum gravity theory, but it is 
only valid at low energies.  We know there is something beyond it.  This something may be string 
theory or something else yet to be discovered.   As of yet, the possible somethings (including 
string theory) are only poorly understood, and none is yet a convincing candidate.

“6) It turns out that there are also good theoretical reasons to expect that our current quantum 
field theory of the nuclear and electromagnetic forces (the ‘Standard Model’) is also only an 
effective theory.  Theorists expect (hope?) to see signs of the new theory at the LHC collider in 
Geneva when it turns on in 2007.
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“7)  There is one very disturbing problem, an experimental problem really, that is still com-
pletely not understood within our QM + GR framework:  We have learned recently that there is a 
small, non-zero cosmological constant.  This is the “dark energy” or “vacuum energy” or “anti-
gravity” which is making the expansion of the universe accelerate.  No one has even the begin-
nings of a good idea of what this stuff is or why there is as much of it as there is.

“8)  There are properties of the ‘Standard Model’ we would like to understand better.  Why is 
there such a huge range of masses for the various particles?  (The top quark is 105 to 106 times 
heavier than the electron, not to mention neutrinos which are probably much lighter.) Why is the 
mass of the electron what it is anyway?  Also, the different sorts of particles seem to arrange 
themselves into a ‘periodic table’.  In chemistry the periodic table was a big hint to some underly-
ing structure (which was discovered to be atomic structure in the early 20th century).  What struc-
ture underlies the standard model?

“It may be that things just are the way they are, and we’ll never understand why the electron 
mass is what it is.  But physicists want to understand, and for now they’ll keep on trying.” — E. 
B.

Is a “Theory of Everything” Impossible Because of the Ever-Increasing Sophistica-
tion of Scientifc  Instruments?

In the 1930s, Gödel proved that in each mathematical system sufficiently robust to contain 
basic arithmetic, there are truths that are impossible to prove.  Furthermore, if you add these truths 
as axioms, there will always be other truths that are impossible to prove.

Algorithmic information theory teaches us that some finite binary strings have short minimal 
representations, others longer ones, others have minimal representations that are as long as the 
strings themselves (these are called “random” strings of binary digits).  A short minimal string can 
be regarded as a “theory” of the string it represents.)

A naive view of physics is that there is a fixed set of physical entities — mass, energy, 
momentum, wavelength, velocity, acceleration, time, distance, ... — and that physicists try to dis-
cover better and better descriptions of the relationships between these entities, while the makers 
of scientific instruments (including of telescopes), keep improving their products so that physi-
cists can obtain more and more accurate data about this world.

A more realistic view is that improvements in scientific instruments — everything from parti-
cle colliders to telescopes, and not only those that view visible light — reveal phenomena that no 
one had thought of before.  Current theories must therefore be modified to take into account these 
phenomena.

“Almost every principle [in physics] once proclaimed has been subsequently superseded. No 
matter how useful they are or how good an approximation they give to phenomena, sooner or later 
most principles fail, as experiment probes the natural world more accurately.” — Smolin, Lee, 
The Trouble With Physics, Houghton Mifflin Company, N.Y., 2006, p. 218.

Thus it is hard to believe, at least for me, that there ever will be a single, permanent “Theory 
of Everything” in physics, because each theory in physics is ultimately based on what the technol-
ogy of the time is able to measure.  The only way for a theory to be “permanent” would be to stop 
development of all measurement technology beyond that which seems to confirm the theory.
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Since many, perhaps most, physicists must long ago have thought what Smolin expresses 
above, I have to ask myself why a Theory of Everything continues to be held aloft as a goal of 
physics research.  In my more cynical moments, I sometimes think it is little more than a way of 
securing funding.

Is Physics Ultimately a Function of the Number of Physicists Alive to Work On It?
In each age, it is instructive to ask the question, “How many physicists are necessary to under-

stand all of modern physics?”  During Newton’s lifetime, at least in the late 1600s, the answer 
may well have been: one — or at least less than, say, ten.  In the early 21st century, when world-
wide there are tens of thousands of physicists, it is hard to give a number.  But we must ask to 
what degree the complexity of modern physics is a function of the number of physicists who are 
working on physical theories.  What would happen to modern physics, if, for example, 90% of 
physicists suddenly disappeared?

Is the nature of the physical universe ultimately a function of the sophistication of available 
research instruments, and the number of living physicists?  In other words, is the question “What 
is the nature of the physical universe?” an incomplete question, the complete one being “What is 
the nature of the physical universe in such-and-such an age?”?  

It might be that mathematicians of Newton’s time could understand, and develop, mathemati-
cal results that were discovered only in the 19th or 20th centuries, and it might be that Newton 
could understand something of general relativity.  But it is hard to imagine what progress he could 
make without being able to participate in modern physics culture — without having access to the 
experimental results and thousands of physicists that constitute modern physics.

“What Is the Nature of the Universe?”  “What Universe?”
It makes sense to ask, “What were Newton’s thoughts about gravity?”  It does not make sense 

to ask, “What were Newton’s thoughts about hadrons?”1 A modern physicist who sets out to find 
out more about “the universe” is setting out to find more about a universe that contains, among 
many other things, the many sub-atomic particles.  This was most certainly not true of a physicist 
in Newton’s time.

“What Time Is It?”  “Is What?”
Numerous popularizations have attempted to explain the theory of Special Relativity to the 

educated layman.  These popularizations are typically written in the plainest language the subject 
allows, and contain examples, so that the reader feels that he should really be able to understand 
the theory, at least at the level at which it is being presented.  But more often than the authors of 
these popularizations realize, the reader comes away feeling that, despite the plain language and 
the examples, something is still eluding him.

I would venture to say that the concept of an “inertial frame” is probably readily understood 
by most readers: it can be (and often is) represented by, say, a railroad car which is either station-

1. “A composite particle made of quarks held together by the strong force (as atoms and molecules are held 
together by the electromagnetic force).” — “Hadron”, Wikipedia, 1/31/13
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ary, or else is moving at constant speed down a straight track.  In either case, it is at least plausible 
to the reader that physical measurements made within the car must yield the same results, regard-
less whether the car is stationary or moving. 

So far so good.
The constancy of the speed of light is likewise readily understood, although the reader may 

find it difficult to conceive how this speed remains unchanged regardless how fast a light source is 
moving relative to an observer.

The typical reader can probably also understand, via an explanation such as the one given in 
the previous sub-section, why it is that clocks in a given inertial frame slow down as the speed of 
the frame approaches the speed of light

So far so good.
However from here on, at least in my experience, and I suspect in the experience of many 

readers, things become much less clear. For one thing, I have never seen a clear, informal explana-
tion why distances shrink as the speed of the inertial frame approaches the speed of light. State-
ments such as 

“Consider: the length measurement of a moving object always depends on making simultane-
ous position measurements of two points (if you want the length of a moving bus, it behooves you 
to measure the position of the front and the back at the same time).”1

seem to be, if not wrong, then at least confusing.  I can easily measure the length of a long, wind-
ing road in my city by noting the odometer reading in my car at the start, then driving the length 
of the road, and noting the odometer reading at the end.

If the reader replies that the author of the above passage meant that the moving object is in an 
inertial frame different from the one from which the measurement is made, I again make the same 
argument, for we can suppose that the moving inertial frame is in a very long railroad car that 
moves in parallel past our own railroad car, which is at rest on a track only a yard or two from the 
track bearing the moving car.  We start our stopwatch at the moment the beginning of the object 
passes us, and we stop our stopwatch at the moment the end of the object passes us.  From the dif-
ference in times, and knowledge of how fast the railroad car was moving, we can compute the dis-
tance of the object.  It is not at all necessary that we measure the beginning and the end of the 
object at the same time.

Even in excellent historical works like Galison’s (see above footnote), it is not clear (at least 
not to this reader) what tasks physicists and engineers in the late 19th, early 20th century, were 
trying to perform in connection with time.  It seems that the tasks included:

(ASet all clocks in some domain to register the same time as a central clock.

(B) From a reading of a local clock, determine the reading, at that moment, on a central clock.

(C) Determine if two events that appear to occur at the same time (in one inertial frame), 
really did occur at the same time (in another inertial frame), and if not, by how much the times of 
occurrence differed, which event occurred first, etc.

1. Galison, Peter, Einstein’s Clocks, Poincaré’s Maps, W. W. Norton & Company, N.Y., 2003, p. 22.
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(D) Determine what time it is at some other local clock.

Now if, contrary to fact, the speed of light were infinite, then all these tasks would be easy to 
perform.  

For task (A), we could simply set up wire or radio communication between each clock and the 
central clock, so that all clocks were controlled by the central clock.  Throughout the universe, 
there would be one universal time (Newton’s universe).

