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Mathematics

Proofs
Conjectures and Proofs

For any conjecture in mathematics or computer science, there are the following possibilities:

(1) The truth of the conjecture is provable.
(2) The falsity of the conjecture is provable.
(3) Neither the truth or falsity of the conjecture is provable.

But now there arise new possibilities:

For (1):
The truth of the conjecture that the conjecture is provable, is provable.
The falsity of the conjecture that the conjecture is provable, is provable.
The truth or falsity of the conjecture that the conjecture is provable, is not provable.

and similarly for (2) and (3)

Why do we have any confidence at all, when we approach a conjecture, that there will not be 
“many” such recursions?  Why do we believe that there are not an infinite number of such recur-
sions, meaning that we can never prove anything?  

In Lewis Carroll’s dialogue, “What the Tortoise Said to Achilles”, the Tortoise “proves” that 
we can never get from the premises, 

    A: “Things that are equal to the same are equal to each other.”
    B: “The two sides of this triangle are things that are equal to the same.”

to the conclusion,

    Therefore Z: “The two sides of this triangle are equal to each other.”

because we must always insert a justification that the previous statements imply the conclusion.  
Thus we have:

(1): “Things that are equal to the same are equal to each other.”
(2): “The two sides of this triangle are things that are equal to the same.”
(3): (1) and (2) imply (Z).
(4): (1) and (2) and (3) imply (Z).
...
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(n): (1) and (2) and (3) and (4) and ... and (n – 1) imply (Z).
...

Therefore (Z): “The two sides of this triangle are equal to each other.”

                                           — “What the Tortoise Said to Achilles,” Wikipedia, Aug. 22, 2012.

The Tortoise thus mimics, in logic, one of the paradoxes of Zeno of Elea, which states that we 
can never move from one physical point to another, because first we have to move half the dis-
tance to the second point, but before that, we have to move half of half the distance, but before 
that we have to move half of half of half the distance...

Geometry “Proofs” by Measurement
What is the probability that we would get erroneous results if we did geometry proofs by mea-

surement — “by test”?  A theorem that asserted a certain property held for all figures of a certain 
type would be “proved-by-test” by the following procedure:

1.  Find a general example of the figure — a figure chosen “at random” from a finite set of 
these figures.  This finite set could be obtained either by considering all possible figures of the 
type in the problem that could be drawn with vertices on a specified grid or by simply drawing a 
figure so that it does not have any qualities favorable to what we are trying to prove, e.g., if a tri-
angle were specified in the proof, then, say, a right triangle would not be drawn.

2.  Measure the relevant dimensions. 
3.  If the property holds for some finite percentage of these measurements, we assert that the 

theorem has been “proved-by-test”.
Thus, for example, to prove Archimedes’ famous theorem that the volume of a sphere is equal 

to 2/3 the volume of its enclosing cylinder, we would simply select a sphere “at random”, draw 
the enclosing cylinder, fill the cylinder with (mathematical) water, then immerse the sphere in the 
cylinder and see if the amount of water that spilled out was equal to 1/3 the volume of the cylin-
der.

What statements can we make about the probability of error in such “proofs”?  How does this 
idea relate to the probabilistic proofs developed in the late eighties and early nineties?

Geometry Proofs Based on Movement of Figures
Years ago, in all high school courses in plane geometry and trigonometry, students were 

warned not to attempt proofs by continuous movement of lines or other figures.  Students were 
not to make arguments of the form, “Lines x, y, z, and angles a, b, c, have the following relation-
ships.  Now if we slowly rotate line x clockwise around the point A, then ...”  I seem to remember 
being told, or having read somewhere, that the Greeks had strictly forbidden such arguments.

The question is, why?
In 1997, it seemed that exactly such a proof was done in a program on PBS TV, the proof 

apparently arguing that, if this holds in this case, and we move that, then it holds in that case. 
What has changed in the teaching of geometry and trigonometry, at least on PBS, and why? The 
type of argument seemed similar to that used in the form of programming proving set forth in 
Dijkstra’s A Discipline of Programming, in which a certain condition must be shown to remain 
true for each passage through the loop.  So, this method of doing geometry proofs seems to be:
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1. Define the relevant relations between relevant parts.
2. Pick a case you can easily prove is true.
3. Move things to arrive at the case or cases in question, showing that the relevant relations 

continue to hold between the relevant parts.
Morris Kline, in his Mathematical Thought from Ancient to Modern Times (a book I am 

inclined to call the best history of mathematics written in the 20th century) has the following to 
say on the subject:

“[The] second leading theme [of Poncelet (1788-1867)] is the principle of continuity.  In his 
Traité [(1822)] he phrases it thus: ‘If one figure is derived from another by a continuous change 
and the latter is as general as the former, then any property of the first figure can be asserted at 
once for the second figure.’  The determination of when both figures are general is not explained.  
Poncelet’s principle also asserts that if a figure should degenerate, as a hexagon does into a penta-
gon when one side is made to approach zero, any property of the original figure will carry over 
into an appropriately worded statement for the degenerate figure.

“The principle was really not new with Poncelet.  In a broad philosophical sense it goes back 
to Leibniz [(1646-1716)], who stated in 1687 that when the differences between two cases can be 
made smaller than any datum in the given, the differences can be made smaller than any given 
quantity in the result.  Monge [(1746-1818)] began the use of the principle of continuity to estab-
lish theorems.  He wanted to prove a general theorem but used a special position of the figure to 
prove it and then maintained that the theorem was true generally, even when some elements in the 
figures become imaginary.  Thus to prove a theorem about a line and a surface he would prove it 
when the line cuts the surface and then maintain that the result holds even when the line no longer 
cuts the surface and the points of intersection are imaginary.  Neither Monge nor Carnot [(1753-
1823)], who also used the principle, gave any justification for it...

“The other members of the Paris Academy of Sciences criticized the principle of continuity 
and regarded it as having only heuristic value... [But] the principle...was accepted during the nine-
teenth century as inutively clear and therefore having the status of an axiom.  The geometers used 
it freely and never deemed that it required proof.” — Kline, Morris, Mathematical Thought from 
Ancient to Modern Times, Oxford University Press, N.Y., 1972, pp. 843-845.

Proofs in “Inductive Domains”
A related idea is that of “inductive domains”.  Frequently, in computer programming, we write 

a little program and then test it on a few inputs that we believe will show up any errors.  If the pro-
gram is correct for each such input, our confidence increases about its correctness for all values, 
even though we are prepared for our confidence to be shaken by later inputs.  

Are there program forms such that we can, in fact, say, that if such a filled-in form works for 
“a few” values, then it will work for all?  This question is discussed at length in my paper, 
“Occam’s Razor and Program Proving by Test”, which is accessible as a down-loadable .pdf file 
on the web site www.occampress.com.

It is certainly worthwhile investigating whether the idea can be applied in mathematics. By 
way of review: a frequently-used proof technique is that of induction.  In this type of proof, we 
first prove that the statement we are trying to prove holds for the smallest, or first, element in the 
sequence of elements that we are trying to rove the statement true for.  We then assume that the 
statement is true for all elements up to the kth element, and try to prove that this implies that it is 
true for the (k + 1)st.  If we are successful, then the statement is true for all elements.
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The question is, can we save ourselves most of this labor if we know that the set of elements 
we are dealing with has the property that if certain types of statement hold for one element, then 
they hold for all elements?  Then we do not need to do an inductive proof each time. Such sets of 
elements I will call an “inductive domain”.  The proving that a set of elements is an inductive 
domain is like doing all the inductive proofs once and for all.  Thereafter, it is simply a matter of 
checking that the statement we want to prove is of the appropriate type.