For task (B), the reading of the local clock would be the reading of the central clock.

For task (C), if two events, e.g., the sudden appearance of two stars, seemed to be simultane-
ous, they would in fact be simultaneous.

For task (D), we would need simply to send a message to the other local clock, asking what 
time it was, and then get the answer back instantaneously.  Or all local clocks could be linked to 
each other.

However, the fact that the speed of light is finite, not infinite, makes the tasks more difficult to 
accomplish.

So let us see if we can think through some ways to accomplish each task under this limitation.

Tasks (A) and (B) One way we could accomplish these tasks would be to have people bring 
their clocks to the central clock, synchronize them there with the central clock, and then carry 
them (vessels containing the sacred fire), back to their local domains.  Then throughout the uni-
verse, after everyone had returned to his or her local domain, everyone would know the time at 
the central clock, assuming no clocks ever failed.

If it were possible for light or an electromagnetic wave to carry a message, “This message has 
been traveling for x seconds,”  then the time keepers would not have to travel to the central clock, 
but instead could simply set their local clocks to the time they received from the central clock, 
plus x seconds.

Tasks (C) and (D) can be performed by using the Lorentz transformation.

These tasks, and possibly others, along with our naive attempts to find ways to accomplish 
them, at least give us an orientation from which to confront the subtleties presented in books like 
Galison’s.

“In the absence of gravity, it is possible to assemble a collection of synchronized clocks every-
where in the universe. If everyone knows how far they are from the central clock, the central 
clock just sends out periodically a signal saying “I, the signal, was sent at time T,” and then by 
knowing their distance, everyone knows how much later than time T it is.  If you’re speeding rel-
ative to the army of synchronized clocks, however, you see the distance contracted between you 
and the central clock, and hence you determine that it’s not as late past time T as your stationary 
counterpart does.  Gravity changes this scenario in an interesting way — the extent to which you 
can arrange an army of synchronized clocks is an important property of a given spacetime.” — E. 
B.  
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Communicating the Meaning of Left and Right
It is sometimes said there is no way of communicating the meaning of left and right to some-

one who does not have the appropriate points of orientation.  
We might be inclined to argue that if the other person has a video screen, then we can transmit 

the meaning.  The trouble is, we do not know what direction will be up relative to his screen.  If 
we send him an image with “This is the upper left corner”,  he may view the screen so that the 
message is in the wrong corner.

But consider:
Suppose we have established communication with an extraterrestrial, and that we have some-

how established a mutually intelligible language with which we send written messages.  He has 
let us know that he is viewing our messages on a rectangular, non-square, screen.

We now give him the following instructions:
1. Place your communications equipment, including your viewing screen, plus yourself and 

all necessary life-support equipment, in a rectangular box in empty space.  Let the screen be ori-
ented so that its sides are parallel to the sides of the box.

2. Accelerate the box in a straight line perpendicular to one of the sides.
3. Define the direction up to be that of an arrow pointing perpendicularly away from the side 

toward which free objects move in the accelerating box.
4. Now send a screen image with an arrow pointing up, and with “This is the upper left cor-

ner” marked in the appropriate corner.  
5. Tell the extraterrestrial to orient the image so that the arrow is pointing in the same direction 

as the up defined by the acceleration of his box.  Then tell him that the upper left corner is as indi-
cated, that the upper right corner is at the other end of the screen, etc.

Teaching the Concept of Density
Density is normally defined as mass per unit volume. At any given location, e.g., sea level on 

the planet Earth, this can be converted to weight per unit volume.  But I wonder if young students 
would not find it much easier to understand the concept if it were expressed in terms of its 
inverse: volume per unit mass (or weight).  Each student could be given, say, a one-pound weight 
in the form of a cube, and then told how big a cube of each other material — aluminum, lead, 
gold, wood, glass, ... — would be required in order to make the same weight.  

Scale Models of the Atom and of the Light-Year
It is a disgrace that you can get a bachelor’s degree in the humanities (and probably in many 

technical subjects) from a major university in the U.S. and not have the slightest idea of the dis-
tances and sizes of particles in an atom, or of how far a light-year is.  By an “idea” here I mean, 
via an easily-visualized scale model.  So, as a public service, I offer the following:

 “If the electron cloud of the iron atom 56Fe [iron] were expanded to the size of a football 
field, the nucleus would be represented by a pea-sized ball 4 mm in diameter, weighing 6 million 
tons, and the electrons would be represented by 26 mosquitoes weighing 120 tons each, flying 
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around the pea at distances ranging up to 50 meters.” — Franklin Miller, Jr., College Physics, 
Harcourt Brace Jovanovich, Inc., N.Y., 1977, p. 21.

A light-year is a little less than 6 trillion miles.  Alpha Centauri, the nearest star to us, is about 
4.25 light years, or about 26 trillion miles, away.  The solar system has a radius of about 4 billion 
miles.  So let the solar system be represented by a ball having a radius of 1 foot — in other words, 
let the solar system be contained in a large beach ball.  Then, relatively, Alpha Centauri would be 
6,500 feet or about 1.2 miles away.

A physicist’s view of the matter: 
“I just remember order of magnitudes in meters. So, in meters, the size of the nucleus is 10–15, 

the size of the atom is 10–10, the size of the sun is 109, the earth-sun distance is 1011, and ... a 
light-year is 1016.  

“Instead of a scale model [of the atom], if I need intution, I might think of meter sticks — e.g. 
the size of the nucleus [relative] to the size of the atom is as 1 cm is to 1 km.” — E.B.

An astronomer’s view:
“Living on the surface of the Earth as we do, it is really difficult to fathom how big the Uni-

verse is, even our local part of the Universe known as our Solar System (the sun and its immediate 
surroundings). Oh sure, we can measure these distances and assign numbers to them — the moon 
orbits some 240,000 miles (384,000 kilometers) from Earth, and the Earth averages some 93 mil-
lion miles (150 million kilometers) away from the sun. But what are such distances like on a scale 
we might be able to understand?

“If we squished the Earth down to the size of a good-sized orange or a baseball (about 3 
inches in diameter), and scaled everything else down by the same factor, how big would the moon 
be and how far away from our ‘orange’ Earth? Well, the moon is a little less than a third the diam-
eter of the Earth, so something like a ping pong ball would be about right. And as for distance 
away, would it be a few inches? A foot? If you calculate it, the ping pong ball orbits about 6.7 feet 
(just about 2 meters) away from the orange!

“Now let’s compare this to a typical space shuttle orbit. The space shuttle, of course, is unable 
to go to the moon, even though it does go into “outer space.”  However, you might be surprised to 
find out that the space shuttle only ventures out to a couple of millimeters (less than a tenth of an 
inch!) up off the surface of the orange! On this same scale, the sun would be a big ‘beach ball’ 
about 26 feet (8 meters) in diameter and would be more than half a mile away!

“To take things out another step, we have to adjust the scale. Let’s take our beach ball sun and 
shrink IT down to the size of the orange. Then Jupiter, the largest planet in our solar system, is 
about the size of a cherry pit, orbiting at a distance of some 260 feet from the orange, while Pluto, 
the most distant planet, is a mere grain of sand orbiting 1050 feet (three and one-half football 
fields) away! (If you have a big open area near your school, it would be a fun class project to build 
a scale model solar system!) On this same scale, the next nearest star, which in reality is 4.3 light 
years (or about 25 trillion miles) away, is another orange-sized object at a distance of 1460 miles! 
(That’s about the distance from Baltimore, MD, to Dallas, TX!). — Bill Blair, fuse.pha.jhu.edu/
~Kstanek/

“How Do I Know I Understand This Physics Concept?”
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I am probably not the only person who, after days of cramming, managed to get a high grade 
on a physics exam, and then asked him- or herself, “But do I really understand this stuff?  What 
does it mean to understand it?”  I was all too aware of the tricks I had used to memorize formulas 
and proofs, and I knew all too well that within days, weeks, months, certainly years, most of what 
I had learned would be forgotten (I was not planning to be a physicst).  So the standard answer 
that professors gave to my questions — “Your understanding is measured by your homework and 
exam grades”  I always thought was — if not rubbish, then naive in the extreme.

As the years went by, I felt that “understanding” was too loaded and imprecise a term.  If an 
undergraduate and a physics graduate student both took the same exam and both got As, could 
you really say that their understanding of the material was “the same”?  Of course not.  Further-
more a physicist could say to almost any student, regardless of his performance on exams, “Yes, 
but you don't really understand this,” and he would be right, since there are different degrees of 
understanding.

After much thought, I decided that I should really back way up and ask, “What does under-
graduate physics cover?”  It seemed that that was one way to begin at the beginning.  I decided 
that my answer had to include:

(mechano)-statics
(mechano)-dynamics

electrostatics
electrodynamics

magnetostatics
magnetodynamics

electromagnetism

Special Relativity

That was at least a Big Picture. Already the subject seemed a little easier, a little less intimi-
dating.  I felt it was at least possible to get my arms, or my mind, around the entire subject.  

Then I asked, “What are all technical subjects really about, abstracting away from all the 
details and difficulties?”  Answer: in the last analysis they are all about objects.  “And what char-
acterizes objects?”  Properties.  (That’s really the end of the story, apart from the details.)

And now it was easy to see that a great deal of the content of physics courses was simply the 
long, wordy, and mathematical, presentation of objects and of ways to find the properties of these 
objects.  What are the properties of matter?  Well, among others, mass, density, specific gravity, 
conductivity, temperature, atomic and molecular structure, velocity, gravitation...  What are the 
properties of an electric field?  Its description as a vector function (force per unit charge at each 
point), geometric description, momentum, energy... What are the basic properties of the object 
known as the vector cross product? Etc.

By this time I was working on my book, How to Create Zero-Search-Time Computer Docu-
mentation1, which presents a method for creating computer documentation that enables users to 

1. Available online on the web site www.zsthelp.com
44



A Few Off-the-Beaten-Track Observations...
find the instructions they want in less than 25 seconds.  Here, the “objects” are the “things” that 
the user can perform operations on.  Thus, for example, for the object “file”, the operations might 
include, generate a file, modify a file, move a file, delete a file, find the properties of a file, upload 
a file to a web site, etc. I called the documentation for a piece of software an “Environment”.  Wil-
liam Curtis then generalized the ideas in my book to all technical subjects, and wrote How to 
Improve Your Math Grades1.  Rapid look-up-ability is the major goal in both books.  Curtis’s 
book shows that a complete Environment for undergraduate physics — say, having the content of 
Feynman’s Lectures on Physics, would make it possible for any possessor of such an Environment 
to answer questions like the following:

Quick: what is the definition and value of  the constant 0?
Quick: what are the basic properties of a magnetic field?
Quick: what are Maxwell's equations in all standard forms (words, differential, integral)?
Quick: what are some standard ways of solving Maxwell’s equations?
Quick: what is the rule governing partial derivatives in vector cross products?
Quick: what are all the different types of energy dealt with in undergraduate physics?
etc.

“Quick” here means “in less than 25 seconds”.  You can make these responses in that short 
time using an Environment. (By the way, someone is going to make a fortune producing Environ-
ments not only for physics but for all technical subjects.)  

One of the assumptions underlying the Environment concept is that it is crazy to present tech-
nical subjects only in linear form (as Fenyman’s Lectures do). The best metaphor I can think of  
for doing this is: giving a course on the roads and streets of the San Francisco Bay Area in which 
only the professor has a map.  So the job of the students is to come up with their own map, based 
on purely verbal descriptions of roads and streets and their relationships.  Hard work if the stu-
dents know nothing about the Bay Area!  How much easier it would be for them if they had the 
map when they started (in which case they might not need the lectures, or at least most of them).  
An Environment is just such a map.

Naturally, Environments lend themselves readily to tests against standard classroom- and text-
book presentations of technical subjects.  In response to skeptics, I quote my mentor in computer 
science (John Allen, author of The Anatomy of LISP): “You do it your way and I'll do it mine, and 
then I'll race you around the block.”

How Much Will Science Disturb the Universe?
Imagine that mad scientists in some civilization decide that the first order of business is to 

compute to as many decimal places as possible, because, after all, is used in many scientific 
calculations.   Let us assume that there are 1087 atoms in the universe, and that the scientists find 
a way to store one decimal digit in each atom, thus allowing them to expand  to 1087 decimal 

places.  (How they keep track of which atom’s decimal digit belongs in which place in the decimal 
expansion we ignore for the moment.)

1. Available online on the web site www.occampress.com
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Clearly the universe after this colossal calculation, is different from the universe before it. In 
fact, it is hard to imagine what the scientists can hope to accomplish now that they can only make 
experiments that are guaranteed not to change the decimal digit that each atom stores.

An extreme case, certainly.  But science does change the universe to some degree, and I am 
not referring here to measurements at the quantum level.  Let us begin by attempting to arrive at 
some estimate of how much science has changed the planet Earth as of the year 2005.  The total 
number of printed textbooks and journal papers is a beginning, but then we must add the total 
amount of computer hardware used to store scientific data, and the total amount of materials of all 
kinds used in scientific experiments throughout the world — in laboratories, linear accelerators, 
astronomical observatories — and the total amount of materials needed to produce these materi-
als, including mining and transporation and processing equipment (steel mills, aluminum plants, 
etc.).  I think the reader will agree that I have just scratched the surface.  

Suppose the real truth about the Theory of Everything is that there isn’t enough room in the 
universe to hold it.  Suppose one day physicists will be confronted with the following dilemma: if 
we carry out this experiment, there won’t be enough room to store the results, or the theory pre-
dicting the results.  On the other hand, if we don’t make the experiment, then there will be enough 
room for the theory predicting the results but no way of determining if the results conform to the 
theory!

A Small Problem if Time and Space Turn Out to be Composed of Particles
In the theory known as “loop quantum gravity”, time and space are quantized, that is, con-

ceived as being composed of particles.  At the very least this is a shocking idea for calculus stu-
dents, since two assumptions that have existed since the discovery of the subject in the late 1600s 
are that time and space are continuous.  

To the thoughtful, though naive, person, a problem immediately presents itself, namely, if 
time and space are composed of particles, what lies between the particles?  In the case of time, it 
can’t be time, and in the case of space, it can’t be space.  To the person with a little mathematical 
sophistication, the thought might come to mind: suppose the notion of particles having to exist 
“in” something is a naive one arising from our concepts of molecules, atoms, electrons and other 
sub-atomic particles.  Can particles be defined by purely mathematical properties that require no 
something in which the particles exist?

  

Does Intelligence Matter on the Cosmic Scale?
We contemplate the vast universe, with its billions of galaxies.  We contemplate the remark-

able discoveries of science in the modern era.  And some of us cannot help wondering if intelli-
gence has any importance on the cosmic scale.  Certainly we now know things we didn’t know in 
the past — we know about the existence of things that no one even thought of in the past.  Cer-
tainly we are witnesses every day to what scientific knowledge is capable of — for example, 
enabling us to design machines (e.g., those that release carbon into the atmosphere) that within a 
few decades may change the planet irrevocably.  So we ask: how is the universe different if beings 
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with intelligence at least as advanced as ours, exist for billions of years, as opposed to the uni-
verse in which such beings never exist? 

“The Trouble With Physics”
If I were a high school student who was doing well in my mathematics and science courses  

and I read Lee Smolin’s book The Trouble With Physics1, I would definitely decide against a 
career as a physicist.  The reason is, in a word, that I would not want to spend my life in a vast, 
fad-driven bureacracy whose ultimate purpose is the generation of Nobel Prize winners.  For that  
is what the profession seems like as Smolin, a respected physicist, describes it.  He makes clear, 
and I think correctly, that nowadays, you either become a Team Player or else you have little 
chance of getting tenure, or even of getting a job.  When we contrast the situation of the young 
physicist today with that of some of the greatest physicists, and other scientists, of the past, it is 
almost as though we are not comparing the same professions.  The two greatest physicists and the 
greatest biologist — Newton, Einstein and Darwin — did not attain greatness by falling in line 
with the dominant thinking of their times (string theory at present in physics) and grinding out 
papers at a rate set by others. Newton made his first great discoveries while he was living at his 
mother’s farm after Cambridge was closed because of the plague (1665-67); Darwin worked at his 
home in the English countryside (1838-1882) (he was never on a university faculty); Einstein was 
a clerk in the Swiss Patent Office while he developed the ideas that resulted in his four great 
papers in 1905. Smolin makes clear that there are a handful of original thinkers who can somehow 
survive even in the high-pressure, follow-the-leader physics culture of today, but I for one would 
have no interest in spending my life in a battle with others about what to think about.  I suspect 
that there are young men and women who feel the same. 

A Truly Bad Popularization: Penrose’s “The Road to Reality”
There is certainly no lack of useful popularizations of physics. But all of those that I am famil-

iar with, treat the subject at a superficial level — and wisely so, since that is the level that is 
understandable by the largest readership.

Unfortunately, to write a popularization of greater depth is more difficult than most authors 
who make the attempt, realize.  It is emphatically not a matter of simply covering more material, 
using prose and illustrations to attempt to soften the difficulty for the non-expert.  A case in point 
is Roger Penrose’s 1099-page The Road to Reality: A Complete Guide to the Laws of the Uni-
verse2. 