A branch of mathematics where this idea, if it is valid, would seem to save a great deal of 
labor, is algebraic topology, in which many facts are proved about n-simplexes, which are the 
building blocks of a large class of geometric objects.  (A 0-simplex is a point; a 1-simplex is a 
straight line; a 2-simplex is a triangle; a 3-simplex is a tetrahedron, etc.)  We could pick an n-sim-
plex — say, a 3-simplex —  that made clear the statement we were trying to prove, and then, if the 
statement were the appropriate type, we would know that it held for all simplexes.

Proofs that Converge to a Proof 
We are familiar with the phenomenon of an infinite sequence of numbers converging to a spe-

cific number, or, more generally, of an infinite sequence of points in a topological space, converg-
ing to a specific point.  But why shouldn’t there be an analogous phenomenon for proofs?  An 
example is given in step 2 of the proposed proof of Conjecture 0.2 in “Approach by Induction on 
Inequalities”, “‘Arithmetical’ Version of the Approach by Induction on Inequalities” in my paper 
“Is There a ‘Simple’ Proof of Fermat’s Last Theorem?”, available on the web site www.occam-
press.com.

Skeptical Thoughts on Computerized Proof-Checkers
Every once in a while I receive an email from a person who says that, since I am not an aca-

demic mathematician (my degree is in computer science, and for most of my career I have done 
research in the computer industry), the only way I will be able to get my papers published is by 
having at least the important proofs checked by a computerized proof-checker.  No editor, the per-
son says,  will reject a paper if the important proofs have been checked and deemed correct by 
such a computer program.  

The assertion is nonsense (see email below from an expert in such software).  In my experi-
ence, it arises from a refusal, on the part of the email sender, to spend time or effort on a paper by 
a writer of little or no prestige.  But on the other hand, the sender doesn’t want to think of himself 
as one who merely dismisses papers by outsiders, and so, to maintain, and in fact increase, his 
opinion of himself, he says that he would be willing to believe my paper is worthwhile, if that 
were confirmed by an infallible authority, namely, a computerized proof-checker.  “I cannot be 
enthusiastic about your paper because my standards are too high.”

If the proofs in my papers were long and if they involved advanced mathematics, perhaps the 
sender would have a point.  But since each of the proofs in my papers is less than four pages long, 
the sender’s standards are laughable.  Especially since all the mathematics in my papers is 
straightforward, even though the ideas are unorthodox and new.

Proponents of computerized proof-checking seem to believe that the programmers of the 
proof-checking software, and the persons who help the mathematician translate his original proof 
into language that can be accepted by the proof-checker, are somehow less likely to make mis-
takes than the mathematician who wrote the proof.  And yet the complexity of the translation pro-
cess alone should dispel this idea.
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It is always possible that (a) the proof-checker will overlook an actual error, or (b) that the 
actual proof that the proof-checker checks, differs, however slightly, from the one the mathemati-
cian had in mind!  In other words, that the wrong proof is in fact correct!

There are two extremes concerning inputs in computerized proof-checking:  one is to put all 
or most of the translation burden on the proof-checker and supporting experts.  In this case, the 
software must be continually monitored and updated to keep up with the varieties of word-proces-
sor in which mathematicians can write their proofs.  This seems a formidable, never-ending,  task.  

The other extreme is to require that all proofs be submitted in one and the same format, for 
example, the equivalent of what is known in the computer industry as top-down (structured) for-
mat.  

I once wrote the following email to a mathematician who had an intimate acquaintance with 
computerized proof-checking:

“The top-down (structured) format is straightforward, and doesn't vary between proofs."
“You said, "No, that's not close to being true.  There are many structures…"
[I then said] “Perhaps I should spell out in detail what I mean by "top-down (structured) for-

mat".  I mean the format that is the equivalent of the top-down (structured) format in computer 
programming.  

“In the case of proofs, Level 1 consists of a few steps, say, less than seven, such that if each of 
the steps is correct, then they prove what the mathematician states they prove.

“Level 2 consists of a proof, following a similar rule, of the steps in Level 1 . 
“Etc., until a Level is reached such that all the steps at the Level are known to be true.
“There are, of course, many formats for presenting proofs, but there is only one format such as 

I have described.  In my experience, it is remarkably effective at revealing errors in logic (without 
a computerized proof-checker being involved).

“Of course, different proofs of one and the same theorem can certainly be presented in this 
one format.”

He replied with an enclosure of a student exercise that he claimed showed that his proof-
checker was capable of checking proofs using the format I have described.  But the exercise only 
was one Level deep, so I was skeptical of his claim.

I then asked him, “What percentage of mathematics papers that were accepted for publication 
in 2017, would you say were accepted because at least some of their proofs had been checked and 
deemed correct by computerized proof-checkers?”

He replied,
“I don't have actual statistics, but I would say almost none.  There is a movement by a few 

mathematicians to get to the point where we can verify all proofs submitted to journals in this 
way, but the technology to do that efficiently without excessive effort on the part of the author or 
journal does not yet exist.

“... our software is not designed or intended to check proofs submitted for journals.  It is 
intended instead for educational purposes like teaching a beginner what constitutes a valid mathe-
matical proof....”  

How Can Contradictions Even Be Expressed?
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In mathematics, a contradiction expresses a state of affairs which cannot exist.  And yet the 
expression of that non-existent state of affairs, certainly does exist!  (If p is a proposition, then “p 
and not-p” expresses a contradiction.)  The expression is part of the (or, rather, of a) language in 
which the mathematical subject is presented.  It is certainly possible to write ungrammatical 
strings over the alphabet of the language.  (“and and and p not” might be such an ungrammatical 
string.)  In other words, contradictory states of affairs do not exist, but grammatical strings 
expressing them exist, along with ungrammatical strings expressing nothing at all in a given lan-
guage. 

It seems odd that we can talk so precisely about what does not exist.  Somehow, we ought not 
to be able to do this: the pencil should simply stop moving, or fall off the table, when we attempt 
to write something contradictory; we should not be able to press down the keys on the word-pro-
cessor.  It should be impossible to say something contradictory.  Yet it isn’t.

Suppose we had a meta-language in which to talk about formal languages.  Then we would 
probably have a way of saying, “the string s is ungrammatical in the language L”, or, possibly, 
even, “the string s does not exist in the language L”.  But s certainly exists somewhere, probably 
even as a grammatical string in another language — or in many other languages (certainly in the 
language consisting of all finite strings over a given alphabet).  

Is it possible to define a non-trivial language in which all contradictions can only be expressed 
by ungrammatical strings?  If not, why not?  

“3.032  It is as impossible to represent in language anything that ‘contradicts logic’ as it is in 
geometry to represent by its co-ordinates a figure that contradicts the laws of space, or to give the 
co-ordinates of a point that does not exist.” — Wittgenstein, Ludwig, Tractatus Logico-Philo-
sophicus, Routledge & Kegan Paul, London, 1961, p. 19

A related question is: In the language expressing a mathematical subject, there must be 
sequences of strings to cover all proofs by contradiction.  What can we say about all such 
sequences of strings?  “Where” are they in the language?  Do they have a particular grammatical 
characteristic that separates them from all other strings?  Upon being told truthfully that grammar 
G  generates the language for a mathematical system, but not being told what any of the symbols 
stand for, is it possible to isolate all those strings that belong to proofs by contradiction?

Finally, “where” is the realm occupied by the entities in indirect proofs (or, rather, the realm 
occupied by entities having the relationships assumed and deduced in such proofs)?  At least at 
the beginning of such proofs, we have no difficulty conceiving the assumed negation of what we 
want to prove.  “Assume that x is a y.  Then...”  We are easily able to follow our argument, to have 
a more or less precise idea of what we are talking about, even to draw pictures.  And yet, all this is 
about something that, we ultimately find out, doesn’t exist!  