At first sight, the book seems to be that miracle of miracles, an understandable presentation of 
the depths of modern physics.  There are lots of illustrations, each inviting in its simplicity.  The 
prose seems, at times, to be directed at an audience of educated laymen.  Penrose even states, in 
the Preface, that the book can be read by persons with little knowledge of mathematics.  But my 
opinion, after weeks of struggling with the book, is that that is utter nonsense, and is one of the 
reasons why I think the subtitle in full should read, The Road to Reality...by Someone Who Is Not 
in Touch With Reality.

Let me begin with the illustrations.  On the one hand, most of them are simple and easy to 

1. Smolin, Lee, The Trouble With Physics, Houghton Mifflin Company, N.Y., 2007.
2. Alfred A. Knopf, N.Y., 2005.
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grasp visually.  On the other hand, it is almost impossible, in all too many cases, to understand 
what they are conveying.  In some cases, they are frustratingly incomplete — for example, the 
two depictions of the curves representing sub-series that approximate given series on pp. 78 and 
80.  We are shown the curves plotted on normal cartesian coordinates, but with no labels!  We 
cannot tell, from the graphs, the x-y coordinates of points where the curves intersect or have max-
ima or minima, much less the equation of each curve.

Or consider his presentation of the Möbius strip as an example of a fiber bundle (pp. 329-
331).  It is fair to assume that every reader of the book knows what a Möbius strip is and how to 
make one (take a band of paper, cut it all the way through, twist the end 180° and re-attach it.  A 
basic property of the strip is that if you move a point along the center, you eventually move it 
along both sides and return to the starting point.  Now look at Fig. 15.5 (p. 331) and the accompa-
nying text and try to figure out how the two cut circles result in such an object.

The extreme of the author’s bad habit of not labeling illustrations is unquestionably his dia-
grammatic tensor notation, pp. 241-242.  I think it might be a sign of mental illness to publish 
such hieroglyphics without the most detailed, formal, explanation of what each of the symbols 
stands for.

The Great Man who wrote the book has spent his life in a culture in which an extraordinary 
amount of knowledge is in the air.  The concepts presented in the book are part of everyday dis-
course in that culture.  And so he thinks nothing of going on for pages about the numerous sub-
atomic particles without providing a table (like the periodic table of the elements) or tree graph to 
show how they are related.  What is the reader to make of these discussions?  They are insider talk 
presented to outsiders in the pathetically naive belief that, because they are in prose, they will be 
more readily understandable.  This explains, I am sure, why, in his treatment of Maxwell’s equa-
tions, the equations as they are presented in virtually every undergraduate physics book — do not 
appear!  Instead, we are given versions in a strange symbolism  that can be understood by insiders 
only.

It is abundantly clear that the book was never tested on randomly-selected members of its 
intended audience.  In fact, it is abundantly clear that the author never bothered to specify, in 
detail, before he began writing, the minimum knowledge he was assuming among readers. And 
that is why we get introductory chapters on the nature of number and on basic calculus, the author 
having failed to recognize that readers who actually need these chapters, will never be able to 
understand the sophisticated mathematics that follows, whereas readers who are able to under-
stand, up to a point, the sophisticated mathematics, have no need for the introductory chapters.

Further evidence of his fundamental not-getting-it about what he is doing, is his habit, in the 
midst of the most abstruse, nearly-incomprehensible, chapter, of pausing to carefully explain that 
“n!” is pronounced “n factorial” and that it stands for n(n – 1)(n – 2)...1 — an item of mathemati-
cal knowledge we learn in high school.

We can be very sure that, instead of testing the book on readers, the author merely circulated 
parts of the manuscript among colleagues and other persons in the physics community.  These 
readers knew most of the subject matter like the back of their hand, and so, naturally, the text 
seemed crystal clear.   And, of course, the know-nothing staff in the publisher’s office assumed 
that, if the Great Man’s colleagues say the book is clear, why, then it must be clear (even if it is 
bewildering to the members of the staff).

One of the worst examples of mathematical popularization I have ever come across is 
Penrose’s chapter on fiber bundles (“Fiber bundles and gauge connections”, chapter 15).  Does 
the author, or the publisher, or any person who believes this chapter is “instructive”, have the 
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slightest idea of its level of comprehension across the intended audience of readers?  This is little 
more than mathematical dazzlement, the reader telling him- or herself, on the basis of the occa-
sional understandable sentence and the illustrations, “Well, certainly this is clear.  Now if only I 
had time to figure out what it means...”

Finally, a word about the index.  It is clear that, like all technical authors, Penrose considers an 
index an afterthought, when in fact it is one of the most important parts of a technical book.  In 
this one –a thousand-page survey of modern physics, the following terms, among many others are 
not in the index: “relativity”, “special relativity”1, “general relativity”, “tensor calculus” (the 
mathematics that underlies general relativity),  “differential”, “form”, “1-form”, “2-form”, etc., 
“two-slit experiment” (the most famous experiment in quantum mechanics).  

After weeks of struggling with this disgrace of a book, I can only say, “If this book represents 
how a great physicist thinks, then thank God I am not a great physicist!”

How Popularizations Should Be Written
The task must begin with a clear definition of the audience, one that is based on minimum 

skills and knowledge that members of the audience are expected to have.  Not, for example, “high 
school mathematics”, or “at least two years of college engineering or physics”, but a list of speci-
fice courses, for example, “high school algebra through solutions of quadratic equations”, “at 
least two semesters of elementary calculus”, etc. 

Next must come answers to the crucial questions: What are the goals of the book? and What 
tests will be accepted as indicating that the book is achieving those goals? 

Before beginning, the author must purge himself of the embarrassingly naive belief that prose 
makes technical topics easier to understand by readers without strong technical backgrounds.  
Rather, he or she will take as his working goal, the making of each concept as rapidly understand-
able as possible.  In many cases this will mean using tables — for example, in any discussion of 
particles, the author will have the periodic table of the elements always in mind. Of crucial impor-
tance is an indented list or tree graph showing the types of each entity that a chapter is about, e.g., 
types of field, space, bundle, manifold, etc. and how these types are related to each other — which 
is a sub-type of which, etc.  Nothing makes a chapter more rapidly understandable than having 
this kind of Big Picture to look at.

Mathematical statements will always be presented in the same format, for example, If ... and 
... Then ..., with the logical terms in, say, boldface, and the logical phrases always indented in the 
same way.  (The author must carefully read the chapter, “Proofs”, in William Curtis’s book, How 
to Improve Your Math Grades on occampress.com.)

When a new concept is introduced that has several parameters, e.g., fiber bundles in the case 
of Penrose’s above-mentioned book, then the list of parameters should be repeated in the same 

1. Incredibly, unbelievably, there is virtually no mention of special relativity in the entire book — a theory, 
presented by Einstein in 1905 that was, along with Planck’s theory of quanta , the beginning of 20th century 
physics, and, in particular, the predecessor of Einstein’s general theory of relativity, about which there is 
likewise virtually no mention.
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table form for each example, because this is a great aid in speed of understanding.  Thus in the 
case of fiber bundles, this form should be:

Name of bundle:...;
M (base space):...
V (fiber):...
Canonical projection map:...
Cross-sections:...
...

Each parameter can then be elaborated upon below the table.  

My feeling at present is that unless the audience is primarily people with a mathematics back-
ground, all or most equations and other formal mathematical statements should be relegated to 
one or more appendices, along with their proofs when proofs are given.

As each chapter is completed, the chapter must be tested on randomly-selected members of 
the intended audience.  

As the book proceeds, a complete, thoroughly cross-referenced index, including symbols, 
must be generated.

Standard notation — the most commonly-used notation in existing, popular textbooks — must 
be used throughout.

There shomuld be illustrations to make difficult concepts easier to understand.  However, exp-
cept in the simplest cases, each illustration should have a sequence of circled numbers to indicate 
the order in which the illustration is to be looked at.  News magazines have done this for years.  
For some reason, the value of the idea has so far escaped popularizers.  Illustrations, like text, 
must be tested for comprehension.

With these practices, the author has a fighting chance of producing something beyond a mere 
exercise in vanity.

\
Computer Science
Why Is Computer Software Still So Difficult to Use?

It is nothing short of a disgrace that in 2015 computer users are still at the mercy of software 
designers who, when judged by the proper criteria, are all but incompetent.  (Note: I exclude 
Apple software from this criticism because, although I have never used it, I have heard it praised 
sufficiently by users to regard it as an exception to standard industry practice.  The probable rea-
son for Apple’s success at software design is given in the last paragraph of this section.)

Let me take a product that represents a collection of  the all-too-frequent bad practices in soft-
ware design.  It is FrameMaker 11.0, a word-processor (costing more than $1,000) that is widely 
used by software documenters.  One of its predecessors, FrameMaker 7.0. which I used for sev-
eral years, was quite acceptable, but in my opinion FrameMaker 11.0 is a disaster.  If you were 
unfortunate enough, as I was, to buy the product soon after it was released, what you got was a 
product with far too many bugs; in addition, the marketing geniuses decided that one way to 
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enhance the impression that this was a new product was to change the screens so that a person 
long familiar with Frame in effect had to relearn how to perform basic operations he or she had 
performed for years.  

Furthermore there was absolutely no help provided in troubleshooting.  You had no choice but 
to hire a consultant.  There was no central company-sponsored web site where one could search 
for recommended fixes for problems.  If by chance you were clever enough to somehow get the 
email address of Support, you could sometimes get a little guidance from personnel who, let it be 
said, tried to be helpful, but usually knew far too little about the problems users were running into.

In addition, whereas in Frame 7.0 it was possible to access all files generated by earlier ver-
sions of Frame, now this was not possible: some of the old files could not be accessed at all, oth-
ers only with long complicated work-arounds involving other manufacturers’ software.

I need hardly mention that the designers completely ignored the well-known practice of, e.g., 
Windows,  of downloading, to each user’s computer, revised versions of the software that con-
tained fixes to bugs.

Finally, the documentation showed the one sign that is a sure give-away that it was created by 
people who had never thought deeply about how documentation is used, namely, the belief that 
more is always better.  In fact, there was no quick way even to get a list of all the available docu-
mentation and training programs. There was a well-written manual, that is true, but it did not pro-
vide an overview of all the available documentation and training that was available, much less a 
recommended way to proceed through — to use — this wealth of material.

So let me now lay out a design protocol that would have avoided all these problems.

First and foremost, a written-out description of what each user will be assumed to know 
before starting to use the product.  Note: If the head of Marketing ever says “This product will be 
usable by anyone”, show him to the door.

Absolutely no human interface changes over the previous version of the product if the pur-
pose is merely to make the new product look “new”. The belief that making cosmetic changes to 
the human interface increases sales is hopelessly naïve.  Those who have not used Frame before 
will not know the difference.  Those who have will be much more impressed by ads that say, in 
effect, "the screens for the old functionality are exactly the same in the new version.  But in addi-
tion, there is new functionality!...”

Outside-In Design — the human interface should be designed before the supporting pro-
grams, not after! This, of course, should be a top-down process:  

(1) write the top level human interface based on the tasks that users can perform at this level;
write the top level only of supporting programs for this level, 
test on prospective users; then 

(2) write the second level human interface based on the tasks that users can perform at this 
level;
write the top level only of supporting programs for this level, 
test the top two level human interfaces on prospective users, then ... etc.
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Complete the writing of all the supporting programs only after all the human interfaces have 
been written and tested.

This process of course demands that the documenters be brought in on the very first day, 
because it is entirely possible, in fact, likely, that the user will want to or need to refer to the Help 
facility at the top level.  As it happens, a method has been worked out that offers documentation 
that enables users to find the instructions they want in less than 25 seconds at least 80% of the 
time.  It is called “Zero-Search-Time” (zst) documentation.  For details, see zsthelp.com.  (I am 
the author of the method.)

Automatic updates (in the manner of, say, Windows) of each user's copy of the software 
throughout the life of product, thus enabling bugs to be fixed after product release.

.
A web site containing an indexed list of all known problems with the software, and recom-

mended fixes, the web site address being made known to all users, including via the zst index in 
the Help facility and via notices in all other documentation. 

And last, but not least,

Profit-sharing for all members of the project team.

Let me conclude by trying to explain why Apple software is so much better than the typical 
industry product.  The reason, in my opinion, is that Steve Jobs kept a tight rein on the program-
mers at all times.  He seemed to understand from the beginning that if you assume that program-
mers know how to create a product, you will get, not something that is usable by the intended 
class of users, but instead a collection of demonstrations of how brilliant the programmers are.  
The attitude of modern-day programmers is still what it was in the early days of computers: “If 
you need help in learning how to use my program, then you have no business using it.”  God 
knows how much in time and effort and frustration and misery this attitude has cost users over the 
years.  But Jobs knew it was not to be tolerated.

A Frequency-of-Execution Approach to Programming
We can regard a compiled computer program as one that assumes that no statements will 

change between executions.  We can regard an interpreter as a program that assumes that any 
statement may change between executions.   Why not design programs on the assumption that fre-
quency-of-execution cannot be predicted at all?  Then, in actual use, the most frequently-executed 
statements will be represented as tables of input-output pairs (or tuples, in the general case).  Peri-
odically, based on the statistics of actual program execution, the program will change what gets 
tabularized in this fashion.  The programmer can set an upper bound to the amount of space to be 
reserved for these tables and to how often data on frequency-of-execution is collected and how 
often the tables are revised.  Since table-look-up is in general much faster than computation, a 
program with such a table should be much faster than the same program without the table.

Can we consider a program as an information source — one that, during execution, transmits 
assembly language instructions to the cpu (central processing unit), the latter acting as the 
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receiver?  How would interpreter and compiler design be different if this were the model of com-
putation the design was based on?

“Calculation Is Successive Classification.”
Exercise: Discuss the statement, “Calculation is successive classification.”  Show how various 

programs can be viewed as carrying out a classification process.  For example, when adding two 
numbers, we successively classify the sum as, first, being one that has the digit we get in the 1s 
place (the sum mod 10), then the sum as one that has the digits we get in the 1s and 10s place (the 
sum mod 100), etc.

Discuss: “I can’t think.  I can only classify.”

“Backwards” Grammars
Discuss the kind of formal grammars that result if, for a given grammar, we reverse all the 

arrows in the productions defining the grammar.  How are the two sets related, i.e., what types of 
functions exist between the set of formal grammars and the set of “backwards” formal grammars?

Grammars as Information Sources
Consider a grammar as an information source.  By reasoning, or by many trials, develop sta-

tistics on the probability of occurrence of each symbol in a terminal string.  Can these statistics 
then be used to determine the probability that a given string is in fact in the language generated by 
the grammar?  Can this idea be applied to probabilistic proofs of theorems, so that we can make 
statements such as, “The probability that the statement (string) x in theory (language) y is a theo-
rem is z”?

Syntax vs. Semantics
Are we really clear on the difference, in a programming language context, between syntax and 

semantics?  Should we be looking at the matter topologically, and speak in terms of “distance”, so 
that things become “more syntactic” relative to a given starting point as the distance from that 
starting point increases?  Or is it rather that semantics just refers, ultimately, to certain kinds of 
partitions?  After all, I need syntax to describe the pure function I am talking about.  I need rules 
for expressing what I mean. But I have trouble believing in a concept as an airy something, a pure 
form in a Platonic heaven somewhere.  Or maybe semantics just means, “any of these syntactic 
representations, and preferably the simplest”, and syntax means, “just this representation”.  We 
should be aware of being led astray by familiar examples, e.g., those of ordinary arithmetic, with 
which we are so familiar that it does seem that there is a somewhere that contains the pure idea.  
But suppose we are dealing with extremely complicated  functions, about which we are not at all 
sure how to get a “simple” syntactic representation.  Then, wouldn’t we start aiming for the ability 
to recognize whether a given  supposed representation of the function was in fact a representa-
tion?  I.e., wouldn’t we be groping for quick ways to decide if this piece of syntax could be 
mapped into one we knew represented the function?  Wouldn’t that ability begin to feel like an 
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“intuitive understanding”?  Or, to put it another way, since syntax, as well as semantics, are ulti-
mately expressed in symbols, what distinguishes the two, on a purely grammatical basis?

Given a binary tree with each pair of branches at each node being marked “0” and “1”, we can 
specify any binary integer by giving a path down through the tree, beginning at the root.  Each 
path is unique, and each specifies a unique integer if we agree that the binary digits in each path 
are in the order of most significant to least significant digit, and if we agree that there are to be no 
leading 0s.

One problem with proving the correctness of computer programs is that there is an infinity of 
programs to compute each function (we can just add null statements to any program that com-
putes the function).  

So, unlike the case of our tree to generate binary integers, there are many “paths” (programs) 
leading to each function.

If we could somehow overcome this, so that, the “path” would itself define the function, as the 
path itself defines the integer expressed in binary notation in our tree, then the problem of proving 
correctness would become trivial.

A Question About Information Theory
Does Shannon’s Theorem answer the coding question in its full generality, i.e., the question: 

given a known probability of error of successfully transmitting a signal, and furthermore, given a 
description of the error-causing background, are there better and worse codes to use?  E.g., how 
about a linearly rising voltage for 0, a linearly falling voltage for 1.  In other words, can the sym-
bols we choose to represent the symbols themselves affect reliability of transmission?  