   
A Few Words About Material Implication

During the course of an extended discussion concerning the validity of a proof I was propos-
ing, it became clear that I and the other person were unsure about certain aspects of material 
implication, i.e., of the statement form, if p then q, which is also expressed as: 

q is a necessary condition for p, 
p is a sufficient condition for q, 
p implies q, 
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q if p,
 p only if q, 
q provided p, 
q whenever p, 
q when p.  

That these expressions make sense can be seen if we let P denote a non-empty proper subset 
of Q, and then let p denote “x is an element of P” and q denote “x is an element of Q”.  Thus, e.g., 
clearly x is an element of P only if x is an element of Q.

The following is my attempt at resolving the uncertainty that the other person and I con-
fronted.

The standard truth table definition of material implication is as follows.  Here, “T” denotes a 
true proposition and “F” denotes a false proposition.

(I) if T then T     is true;
(II) if T then F    is false;
(III) if F then F   is true;
(IV) if F then T   is true.

In practice, line (I) is  by far the most commonly used line in the truth table.  I will call (I) 
“factual” implication, or “knowledge-building” implication, because typically, if someone has 
proved a lemma or theorem of the form, if p then q, then that lemma or theorem is used, in subse-
quent proofs, to establish the truth of q once the truth of p is established.  That is, the truth of p, 
and the truth of the lemma or theorem, implies the truth of q. 

For example, consider Fermat’s Little Theorem:

if r is prime and (a, r) = 1 then a(r–1)  1 mod r.

A typical use of this Theorem might be the following:

“Since by what has been established r is prime and (a, r) = 1, we have, by Fermat’s Little The-
orem, that a(r–1)  1 mod r.  But then, multiplying through the congruence by a2, we have a(r+1)  
a2 mod r, and thus...”

There is another common use of material implication, or, I should say, of the statement form, 
if p then q, and that is in the restatement of definitions.  This use I will call the “definitional” use 
of (the form of) material implication.  Here, the rules are more limited.  Consider, for example, the 
statement, 

If an integer n is odd, then it does not contain the factor 2.

This statement is true by definition of “odd”.  (In order to emphasize that this statement is not 
material implication, I do not bold-face “if” and “then”.) The statement,

If an integer n is odd, then it contains the factor 2,
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would be regarded by readers in the mathematical community as being unequivocably false, even 
though the truth table for implication allows the statement to be true if in fact the integer n is even.  
It is unequivocably false because it contradicts the definition of “odd”.

Lines (III) and (IV) are used very rarely in normal mathematical practice. (I will welcome 
examples that contradict this statement.)  The reason is that we cannot use these lines for “factual” 
or “knowledge-building” purposes: if the antecedent is false, then we can only conclude that the 
consequent is true or false.

These two lines are also counterintuitive to many people, at least to many students. Stoll, in 
his Sets, Logic and Axiomatic Theories, attempts to make the lines at least plausible.  He argues 
that we surely want the statement

if (p and q) then p

to be true regardless of the truth values of p, q. But then if p is false (and q is either true or false) 
we get Line III, and if p is true (and q is false), we get Line IV.  An aid to understanding is to let P, 
Q denote sets with a non-empty intersection, and let p denote “x is an element of P” and q denote 
“x is an element of Q”.  Then, clearly:

if ((x is not an element of P) and (x is an element of Q)) then (x is not an element of P), is 
true (Line III), and 

if ((x is an element of P) and (x is not an element of Q)) then (x is an element of P), is like-
wise true (Line IV).

The Length of Theorem Statements
Why don’t we feel compelled to attach to every theorem, a statement, “This theorem can be 

expressed in n symbols in the language we are using,”  where n is the exact number of symbols 
used in the statement of the theorem?  

Is mathematics ultimately nothing more or less than the study of significant truths that can be 
expressed in relatively “few” symbols?  Is it possible that, far more important than the content of 
a mathematical lemma or theorem, is the fact that that content can be expressed in the number of 
symbols it is expressed in?  

Why do we believe that all important theorem and lemma statements are of “manageable” 
length?  Why do we not believe that there are important theorem and lemma statements that are 
longer than can be contained in any paper, any book, or computer memory?

Formal Languages and Gödel’s First Incompleteness Theorem
A formal language is a set of finite strings of symbols.  The strings  are generated according to 

the rules of a formal grammar.  The grammar specifies which strings of symbols can be replaced 
by which other strings of symbols.

Each mathematical subject can be represented by a formal language.  All the lemmas and the-
orems in the subject are represented by strings in the language.
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Gödel’s First Incompleteness Theorem (1930) states that in each subject large enough to con-
tain arithmetic, there are propositions that cannot be proved.  In particular, in the subject there 
must be the proposition, “This proposition cannot be proved.”

It would seem that we have a string in a formal language L that represents the statement, “This 
string does not exist in the language L.” We ask how that could be possible.

Each proof of a lemma or theorem in a mathematical subject is a sequence of strings in the 
formal language representing the subject, the last string in the sequence being a representation of 
the lemma or theorem statement.  What would force us to realize the fundamental limitation this 
would be — what would force us to realize the truth of Gödel’s First Incompleteness Theorem?

A Shameful Omission in Textbooks on Mathematical Logic
A common expression among persons communicating about mathematical logic is “false 

implies anything”.  This stands for two things: one is the fact that, in the truth table for material 
implication (“if P then Q”) if P is false then whether or not Q is true, the implication is true.

But that in no way implies that Q is a valid consequence of P.  Thus, prior to Wiles’ proof of 
Fermat’s Last Theorem in the early 1990s, “if 2 + 2 = 5 then Fermat’s Last Theorem is true” was 
most certainly not a valid proof of Fermat’s Last Theorem!  

I have seen “false implies anything” used as a refutation of a statement P clearly labeled false 
in a proof.  The critic did not want to concede that the proof in which P occurred solved a problem 
that the critic did not want to see solved by the person who wrote the proof).  Which of course, is 
shameful nonsense.

Textbooks on mathematical logic explain how a proof of a statement P must be the result of a 
sequence of deductive steps each of which involves  the rule of logic known as “modus ponens” 
(MP).  But the textbooks do not explain that “false implies anything” is two things:

(1) an abbreviation of the above two lines in the truth table for implication; and
(2) an abbreviation of a phenomenon that occurs in inconsistent formal mathematical systems:

“In general, a contradiction in a formal system arises when there is a sentence p of the system
  and proofs of both p and not-p.  In view of the tautology (p and not-p) imply q, the presence 
  of such a contradiction allows the proof in the system of any sentence q.” [because in this
  case, p and not-p is true, and true cannot imply a false q]   (Mac Lane, Saunders, Mathemat -
  ics: Form and Function, Springer-Verlag, New York, 1986, p. 379.
. 

Against Self-Reference
After reading popularizations of Gödel’s First Incompleteness Theorem and related formal 

logic, I find I have grown contemptuous of the subject of self-reference, e.g., “This sentence is 
false.” In the hands of authors (like Rudy Rucker, in Infinity and the Mind) who have too high an 
opinion of themselves, the subject has come to seem primarily a way that authors can appear to be 
profound thinkers, namely, by confronting what is claimed to be a profound mystery in formal 
logic.

Even Turing, in his proof of the unsolvability of the Halting Problem1, uses self-reference. 
But for me, the existence or non-existence of a Turing machine to solve the Problem is only of 
minor interest.  What is far more interesting is knowing for what classes of Turing machine the 
Haling Problem is solvable, and if the answer is “None”, then why that is so.
44



A Few Off-the-Beaten-Track Observations...
Similarly, for me what is important in formal logic is not what can be said about “This sen-
tence is false” and similar sentences, it is the problem of finding the class of formal sentences 
whose truth or falsity can be determined by formal procedures, e.g., computer programs.