Finite-State Machines Viewed Graph-Theoretically
A finite-state machine is a Turing machine with only a finite amount of memory, i.e., only a 

finite number of tape cells. Call the triple <state of finite control (“program”), tape contents, tape 
head location> a configuration.  Then, since there are only a finite number of states of the finite 
control, and only a finite number of tape cells, hence only a finite number of possible tape head 
locations, there are only a finite number of possible configurations.  Therefore, there exists a 
graph in which each node is a configuration.  There is an arrow from each node to the next node, 
as dictated by the finite control. Do we gain anything from this view of a finite-state machine?

Against Viewing Information as Something That Is “Sent”
If I were asked to predict one of the next major advances in communication, at least in com-

munication between computers, and between parts of computers, e.g., between the cpu and the 
graphic display, then I would say the advance will be in the slow erosion of the idea that informa-
tion is something that is “sent” from one place to another, just as I would predict that one of the 
next major advances in computer science will be the slow erosion of the importance of 
“sequence”, because this will be replaced by a kind of “simultaneity”.  For example, instead of 
looking at computations as sequences, we will look at all possible computations by a given pro-
gram at once, and then merely talk about points in this computation “field”.  Now in communica-
tion, I also want to get rid of “before” and “after” and instead look at simply an entire “field” 
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consisting of the bits at the source, the bits in the transmission line, and the bits at the destination 
as one single thing that changes over time.  If someone wants to view the fact that at time tk a 
string of bits was at location <x1, x2, ..., xk>  in a transmission line, and at time tk+1 the string was 
at locations <x1 x2, x3, ..., xk+1 >— if someone wants to call this the “movement” of the string 
because it is being “sent” from the source to the receiver, that is fine, but I prefer to look at it as 
merely how the entire field of bits consisting of those in the source, those in the transmission line, 
and those in the receiver, happens to have changed.  

To take a more familiar example, at least one that is familiar to programmers: it is rare that 
every bit in a graphics display changes with each click of the cpu clock.  Typically only a few bits 
change, so that, if someone wants to speak in terms of the image being sent each time, well, that’s 
fine, but we know that what is really happening is simply that a given image is being modified 
slightly. We are sending the changes only.

Computing How Long It Will Take to Compute How Long It Will Take To...
We have some computation x to perform.  But before we actually begin the computation, we 

want to find out how long  it will take.  So we have a computation y to perform.  But before we 
actually begin that computation, we want to find out ...  Project: investigate such sequences of 
computations with a view of finding out a rule for when to end the sequence.

“Graphing” Partial Recursive Functions, or, “An Algorithm Does Not Exist...”: 
Why?

In analysis we study functions of complex numbers that for certain arguments yield infinite 
values.  These arguments are called “singularities”.  We can graph at least portions of such func-
tions, and show where the singularities are, and how the function behaves in the vicinity of each.

In computation theory, we study functions — the partial recursive functions —  that for cer-
tain arguments, are undefined.  Given such an argument, a program that computes the function 
simply keeps computing forever.  Can we create a graph that will enable us to see how undefined 
values arise — that will show us what inputs are “almost” undefined, i.e., that will show us the 
behavior of the function in the vicinity of each undefined value?

Without loss of generality, we can limit our discussion to functions of one argument (input).  
Let T be a program (Turing machine).  With each input x (finite binary string) to T, we can associ-
ate the number n of instruction executions that are required to arrive at a value if the computation 
halts. Thus, for T we have a set S of ordered pairs <x, n>.  Now sort the elements of S on n.  The 
result will be the subset (possibly empty) of all <x, n> such that n = 1, and the subset (possibly 
empty) of all <x, n> such that n = 2, etc.

Such a sorting might help us answer questions like, “What are the characteristics of inputs that 
are ‘near’ to inputs that are undefined?” 

.Is there a topology on the partial recursive functions that allows us to make informal state-
ments of the sort, “Now here, in this region, the total functions begin to become partial.”?  The 
answer would seem to be “no”, because either a computation halts or it doesn’t.   On the other 
hand, if we mean by “to become”, having an increasing number of arguments for which the com-
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putations do not halt, then perhaps.  But once we are in the region in which all the functions have 
an infinity of such arguments, then it would seem we cannot speak of this number “increasing”.  

Continuous Design
As computer memory and computer speed keep increasing, we may be approaching the point 

where we can employ what might be called the “continuous”  design of physical objects. For 
example, suppose we want to design an improved high-performance sailplane.  We represent in 
the computer a current high-performance sailplane, then allow a program to continuously distort 
the plane by continuously changing all parameters. Simulated wind-tunnel tests can be performed 
during the process as desired.  When the optimum shape is reached, the program terminates.  Are 
there better (more efficient) and worse ways to perform such a continuous process?

A Non-Self-Referential Proof of the Unsolvability of the Halting Problem
Turing’s Self-Referential Proof

Let L be a programming language in which a program for each computable function can be 
written.  Let S denote a program written in L and let I denote an input to the program S  (without 
loss of generality, we can assume that each program has exactly one input).  Then the Halting 
Problem asks if there exists an algorithm (program) P(S, I) that will return “S(I) halts” if S eventu-
ally halts in computing I, and “S(I) does not halt” if it doesn’t.

Turing’s proof that no such algorithm exists is, in brief, to assume that, on the contrary, such 
an algorithm, P, exists, then to show that this implies that there exists a program Q  that halts if Q 
doesn’t halt, and doesn’t halt if Q halts, which is obviously a contradiction. 

The program Q(S) is as follows:

1. Compute P(S, S).

2. If P(S, S) returns “S(S) halts” then make S(S) go into an infinite cycle (i.e., never halt).
    If P(S, S) returns “S(S) does not halt” then make S(S) halt.
 
Now let S = Q.  Then the computation for Q(Q) is as follows:

1. Compute P(Q, Q).

2. If P(Q, Q) returns “Q(Q) halts” then make Q(Q) go into an infinite cycle (i.e., never halt).
    If P(Q, Q) returns “Q(Q) does not halt” then make Q(Q) halt.

The claim is that 

if Q(Q) halts, then it doesn’t halt; 
if Q(Q) does not halt, then it does.

This contradiction, it is claimed, proves there is no such algorithm P.
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What bothers me about the proof is that the program Q is self-modifying, and so we cannot 
speak of the program Q.  In step 1 in the computation of Q(Q) (see above), there is no contradic-
tion.  If  Q(Q) halts, then the program Q is changed in a certain way.  If Q(Q) does not halt, the 
program Q is changed in another way.  The contradiction arises when we call the original Q and 
the changed Q by the same name.

What we really have is an infinite sequence of programs Q: Q0 when we start, then Q1 after 
the modification has been made.  Q1 would be the Q on which Q(Q) operates if we were to run Q 
again.  And so forth. All Qi with even subscript would behave the same; and similarly for all Qi  
with odd subscript.  It is only in going from Qi to Qi+1, where i is even, that we get the claimed 
contradiction.

Is the real contradiction the fact that the “same” program changes its behavior with repeated 
executions?  

Another infinite sequence is the following.  From our description above of the computation of 
Q(Q) we can write Q(Q) = f(Q(Q)).  But that implies that Q(Q) = f(f(Q(Q))), which in turn implies 
that Q(Q) = f(f(f(Q(Q)))), etc.

Non-Self-Referential Proof of Unsolvability of Halting Problem
1. Definition: a semi-decidable set is one having an associated program such that, if the pro-

gram is given an element s that is in the set, then the program will halt with the equivalent of the 
message, “Yes, in set.”  However, if s is not in the set, then the program may never halt.  Further-
more, there are no associated programs that are guaranteed to halt whether or not s is in the set.

2. Semi-decidable sets exist.  For example, Type 0 languages in formal language theory are 
semi-decidable sets, since for each such language, a program (called a “recognizer”) exists that 
will halt if given a string s in the language, but may not halt if s is not in the language.  Further-
more, there are no associated programs (recognizers) that are guaranteed to halt whether or not s 
is in the set.

Semi-decidable sets have always existed, and always will exist.  This is true even if no one 
had thought of the Halting Problem, much less found a proof for its unsolvability, or even if no 
one had defined these sets.  Turing’s 1936 proof (above) of the unsolvability of the Halting Prob-
lem did not somehow “call into being” semi-decidable sets. A proof does not call entities into 
being, it merely establishes one or more facts about them.  Similarly, a definition does not “call 
into being” an entity, it merely calls attention to it, and gives it a name.

3. Since semi-decidable sets exist, by definition there does not exist an algorithm to determine 
membership in such a set.  But if the Halting Problem were solvable — that is, if a program Q 
existed that, given any program and any input to that program, would return “Yes” if the program 
halted on that input, and “No” if it did not — then there would be an algorithm to determine set 
membership for semi-decidable sets.  For we could simply give Q the program P associated with 
the semi-decidable set S, and any input s to P, and if Q returned “Yes” then we would know that s 
was in S1, and if it returned “No”, then we would know that s was not in S.  But no algorithm can 
exist to determine membership in a semi-decidable set, and so the Halting Problem is unsolvable. 

1. It is possible that, in some cases, P might return “No” if a string was not in the set.  But by definition of 
semi-decidable set, it could not do this in all cases.
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Remark
The proof would be circular if semi-decidable sets had somehow been “called into being” by 

Turing’s 1936 proof.  But the proof brought no such set into being.  (See step 2 of our proof 
above.) 

If the Halting Problem Were Solvable...
If the Halting Problem were solvable, the 3x + 1 Problem would then be decidable.  This Prob-

lem asks if, for all inputs, the computation of the 3x + 1 function terminates in 1.  If it does not, 
then it is known that the computation never terminates for that input.  The existence of the pro-
gram U would enable us to know, for any input, whether the computation terminates in 1 (the 
computation halts) or if it does not (the computation does not halt).  At present,  if the computa-
tion has not terminated in 1 by the time our compuation resources of time or storage space run out, 
we do not know if the reason is that the computation requires more resources than we currently 
have at our disposal, or if in fact the computation never terminates.

If the Halting Problem were solvable, Fermat’s Last Theorem (FLT) would also be decidable. 
Consider the program V:

for all k  3 and for all x  1 and for all y  1 and for all z  1 do
     begin
     if xk + yk – zk = 0 then halt, else continue
     end

The program V would be given to U , the program that solves the Halting Problem.  (The input 
would be the null input)  If U halted with “The program halts” then that would mean that a coun-
terexample to FLT exists and FLT is false; if U halted with “The program does not halt” then that 
would mean that FLT is true.
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Appendix A — Obscurities and Omissions in Einstein’s First Paper on 
Special Relativity

Before I begin, I want to make crystal clear that I am not disputing the correctness of Ein-
stein’s results!  I am only pointing out obscurities and omissions in Einstein’s paper, “On the Elec-
trodynamics of Moving Bodies”, which can be found in pp. 37-65, in Einstein, A., Lorentz, H. A., 
Minkowski, H., and Weyl, H., The Principle of Relativity (Dover Publications, Inc., Mineola, 
N.Y., 1952).  

Section 3
Section 3 is found early in Part I of the paper.
Einstein defines two frames of reference:
K, with coordinates x, y, z, t is the fixed frame of reference;
k with coordinates is the moving frame of reference. 
The two frames are initially superimposed on each other, i.e., the axes are parallel and the ori-

gins coincide.  Then k begins moving to the right (in the direction of increasing x in K) at the 
velocity v.

Einstein says:  “If we place x´ = x – vt it is clear that a point at rest in the system k must have a 
system of values x´, y, z independent of time.”

It is not at all clear what this sentence means.  In other sources, e.g., Feynman1, Vol. 1,  p. 15-
2,. x´ = x – vt  usually represents the following:

Pick a point x in K, the fixed frame of reference. Then the point x´ in k, the moving frame of 
reference, that corresponds to x (is “on top of” x) at time t in k is given by x´ = x – vt .  But this 
point x´ changes as t changes, because k is moving.  There is an infinity of x´ corresponding to a 
fixed x.  In other words, Feynman and other sources hold that: for each x and for each t there 
exists an x´ such that x´ = x – vt.

(We can’t help noting that, since x´ is a point in k, the moving frame of reference,  it should be 
written '.)

Einstein goes on to say, “From the origin of system k [the moving frame of reference] let a ray 
be emitted at the time 0  along the X-axis to x´, and at the time 1 be reflected thence to the ori-
gin of the coordinates, arriving there at the time 2; we then must have 1/2(0 + 2) = 1 or, by 
inserting the arguments of the function and applying the principal of the constancy of the veloc-
ity of light in the stationary system: — 

(1)

1. Feynman, Richard P., Leighton, Robert B., Sands, Matthew, Lectures on Physics, Addison-Wesley :Pub-
lishing Company, Reading, Mass., 1964.

1 2   0 0 0 t     0 0 0
x

c v–
----------- x

c v+
-----------+   

 +  x 0 0 t
x

c v–
-----------+   

 =
59



A Few Off-the-Beaten-Track Observations...
The thoughtful reader is immediately struck by the term c + v.  What possible meaning can 
such a term have after Einstein has made clear, earlier in the paper, that c, the speed of light, is the 
maximum speed in the universe?

Second,

(2)

is the time it takes the light ray to reach the point x´ and return to the origin — of which frame?  
The lower-case italic typeface indicates the fixed frame, K, but the light ray is being sent in the 
moving frame k.  If we assume that the expression is the round-trip time as observed from K, then 
why is the c – vfraction first, since this fraction represents the time (as observed from K, the fixed 
frame) to return to the origin?  

The answer seems to be the following: the expression (2) is the time relative to k, the moving 
frame, for the light ray to travel to x´ in k and return.  (If v were very close to c, then c – v would 
be very close to 0, meaning that the light ray would move very slowly (almost at a speed of 0) 
along the axis .  Hence the time to travel to x´ would be very large (almost infinite).  The round-
trip time would be very large no matter how fast the return trip (at a speed of c + v).

But since the expression (2) is the time for the light ray’s round trip in k, the moving frame, 
how can it be an argument for the function , whose arguments by definition are in K, the fixed 
frame?

Similarly, 
(3)

in the right-hand side of equation (1) mixes a time t in K, the fixed frame, with the length of time 
in the moving frame k that it takes the light ray to travel from the origin of k to x´in k.  But then 
how can expression (3) be an argument of , which by definition takes arguments in K, the fixed 
frame?

The algebra that follows equation (1), at least for me, is impenetrable, since it appears to be 
algebra on both the arguments of the function  and the value of the function, which has not yet 
been formally defined.

I should mention that there seems to be an error in the following two statements later in the 
section.  On the one hand, Einstein writes

x
c v–
----------- x

c v+
-----------+

t
x

c v–
-----------+
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 (4)

and then, a few lines later, he writes

where, he states,,

Earlier, he stated that v) = a, and showed that x = x – vt.  But, as the reader can easily verify, 

and so the term he has in equation (4) is really , not, and that is an error.

If nothing else, we see, from Section 3, the crucial importance of always specifying:

the frame F1 in which a moving object U (e.g., a light ray) is moving;
the speed r at which U is moving relative to F1;
the speed s at which U is moving relative to another frame F2;
the speed v at which F1 is moving relative to the frame F2.

Section 6
Another difficulty in the paper occurs in Section 6 at the start of Part II, “Electrodynamical 

Part”.  The section begins: “Let the Maxwell-Hertz equations for empty space hold good for the 
stationary system K, so that we have ...”.  There then follows a list of equations which the reader 
finds can be represented as 

and 

 a
c

2

c
2

v
2

–
----------------x=

  v  x vt– =

 1

1 v
2

c
2–

---------------------------=

 c

c
2

v
2

–
--------------------=

1
c
---

t
E  M=

1
c
---

t
M  E=
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where E is the electric field and M is the magnetic field.
But if the reader checks the list of Maxwell’s equations in, e.g., Feynman (ibid.), Vol. II, p. 18-

2, he does not find these!  He finds that the first equation is missing one term and a factor c, and 
that the second equation should be negative on the left-hand side.

Even more perplexing is the mapping from the E and M coordinates in the stationary system 
K to their corresponding coordinates in the moving system k. that then follows. Einstein says only 
that this mapping is achieved by applying “to the above equations the transformation developed in 
Section 3”.  Yet the reader will be hard-pressed to figure out how the mapping follows from any-
thing in Section 3.

The above perplexities in Sections 3 and 6 could be cleared up in an annotated edition of Ein-
stein’s paper, thus saving readers considerable time in trying to understand one of the classics of 
modern physics.
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Appendix B — On Basic Tasks in Special and General Relativity

In this Appendix we consider some of the basic tasks that are performed in Special and Gen-
eral Relativity.  The goal  is to make the definitions of the tasks, and their implementation, as pre-
cise as possible.  The implementation of each task should be described via a sequence of steps.  To 
take what is probably the simplest example, namely, to measure the distance, in a frame of refer-
ence, relative to that same frame of reference, to a point x on the x-axis: 

 
1. Place one end of the unit measuring rod at the origin.
2. Move the lower end forward along the axis so that it is at the location where the higher end 

was, and keep repeating this until you reach the point x.  The number of  rod lengths is the dis-
tance to x. 

An explanation must be provided as to how to deal with the possibility that x is a fractional or 
irrational distance from the origin, or else a separate procedure must be given to overcome the dis-
tance to x being fractional or irrational.