For more on this subject, see “On the Size of the Set of All Sets”, below.

Number of Proofs vs. Number of Truths
Let S denote the set of all nth degree polynomials with complex-number coefficients, where n 

The number of polynomials in S is uncountable because the number of complex-numbers is 
uncountable.

 “The roots of the polynomial equation p(x) = 0 are r1, r2, ..., rn”, provided the roots are cor-
rect, can legitimately be called a “truth”.  The proof is the written-out solution of p(x). 

Since each proof is a finite string of characters, the number of proofs is countably infinite.
But since there are uncountably many polynomials in S, there are uncountably many truths. 

Therefore, there are truths that cannot be proved.1

Berry’s Paradox
Berry’s Paradox can be described by the following example: “‘The least integer not nameable 

in fewer than nineteen syllables’ is a phrase which must denote the specific number, 111777.  But 
the italicized expression ... is itself an unambiguous means of denoting the smallest integer 
expressible in nineteen syllables in the English language.  Yet, the italicized statement has only 
eighteen syllables!  Thus we have a contradiction, for the least integer expressible in nineteen syl-
lables can be expressed in eighteen syllables.” — Newman, James R., The World of Mathematics, 
Vol. 3, Simon and Schuster, N.Y., p. 1951.

Exercise: Discuss cases where Berry’s Paradox doesn’t occur, e.g., “the smallest integer that 
can be expressed in n words”, where n is less than or equal to the number of words in the phrase.

Exercise: Try to arrive at an estimate of the frequency of Berry’s Paradox over the natural 
numbers.

Possible Problem-Solving Techniques
“If you don’t believe a problem has a simple solution, you probably won’t find one.”

We begin with what I regard as the fundamental question concerning problem-solving tech-
niques, namely:

Why Are There Difficult Problems?
I have never come across a discussion of this question though I am sure that some, perhaps 

many, exist.  One answer might be that the formal grammar in which the subject in which the 

1. The Halting Problem asks if there is a Turing machine (computer program) that, given another program 
and an input to that program as input, will always determine whether or not .that program will halt on that 
input.  The answer is No.
1. A fact that was proved in a much different way in 1930 by Gödel in 1930 in his First Incompleteness The-
orem.
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problem exists can be represented, simply has an extremely long sequence of grammatical strings 
of symbols before the string that constitutes a solution, is reached.  

Another answer might be that the idea underlying a solution, is very difficult to discover.  But 
how exactly does that relate to the previous answer?  Does the idea enable us to find a much 
shorter sequence of grammatical strings that terminate in the string that constitutes a solution?

At the very least, it would be worthwhile if a collection of answers to the question were made 
widely available.

Use of the “Fixed-Set” Where One Exists
The Fixed-Set is the set of cases that remains the same whether or not a counterexample to a 

conjecture exists.  Thus, for example, Fermat’s Last Theorem (FLT), which asks for a proof that 
there do not exist positive integers x, y, z, n such that xn + yn = zn for n > 2, had been proved for all 
n up to 4,000,000  by the early 1990s.  (The Theorem was finally proved, by Andrew Wiles, for 
all n soon after.)   

So for all n  4,000,000,  no  xn + yn  – zn was equal to 0, and so all these (x, y, z, n) were in 
the Fixed-Set for FLT.

The Fixed-Set problem-solving technique involves considering members of the Fixed-Set that 
are “near” an assumed counterexample.  The technique is used in “Is There a “Simple” Proof of 
Fermat’s Last Theorem?” (Part 1) on occampress.com, in the sections: 

    “Approach Using ‘Neighbor’ of Assumed Counterexample,
    “Vertical Approaches Based on Pythagorean Theorem”,
     “Approaches Based on Inner Products”.

See also the section below, ““Movement” from a Known Solution to an Unknown Solution” 
on page 47.  The technique is also used in the proofs of the 3x + 1 Conjecture in “A Solution to the 
3x + 1 Problem” on occampress.com.

The Comparison Strategy
If we are attempting to prove the statement P, we first write down

“If P, then ...”, where “...” is a finite sequence of deductions that does not contain the equiva-
lent of “If not-P, then ...”.

We next write down 

“If not-P, then ...”, where “...” is a finite sequence of deductions that does not contain the 
equivalent of “If P, then ...”.

We then compare the statements in each finite sequence of deductions we choose to make, and 
see if there is anything that might lead to a proof of P.

Skeptics argue that the Strategy is invalid, because not-P is false, and false implies anything. 
But an authority on mathematical logic has said that the Strategy is, in fact, valid.  And  indeed, 
we cannot attribute true or false to either P or not-P.  Each is simply the negation of the other.
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Certainly mathematicians throughout the world make such comparisons, .e.g., “If the Rie-
mann Hypothesis is true, then ... but if the Hypothesis is false, then ... “, and we cannot imagine 
physicists, prior to the confirmation of the existence of the Higgs boson, not saying, in discus-
sions, “Well, if the boson exists, then, ... but if it doesn’t exist, then ...”.

Begin by Finding a Structure That Contains All Possibilities...
... and that shows meaningful relationships between them.
I used this approach to solve the hitherto unsolved  3x + 1 Problem, and to prove the hitherto 

unproved Goldbach’s Conjecture (see “A Solution to the 3x + 1 Problem” and “A Proof of Gold-
bach’s Conjecture” on occampress.com.  

Assignment of Coordinates to Every Possible Solution
To show that a desired solution does not exist, assign coordinates to every possible solution, 

then show that there are no coordinates for the desired solution, therefore there is no solution. 
This technique is used in “A Proof of Goldbach’s Conjecture” on occampress.com.

Show that the Construction of a Solution Is a Process That Never Ends
To show that a desired solution does not exist, show that the process of constructing the 

desired solution, never ends.

“Movement” from a Known Solution to an Unknown Solution
In order to describe the basic idea, let me repeat two paragraphs under “A Thought on Differ-

ential Equations” on page 112:
“Consider standard 2-dimensional Cartesian coordinates.  But instead of regarding an ordered 

pair of integers, <x, y>, as defining a point, i.e., the intersection of a vertical grid line and a hori-
zontal grid line, let the ordered pair define a square.  Specifically, we define a new set of coordi-
nates in which points have been “expanded” to squares, all squares being of the same size.  Thus, 
<x, y> now denotes the location of a square.  

“We can fill this new grid of squares with the values of functions taking two integers as argu-
ments, and returning integer values, e.g., the ordinary arithmetic functions addition, subtraction, 
multiplication, and division.  Let us consider the case of multiplication.  In the square <x, y> we 
place the value of x  y.  Now, observing this grid of values, we see that the value in the square <x 
+ 1, y> is (obviously) simply the value in the square <x, y>, + y.  The thought may now occur to us 
that, once we have gone through the labor of computing the value in square <x, y>, it only takes “a 
little more” labor to find the value in square <x + 1, y>.  And not much more labor to compute the 
value in square <x + 2, y>, or in square <x, y + 1>, or in square <x, y + 2>, etc.  We don’t have to 
compute each value from scratch.”

We saw one version of this approach in the above-mentioned sub-section.  Another version is 
given in “Geometry Proofs Based on Movement of Figures” on page 37.  We will here mention 
several other versions.

Consider the set S of all sums, finite and infinite, of terms 

cx1
a1x2

a2x3
a3
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where c and all xi and all ai are integers, and where the number of xi terms is infinite.  Clearly, the 
set S contains all polynomials and all forms, e.g., binary quadratic forms c1xy + c2x2 + c3y2 = 
c1x1x2 + c2x1

2 + c3x2
2, since we can always let an infinity of the xi terms have value 1. 

Each term has an integer value, and each term has a location in some infinite dimensional grid 
like the one we described above for multiplication.  We can now “move about” in this grid, and 
observe how the values of the terms change, and possibly discover rules governing the changes.  
Would this be an aid in solving problems?  We discuss this as an approach to a possible simple 
proof of Fermat’s Last Theorem (FLT) in our paper, “Is There a ‘Simple’ Proof of Fermat’s Last 
Theorem?” on occampress.com.  For example, we can ask if, starting from the assumption of a 
counterexample, i.e., x, y, z, n such that xn + yn – zn = 0, we move to a known case, say, 33 + 43 – 
53 =  – 34, we find that our value is not – 34.    If that should be true, then our assumption has led 
to a contradiction, and FLT is true.

Suppose it were possible to “plot” all the lemmas and theorems in a given subject, i.e., assign 
each a “location” such that it was always legitimate to move from one theorem to any of its imme-
diately neighboring locations.  Then a proof would entail beginning at one location and moving to 
another containing the desired lemma or theorem.  In principle, of course, one could start any-
where and eventually arrive at the location of the desired lemma or theorem, but some of the paths 
might be considerably longer than others.  Or is this technique essentially the same as that of 
beginning with a known lemma or theorem and finding a path to the desired lemma or theorem in 
the graph structure representing every proof of every possible lemma and theorem in a subject?

A related idea is that of the topology of properties. Mendeleev’s familiar table of the elements 
is probably the simplest example. Here, certain properties of atoms are so arranged that it was 
easy for scientists to see what atoms were missing from the table, and then to initiate searches for 
them. Is it possible to set up equivalent tables in mathematical subjects so that, for example in 
topology, seeing what spaces possess a certain property, might suggest which other spaces might 
also possess the property?

In physics, suppose we are to compute a certain electromagnetic property of some object.  We 
would begin with an object for which it was easy to compute the property, then slowly deform the 
object into the desired one, keeping track of the corresponding change in the property.  Needless 
to say, the deforming process will probably have to be “continuous”.  Or maybe the original 
object and the final object will have to be homeomorphic.  It is tempting to think about this idea in 
connection with much of potential theory, where various types of surfaces, with various boundar-
ies, are studied in relation to various types of forces. Could we develop techniques to begin with 
this surface and boundary, for which we have a solution, and then gradually convert surface and 
boundary into that surface and boundary, for which a solution is sought?

Consider a computer program that (1) displays a geometric object and along with it one or 
more properties, e.g., volume, surface area; (2) allows us to instruct the program to gradually 
change the object while the program simultaneously displays the new values for the properties as 
the change takes place.  There are already programs to graphically display, e.g., an ellipse with 
specified axes and there certainly must be programs that can rotate a given ellipse around the 
major or minor axis and then display the volume and surface area of the resulting object.

But since we are talking about relative “nearness” of things, we might want to bring in topol-
ogy. Let us review the two extremes among topological spaces: one extreme is the indiscrete 
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space, in which every point is as close as possible to every other point; the other is the discrete 
space, in which every point is as far as possible from every other point.  In between are the useful 
topological spaces.  Consider Chaitin’s algorithmic information theory, in which a binary string is 
random if its shortest description is roughly the length of the string itself.  (Thus the string “10” 
repeated a million times is not random, because its description, which has just been given, is much 
shorter than the 2,000,000-digit string it describes.)  Can we say that a set of random strings 
belongs to a discrete topological space, in that each string is equally far from each other string?  In 
other words, because it takes the same amount of “work” to get from one string to another, unlike 
in our multiplication space described above?  

Use of Continuity to Show That a Function Can Have a Certain Type of Value
We illustrate the technique with an example.  
Let f(k) denote the function xk + yk – zk , where x, y, z are constituents of an assumed minimal 

counterexample xp + yp – zp = 0 to Fermat’s Last Theorem, and k is real and  1.  Clearly,  f is con-
tinuous and has a derivative f´´(k) with respect to k for all k.

By an elementary fact of the calculus, the derivative  f´´(k) = xk(ln x) +  yk(ln y) – zk(ln z).  We 
would like to know if  f´´(k) has a non-zero integral value for some k in the segment p – 1 k  p.  
We know, from other results, that f´´(p – 1) = 0, that f´´ is negative over the segment indicated, and 
that there exists a k in the segment such that the derivative has a negative integer value of less 
than –1,000.  We ask, Is it possible for  f´´(k) = xk(ln x) +  yk(ln y) – zk(ln z) to have a negative inte-
ger value anywhere over the segment p – 1 k  p.

At first sight, the presence of the natural logarithms, which are almost always irrational, may 
incline us to be skeptical that the derivative can have an integer value. But the following arument 
shows that our skepticism is not justified.  For, since  f´´(k) is continuous over the segment in 
question, and is always negative, and has an initial value of 0, and a value of less than –1,000 in 
the segment, it follows that f´´(k) must, over the segment, take on the integer values –1, –2, –3, ..., 
–1000, ...   Of course, we do not know for which values of k these integer values occur, but that 
was not the question we were attempting to answer.

Use of Continuity to Solve the “Chair-Moving” Problem
Assume there is a square floor measuring, say, 20 feet by 20 feet.  The floor is uneven but 

smooth, meaning there are no sharp points or sharp edges. Assume that no point of the floor rises 
higher than, say 2 inches above a horizontal “mid-plane”, or 2 inches below the horizontal mid-
plane. 

Assume a square chair measuring, say, 2 feet by 2 feet,  is situated on the floor.  The four chair 
legs are all the same length, each descends vertically  below a corner of the seat.  The chair cor-
ners are labelled A, B,  C, and  D in clockwise order.

Assume that the feet of the chair below the corners A, B, and  D are touching the floor.  (Three 
feet of the chair can always be made to simultaneously touch the floor.)  The foot under the corner 
C is sticking up in the air.

Prove that if the chair is moved continuously around on the floor, always with feet A,  B, and  
D touching the floor, there must be a time when all four feet are simultaneously touching the floor.

Proposed solution:
It is certainly possible for us to place the chair somewhere on the floor so that feet B, C, and D 

are touching the floor, and A is sticking up in the air.  (Foot A is diagonally opposite foot C.)  
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Then, since the floor is smooth, the movement of the chair on the floor is continuous, and thus we 
can arrive at this second position of the chair by pushing it around, which means that it was neces-
sary that at some point, all four feet were simultaneously touching the floor.

Note: I recall seeing this problem presented in an issue of Scientific American, but I don’t 
know which one.

The Nature of Mathematics
What Are We Doing When We Do Mathematics?
\What Are We Doing When We Do Mathematical Research?  

What are we doing when we try to find a proof?  Syntactically, the answer is simple: we are 
trying to find a path through the tree of all possible strings in the formal grammar representing the 
subject. But what are we doing semantically?  Why are some proofs hard, others easy?  Where do 
proofs exist in the world of semantics?  In some cases, a picture makes proofs of certain elemen-
tary facts unnecessary.  Is there such a picture for each mathematical fact, if only we could find it?  
Why are proofs necessary at all? 

We know that not all problems are solvable by algorithm. Yet when humans do problem solv-
ing, they are not merely reaching at random into a set of proofs and hoping to pull out one that 
works.  Why does human insight, creativity, so often work when no exhaustive mechanical proce-
dure does?