We also must raise the question why, at present, we could not legitimately use a light beam, 
and an atomic clock, to measure the distance.  The time it took the light beam to traverse the dis-
tance, multiplied by the speed of light, would give us the distance.

If the reader feels that such a procedure for measuring a distance is trivial and doesn’t require 
written-out instructions, let him or her give a procedure for synchronizing two clocks in a frame, 
or for determining if two events are simultaneous in a given frame of reference, relative to that 
frame, or for determining the speed relative to a frame Fs of a speed in a frame Fm, where Fm 
denotes a moving frame, and Fs denotes a fixed frame.

Such function (task) definitions and procedures can do wonders to overcome the false sense of 
understanding that mere prose explanations induce.  In particular, they make clear the necessity of 
always clearly specifying: (1) in what frame the measurement is being made; (2) who is making 
the measurement (an observer in the frame, or an observer in another frame?); (3) what the equiv-
alent measurement is in the other frame (Lorentz Transformation); (4) whether a frame can exist 
inside another frame, and, when this is not the case, what the dividing line is between two separate 
frames.  For more details, see the “Environments Make Relativity Much Easier to Understand” on 
page 63, and the sub-sections that follow.

Statements Need to Be in Bold-Face Type!
What is needed, in popularizations as well as more formal treatments, is the clear marking of 

the statement that each often long-winded prose exposition is setting forth — the statement in 
bold-face type, preferably before the prose exposition.  For example, what exactly is being 
shown, set forth, regarding simultaneity? We need and deserve formal statements, in the standard 
form of lemma and theorem statements, not just prose arguments that plant uncertainty about 
simultaneous events in our minds.

 Environments Make Relativity Much Easier to Understand
There is a type of presentation that would make all the others (popularizations or not) much 

easier to understand, regardless of how much mathematics they contain.  It is the one that William 
Curtis, in his How to Improve Your Math Grades on occampress.com, calls an Environment.  An 
Environment is like an encyclopedia, so that any term, including any frequently-occurring alge-
braic expression, can be looked up alphabetically, or in a section of expressions and symbols at 
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the end.  “Whatever can be made look-up-able, should be made look-up-able”, Curtis says, and I 
agree with him.

Curtis’s book teaches us that any technical subject can be regarded as a collection of entities 
on each of which certain operations, or tasks, are commonly performed.  Explanations of how 
each operation is performed, are provided in the Environment. So, in the case of Special Relativ-
ity, we have the following. 

Some Common Operations in Special Relativity
Students are normally introduced to Special Relativity by one or more examples showing that 

the value obtained from a physical measurement depends on the location and relative speed of the 
person making the measurement.  But then students are told about the constancy of the speed of 
light, the shrinking of length, the slowing of time, and the increase of mass as an object 
approaches the speed of light.  It seems to me that scientific rigor demands that a table like the fol-

Table 1: 

Location of 
person mak-
ing measure-
ment

Motion of 
Frame where 
person is

Location of 
thing to be 
measured

Motion of 
Frame 
containing 
thing to be 
measured

Thing to be 
measured or 
done

Frame F1 Not known Frame F1 Not known Length (dis-
tance between 
two points)

Frame F1 Same as for F2 Frame F2 Stationary rela-
tive to Frame 
F1

Length (dis-
tance between 
two points)

Frame F1 Same as F2 Frame F2 Moving at con-
stant velocity 
relative to 
Frame F1

Length (dis-
tance between 
two points)

Frame F1 Not known Frame F1 Not known Time between 
two events

Frame F1 Same as for F2 Frame F2 Stationary rela-
tive to Frame 
F1

Time between 
two events

Frame F1 Same as F2 Frame F2 Moving at con-
stant velocity 
relative to 
Frame F1

Time between 
two events

Frame F1 Not known Frame F1 Not known Mass of an 
object
64



A Few Off-the-Beaten-Track Observations...
lowing be shown to students, with the stern admonition that whenever they (or professors) speak 
of the making of a measurement, the discussion must be preceded by a row like the ones in the 
above table. 

A more extensive table in a first semester course on Special Relativity would also include the 
following:

Determine if two clocks in a specified Frame are synchronized relative to a specified Frame;
Determine if two events are simultaneous for a given observer;
Measure the length of a train from the gound outside the train;
Measure the distance between two point on the ground outside a moving train, from within the 

train;
Compute how much a massive object in a moving Frame is observed to shrink in the direction 

of its movement, by a person in a stationary Frame;
Compute how much time slows down within a moving Frame, relative to a person in a station-

ary Frame;;
Compute how much the mass of an object in a moving Frame is observed to increase by a per-

son in a stationary Frame.
Other operations are given in the section, ““What Time Is It?” “Is What?”” on page 39.

In the case of General Relativity, we have:

Some Common Operations in General Relativity

Compute the interval (distance) between two events;

Frame F1 Moving at a 
speed v

Frame F2 Stationary rela-
tive to Frame 
F1

Mass of an 
object

Frame F1 Moving at 
same speed as 
F2

Frame F2 Moving at con-
stant velocity 
relative to 
Frame F1

Mass of an 
object

Frame F1 Not known Frame F1 Not known Synchronize 
two clocks

Frame F1 Moving at a 
speed v

Frame F2 Stationary rela-
tive to Frame 
F1

Synchronize 
two clocks in 
F2

Table 1: 

Location of 
person mak-
ing measure-
ment

Motion of 
Frame where 
person is

Location of 
thing to be 
measured

Motion of 
Frame 
containing 
thing to be 
measured

Thing to be 
measured or 
done
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Determine the type of space-time that exists in a given region;
Find the curvacture of a given region of space-time;
Find the path that a particle or object takes in a given region of space-time.

The mathematics that underlies General Relativity is tensor calculus.  It, too, can be treated in 
the Environment format.  The list of common operations that are performed on tensors in itself 
makes the subject more accessible, because, like all such lists, it clearly separates the What from 
the How — something that the vast majority of presentations, regardless of their mathematical 
level, usually fail to do.

Some Common Operations on Tensors

Prove that a term is or is not a tensor;
Determine if two tensors are equal;
Add two tensors;
Multiply two tensors;
Determine the type of a tensor;
Contract a tensor;
Lower one or both suffixes of a tensor;
Construct a tensor of higher rank.

To a person with a background in formal language theory, tensor calculus seems just a compli-
cated formal grammar, with most of the common operations easily performed by computer pro-
grams.  (E.B. told me that there are more than 200 such programs!)  One problem with all the 
presentations of the subject that I have seen is that it is never made clear what tasks in General 
Relativity the tensor operations implement.  
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Appendix C — Is There an Alternative to the Lorentz Transformation?

The Lorentz Transformation establishes a relationship between the coordinates x, y, z, t in one 
frame, and the coordinates x´, y´, z´, t´ in another frame. Statements of the Transformation can be 
found in virtually any Special Relativity textbook and in many popularizations.

Most of the derivations of the Transformation involve spheres of light. It is natural to wonder 
if the relationship between the two sets of coordinates can be derived from a simpler, more intui-
tive basis.  In this Appendix we attempt to do that.  Unfortunately, we find that our results differ 
from two in the Lorentz Transformation. 

Let a frame have the set of Cartesian coordinates, x, y, z, t.  We denote the x and y axes, X and 
Y respectively, and the origin O.  We will identify the frame by the name of the origin, O.

Let  another frame have the set of Cartesian coordinates, x´, y´, z´, t´.  We denote the x´ and y´ 
axes, X´ and Y´ respectively, and the origin O´.  We will identify the frame by the name of the ori-
gin, O´.

We will only be concerned here with the x and t coordinates because y = y´ and z = z´.  Initially 
the origin O´ is superimposed on the origin O, and the X´-Y´ axes are superimposed on the X-Y 
axes, respectively.

Now suppose at time t =  t´ = 0, frame O´ starts moving to the right, along the X axis at a speed 
v, where v << c, the speed of light.  

We assert that 
(1)
for all t, t´, x = ct, and x´= ct´.

Then at any time t > 0, the distance from the origin O to the origin O´ along the X axis will be 
xO´ = vt.

The distance x = ct will clearly be greater than vt.  The difference between x = ct and xO´= vt, 
is x´  That is,

(2)
x´ =  x – vt.

Now, since x = ct, (2) implies,
x´ = ct – vt, or 

(9)
x´ = t(c – v).

This statement shows that for each t there is a unique x´.

Since, from (1),  x = ct, we have t = x/c, so we can write
(10)

x x c v– 
c

-------------------=
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Since from (1) x´= ct´ from (9) we have

ct´ = ct – vt, or 

(11)

However, equations (10) and (11) differ from the corresponding ones in the Lorentz Transfor-
mation.  The question is, why?

t t c v– 
c

------------------=
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