We are not creating something out of nothing.  “We are finding relationships,” the reader 
might reply.  But they already exist! (The statue exists in the stone.)  What are we creating?  What 
are we...changing?  I ask this last question because I think most mathematicians, most thinkers 
about mathematics, fail to realize the amount that mathematics disturbs the universe.  I don’t 
mean through its application to physics, engineering, and other subjects, I mean through the 
amount of physical space — occupied by paper and by computer memories — that is required to 
store all existing mathematical knowledge, and that is required to teach and carry out 
mathematical research.  But then we must also take into consideration all the energy and physical 
changes in the earth that are required to produce all the machinery that goes into the printing of 
math books and into the manufacture of computer memories.

As of now, I feel that the best answer to the question, “What are we doing when we do 
mathematics?”, is an old one — and one that is not satisfying to me — namely, that we are 
exploring new realms, just as astronomers and terrestrial explorers do. When we create a new 
subject, we create a realm that lies before us just as an unexplored mountain range does, or a 
previously-unknown region of the cosmos. We then ask questions about that realm, and try to 
answer them. 

But wait:  Astronomers and explorers investigate what is already there.  In what sense are all 
the facts about, say, the positive integers, already there in the set {1, 2, 3, ... }.  It seems rather 
that, in mathematics, we investigate some of the things we can construct out of the simple 
elements, e.g., the positive integers, that we begin with.  

Grammars are a necessary consequence of the use of formal logic, but like all syntactic 
matters, they are of secondary importance.  Furthermore, the following question must be 
addressed regarding grammars: suppose in, say, 1850, computers existed having the speed and 
memory capacity of the most advanced ones of 2009.  Suppose, further, that mathematicians of 
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the time had created a grammar that they agreed was capable of generating all lemmas and 
theorems of all known mathematics at that time, and suppose this grammar were implemented as 
a computer program.  Now the question arises: is it reasonable to believe that all mathematics of, 
say, the next 100 years would eventually have been generated by that computer program if it were 
able to run for a sufficiently long time?  In particular, would Cantor’s discoveries, e.g., in set 
theory and concerning countable vs. uncountable infinities, have eventually appeared among the 
lemmas and theorems produced by the grammar?  I have a hard time believing that the answer is 
yes. (Of course, these discoveries would not have appeared if the grammar did not allow 
completed infinities, that is, infinite sets.)  Would Lebesgue integration have appeared?  Or the 
concept of open sets in topology?  Or topology itself, for that matter? Or Gödel’s incompleteness 
theorems?  Or Greg Chaitin’s definition of randomness? (A finite string of binary digits is random 
if its minimum description is roughly the length of the string itself.)

Tentative assertion: just as all sequences of characters that would result from a formal 
grammar of the English language, are not meaningful statements in any of the sciences, so all 
sequences of characters that would result from a formal grammar of a mathematical subject, are 
not mathematically significant in that subject (or any other subject).

Another question that arises is the following: since we certainly are not interested in every 
string that the grammar generates, and since the grammar would almost certainly be what is 
known in formal language theory as a “Type 0” grammar, meaning a grammar such that short 
strings can be generated at any time — i.e., after any number of previous long strings had been 
generated, so that it would not be possible to generate all strings of length 1, then all strings of 
length 2, then all strings of length 3, etc. — what string length would mathematicians of the time 
have decided was an upper bound on the length of strings to be saved for human inspection, and 
how would they have arrived at their decision?

Still another question is: how is a lemma that is used many times in a subject, represented in 
the set of strings producible  by a grammar?

But to return to the rather mundane idea that what we are doing when we do mathematics is 
carrying out an exploration: let us assume we have made certain definitions in the domain of 
three-dimensional real space (R3), which is to be the domain of our subject.  We now want to 
explore that subject.  Ultimately, what are we doing?  One answer is: from the set of all subsets of 
the domain, we are exploring those that can be described in an acceptably small number of words 
and symbols. We are not exploring those subsets that take, say, millions of years even to name. So 
our explorations amount to a proof that “We can say this about that.”

Why do we believe that all important theorem and lemma statements are of “manageable” 
length?  (One fact that each theorem and lemma states is, “This theorem (lemma) can be 
expressed in the number of symbols in which it is expressed.”)  Why do we not believe that there 
are important theorem and lemma statements that are longer than can be contained in any paper, 
and book, and computer memory?

But we still have not explained the relationship of proofs to the subsets we explore. Set-
theoretically, what is a proof?  Where do proofs “live”?  It seems inadequate to reply that they live 
in the countable infinity of finite sequences of symbols over some alphabet.  What has that got to 
do with sets of subsets?  If proofs “establish relationships”, what is the domain of relationships?  
How exactly does it relate to domains of sets of subsets?

The reader will perhaps better understand one motivation for our questions by considering the 
following passage from Russell’s Principles of Mathematics1:
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“...there can be no greatest cardinal.  Yet one would have supposed that the class containing 
everything would have the greatest possible number of terms.  Since, however, the number of 
classes of things exceeds the number of things, clearly classes of things are not things...”

So the set of all subsets of R3 cannot somehow “live” in R3. But the set of all statements and 
their proofs in our subject is at most only a countable infinity of finite strings of symbols, and 
these can “live” in R3 .  So: there is no room in the domain of our subject for everything we might 
like to talk about, but there is room for everything we can say.

A further thought regarding mathematics as the discovery of relationships will be found below 
under “The “Theory of Everything” in Physics vs. the “Theory of Everything” in Mathematics” 
on page 74.

Mathematics Consists Mainly of Establishing That “This” Is a “That”.
At least that is the thought that occurs to me more often the more I continue to study the 

subject.

What Percentage of Theorems Are Simply Statements of a Fact About Many Things?
Fermat’s Last Theorem (FLT) can be viewed as a statement of the fact that xn + yn – zn, where 

x, y, z, n are positive integers, and n is never equal to zero.  1

The Fundamental Theorem of Algebra states that any polynomial equation anxn + an–1xn–1 + 
..., + a0 = 0, where an and where all coefficients are complex numbers, has at least one 
complex root.

One of Cantor’s Theorems states that the cardinality of the reals is greater than the cardinality 
of the rationals 

The quadratic formula states that there is one formula for the roots of any quadratic equation, 
and shows what the formula is.

Many theorems are of the form “There does not exist a ...”2,  “There exists a ...” , “The ... has 
the property ...”

Conjectures are likewise often simply statements of a fact about many things:

The Riemann Hypothesis states that all non-trivial roots of a certain equation have real part = 
1/2.

1. W. W. Norton & Company, Inc., N.Y., p. xiii.
1. If we didn’t know that, then it could happen that in attempting to solve a problem, we needed to know if xn + 

yn – zn = 0. And so we would have to somehow figure out if this was true.  Perhaps a huge amount of labor and 
computer time would be required  But since we know that FLT is true, we know immediately that xn + yn – zn never 
equals zero.  So FLT can be thought of as stating a fact about an infinity of things.

2. Gödel’s Second Incompleteness Theorem states that there does not exist a proof by which a consistent axiom-
atic system which includes Peano arithmetic can prove its own consistency. 
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Goldbach’s Conjecture states that each positive integer greater than 2 is the sum of two 
primes.

The 3x + 1 Conjecture states that the 3x + 1 function terminates with 1 on all positive integers.

A strategy that has enabled me to discover possible solutions to three very difficult problems1, 
is in accordance with the idea set forth in this section.  The strategy is: find a structure containing 
all possibilities (the “many things”), and that shows important relationships between them.

When God Created Mathematics, Did He Create the Proofs First?  
Or did he create the important statements first, and leave the proofs to us humans?  Perhaps all 

he created was the idea of a formal grammar, and the fact that a formal grammar underlies all 
axiom systems in mathematics, and then washed his hands of the rest, saying to us, “If you people 
decide that certain short strings produced by these grammars are important (say, the short string 
that expresses Fermat’s Last Theorem, or the short string that expresses the Riemann Conjecture), 
then you figure out the sequence of strings that led to these short strings.  I have more important 
things to do...”

What Is Needed To Make All of Mathematics Efficiently Accessible?
Only a professional mathematician can continue to believe that the huge quantity of present-

day mathematics, with tens of thousands of new theorems being published each year worldwide in 
all disciplines, requires no change in how mathematics is accessed — namely, via a tree listing the 
major subjects, and then via textbooks that are organized the same way that Euclid’s was in 300 
b.c.

A radically different and, I think, much more time-saving approach to mathematical subjects, 
is presented in William Curtis’s How to Improve Your Math Grades on occampress.com.  The fol-
lowing is a brief outline of his main idea.

We can think of each mathematical subject as a set of “entities”, and by an entity he means 
anything that is represented by any mathematical term.  Associated with each entity name is a 
“template” which includes: definition of entity, representations of entity, common operations on 
the entity including ways of determining if two entities are equivalent, ways of creating more of 
the entity, and of breaking down the entity, and (in some cases) arithmetic functions involving the 
entity.  In addition there is a tree representing the types of the entity.  And a list of theorems and 
lemmas that contain the entity in their statements. Finally, there is a list of other entities to which 
the given entity is closely related — in the ideal case, there is a reference to each and every other 
entity in which the given entity appears in theorems and lemmas.

The set of entities includes commonly-occurring algebraic expressions, even though some 
fields of the template may be empty.  But at the minimum, associated with each expression is a list 
of other entities (theorems and lemmas) in which the expression occurs.

The entities are listed in alphabetical order in paper presentations.  There is, in addition, a 
complete index of all symbols that are part of the subject.

Such a presentation of a subject Curtis calls an “Environment”.

1. See the papers, “A Solution to the 3x + 1 Problem”, “Is There a ‘Simple’ Proof of Fermat’s Last Theo-
rem?”, and “A Proof of Goldbach’s Conjecture”, on occampress.com.
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In my experience, an Environment saves a great deal of time, one reason being that it is now 
no longer necessary to know everything in order to do something.  The Environment makes it 
much easier for the reader to go as deeply into knowledge of an entity as he or she desires, which 
is exactly what is needed when there is far too much mathematics to learn in the old way. An 
Environment makes possible what has sometimes been called “just-in-time learning”.

But even if (when) a complete Environment exists for each subject, the problem of efficient 
access to all mathematical subjects will hardly be solved.  And so we must step back and consider 
how much mathematics there will be 10, 20, 30, ..., 100 years from now, and ask what might be 
the least inefficient way of accessing items in all this knowledge.  

First, we can assume that the goal of all access is to solve a problem.  Second, we must pro-
ceed throughout on the assumption that each user has a specific minimum knowledge of mathe-
matics — say the equivalent of an undergraduate degree’s worth. One thought is to have a 
thoroughly cross-referenced  index of concepts, with a hierarchy of sub-concepts in each case. 
This is fine if the user knows the concept he wants further information about, but not if he or she 
doesn’t.  For example, suppose the user wants information on what amounts to fiber bundles, but 
doesn’t know that term.  So we need to think of possible ways to express esoteric concepts in 
some minimum language.  Thus, e.g., if the user had never heard of topology, but wanted infor-
mation regarding the abstract concept of “nearness”, then he or she could find “topology” via a 
cross-reference from “nearness”.  

A short-cut to finding a concept whose name we may not know is simply to have (1) a web 
site where users can give descriptions of the concepts they want more information about, and (2) 
in each specialty, have at least one expert who routinely scans the descriptions on the web site and 
if one of them seems to be related to his specialty, he contacts the person seeking the information.  

Is Mathematics As Difficult for Mathematics To Do As It Is for People To Do?
The question was motivated by a passage in a book on Buckminster Fuller:

“‘I’d learned at school that in order to make a sphere, which is what a bubble is, you employ 
pi, and I’d also learned that pi is an irrational number.”  So ‘when’, he recalls asking, ‘does nature 
have to fudge it and pretend it comes out even and then make some kind of compromise bubble?’” 
— Kenner, Hugh, Bucky: A Guided Tour of Buckminster Fuller, William Morrow & Company, 
Inc., N.Y., 1973, p. 132. 

Think of some of the back-breakingly difficult problems that have existed in mathematics. 
And yet many of these, perhaps most, are easy to state: the three great problems left by the ancient 
Greeks — the squaring of the circle, doubling of the cube, and trisecting of an angle using only 
ruler and compass in each case — ; Fermat’s Last Theorem; the Riemann Conjecture, the Poin-
caré Conjecture, and others. Does the subject of mathematics (or God)  have to work as hard to 
create these truths as mathematicians have to work to prove them?  Or does mathematics simply 
run out all paths in each possible logical grammar, and then we discover that, in some cases, at the 
end of some very long paths, there is a short string?   (This possibility is known to exist in some 
kinds of formal grammar.)
54



A Few Off-the-Beaten-Track Observations...
Is Mathematics Really “Language-Like”?
Is mathematics primarily language-like?  If so, then we can view, “Can you find a proof of this 

theorem?” as meaning “Can you ‘say’ this theorem in the language of this subject?”  The growing 
feeling, as our study of a subject progresses, that we can solve more and more problems, do more 
and more proofs, is then equivalent to the feeling, when learning a natural language, that we can 
say more and more things.

Language vs. Geometry in Technical Subjects
Imagine that we had a language for speaking about the locations of objects in a rectangular 

frame.  For example, we could say things  like, “Well, the blue triangle is below and a little to the 
right of the red circle.”  Or, we could give precise coordinates of things.  Speaking about any new 
arrangement of plane figures would then be easy, because our language would already be in place: 
“Just look at the picture and talk.”  Now consider the problem of a person who understood the 
syntax and semantics of the language, but was never given the picture.  His labors to “under-
stand”, i.e., to deduce the picture, would be much greater than those of a person with the picture 
before him who was translating into words and/or numbers the arrangement of the pieces.  So, in 
Artificial Intelligence, why not first develop a language for talking about pictures, then map the 
state of affairs into a picture, then talk about it?

Why is a picture worth a thousand words?  Consider tables that represent facts and ask how 
they actually replace prose. What does prose really “do”?  What do symbolic logic strings do rel-
ative to the underlying semantic structure?  

Viewing Any Mathematical Subject As a Version of Another Mathematical Subject
To what extent is it possible to view a given mathematical subject as a different subject?  To 

begin with, we can, and usually do, view a mathematical subject in terms of sets.  We can view 
any mathematical subject as a formal language for which a model exists.  So far so good.  But can 
we, e.g., view  elementary number theory as a special case of the theory of vector spaces, in which 
arguments of functions are represented as vectors, with the value of the function being repre-
sented by another vector?  Category theory is one way of viewing one subject as another.  Is it the 
best way, and if not, why not?

(This is a question about how self-similar mathematics is.  Homomorphisms and isomomor-
phisms, the beginning student of modern algebra is too seldom reminded, are a way of saying, 
“This is really like that.”)

What does it mean to say, e.g., “Group theory is not applicable here.”

“Why Not a Course in All Things That Are Equal to the Number 2?”
Students of technical subjects are familiar with the basic courses in mathematics: analytic 

geometry, calculus, linear algebra, number theory, ...  And yet in each of these courses, certain 
terms, certain quantities and relations recur again and again.  So why not a course in each one of 
these?  A course in all the things that equal 2, all things that equal 3, all things that equal 4, up to 
some maximum based on frequency of occurrence in undergraduate courses?  Why not a course in 
all things called “linear”?  In all things that are less-than-or-equal-to other things? ...

Why not a proof technique in which, if we are trying to prove the conjecture x = y, we simply 
go to a table of all things that are y and see if any of them are equal to x.  If the answer is yes, then 
we have a proof.  If the answer is no, then we have a disproof.
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Does a KWIC Index of a Mathematical Subject, Tell Us Anything Important About the Sub-
ject?

A KWIC (Key Word In Context) is one in which each entry is alphabetized by each significant 
term in the entry.  Thus, e.g., 

Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial,

is indexed

under “C” as
Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial.

and under “E” as
Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial.

and under “M”, as 
Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial.

and under “P” as
Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial.

and under “R” as
Theorem: The eigenvalues of a matrix A are the roots of its characteristic polynomial,

Several questions suggest themselves”

(1) If we ask, “What subject is the Theorem in?” what should our answer be?

(2) If we make a KWIC index for each mathematical subject, what, if anything, will the 
indexes reveal about the relationship of each subject with other subjects?

(3) Is anything gained by regarding the boldfaced terms as “coordinates” of the Theorem in 
the body of mathematical knowledge?

(4) Is anything gained by regarding a mathematical subject, not as a linear structure, but as a 
set of statements occurring simultaneously in several different “subjects”, where, here, we regard, 
e.g., “polynomial”, “root”, “eigenvalue”, etc. as separate “subjects”.  See previous sub-section.

“What = Where”
“Roger Bacon died unaware that future historians would give him the title ‘Doctor Mirabilis’, 

the Wonderful Teacher, for whom every book had a place that was also its definition, and every 
possible aspect of human knowledge belonged to a scholarly category that aptly circumscribed 
it.” — Manguel, Alberto, A History of Reading, Viking, N.Y., 1996, p. 197.

Suppose that the value of something equals its address, its location, in some system of coordi-
nates.  In these cases, we can say that “what = where”, or that “semantics = syntax”.  The periodic 
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table of the elements is probably the best example of such a scheme.  Here, the chemical proper-
ties of an element are determined by the location of the element in the table.

Consider a binary tree representing binary numerals: “0” denotes descent down a left branch 
of a node, “1” denotes descent down a right branch, so that each node represents a unique 
numeral.  Then the description of how to get to a specific node — i.e., the sequence of branches to 
take — constitutes the numeral that is found at the node.  However, this does not quite give us the 
semantics, since the same number will have an infinite set of representations (numerals),  e.g., the 
number 5 is represented by the numerals 101, 0101, 00101, 000101, ...

However we do get the unique number if we declare that the paths define binary proper frac-
tions.  

Similarly for the real number line, where each fractional value of a number is a unique loca-
tion (point) on the line between the integral part of the number, and the next integer.

Suppose we were able to freeze in time all the mathematics in the world at present —  all the 
math papers in all the math journals, all the textbooks, all the correct mss. in circulation and on the 
Internet.  Suppose that then for each term — each number, each expression  — we listed all the 
places where that term appears.  What would be a good order in which to list the numbers and 
expressions?  Lexicographical?  But given any listing, what, if anything, could we learn from 
merely knowing all the places that each number or expression or term appears? Well, a definition 
of, say, the number 2 would be a listing of all the places where 2 appears.  (“The meaning is the 
use.” — Wittgenstein)

No matter what someone, genius or not, is doing in math, he or she is always somewhere in 
the set of all possible deductions. 

Is there a meaningful, useful way that we can classify steps in proofs — all proofs in all sub-
jects?  Or is the best we can hope for a categorization based on the type of formal logic statement?

Is there any possibility that we can devise a topology for lemmas and theorems — and, for that 
matter, for problems in general — such that those which are “close” to each other have similar 
solutions (proofs)? 

Suppose you were given the task of classifying all the exercises in a calculus textbook.  You 
might reply that the textbook itself provides such a classification, in that all exercises pertaining to 
the subject of each chapter are typically given at the end of the chapter.  But how would you fur-
ther classify the problems at the end of each chapter?

Every statement — including every lemma, every theorem — has a location. “Where does this 
statement ‘go’?” is an important question. 

Why shouldn’t there be “specialists” for each important term, and number, in mathematics?  
You would go to such a person and, e.g., say that you were having trouble with a proof that 
involved the term such-and-such.  The specialist would then give you a summary of all the places 
in the mathematical literature where that term appears.  You might ask for more detail about this 
or that place. 
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“During the past fifty years, more mathematics has been created than in all previous ages put 
together.  There are more than 1,500 mathematical research journals, publishing some 25,000 
articles every year (in over a hundred languages). ” — Stewart, Ian, The Problems of 
Mathematics, Oxford University Press, New York, 1992, p. 19.

As the body of mathematical knowledge grows at this rate, it becomes more and more desir-
able to be able rapidly to understand the most important results in a given paper. Imagine that 
mathematics were a subject whose sole aim was to discover new real numbers.  At the top of each 
paper would be the following statements:

“The previously-known largest decimal number for the integer 5 was 5.712.  
This paper proves that 5.7128 exists.”

Certainly that would enable us quickly to understand what the paper had accomplished. Is it 
possible to come up with a code that would vastly increase the speed of our understanding what a 
real paper in modern mathematics has accomplished? 

Mathematical Subjects Whose Structure Is “Flat”
One characteristic of the calculus is the large amount that the successful student needs to 

know in order to perform well on exams.  Integration affords just one example.  Proofs in the typ-
ical advanced text often require knowledge drawn from every nook and cranny of the subject. 
(The practice of textbook authors of not always giving specific justifications for the statements in 
proofs does not help, of course.) 

So we may be inclined to describe the structure of subjects like the calculus as “flat”, meaning 
that a great deal of knowledge is often required to solve even elementary problems.  The structure 
of a subject like elementary congruence theory, on the other hand, does not seem to have this 
property. 

Is there a specialty that investigates the structure of mathematical subjects?  Such a specialty 
might begin by counting the number of facts a student needs to know in order to get an A on a 
final exam.  Then the specialty might develop formal grammars for each subject, and compare 
these.

Mathematical Subjects That Are Not Modular
I will call a subject modular if it can be regarded as consisting of modules such that, infor-

mally, a change in one does not cause a change in another. I will call a subject non-modular if a 
change “here” does cause a change “there”, and in fact in many places in the subject.  Mathemat-
ics students  run into the non-modular properties of a subject when what looks like a solution isn’t 
one because it would produce, say, a falsehood in another part of the subject. “We thought this 
might work, but then we realized that it would imply that such-and-such was the case over there, 
and it’s not. “

Is is possible to make these concepts rigorous, so that subjects might be classified by the 
degree to which they are not modular?

Patterns in the Symbols
In mathematics and the hard sciences, unlike the humanities, what counts is semantics, not 

syntax.  What is said is important, not how it is said.  Even though a good notation can make clear 
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what a bad notation conceals, the truth of a mathematical statement does not depend on the partic-
ular symbols used to express it, only on their meanings, their definitions.

Nevertheless, we must also acknowledge that a page of mathematics has an esthetic of its 
own, regardless if you know what the symbols mean.  A person who knew nothing of the mean-
ings of the symbols could, by laborious examination, come up with a grammar to describe the 
allowed sequences of symbols.  In the standard language for elementary algebra, for example, the 
sequence of symbols “= +–x” standing separately, is not grammatical, but the sequence “z = x – y” 
is.  

But now consider the reverse situation, i.e., the writing down of sequences of symbols just 
because they look nice, even though they may in fact express nothing of interest, much less of use 
in the subject.  Is there perhaps a “higher esthetic” in which beautiful sequences, beautiful-look-
ing pages, always, or usually, express important truths?  Does great mathematics look great, and 
ugly (i.e., unimportant) mathematics look ugly, to one who is in touch with the right esthetic?  Are 
there people who understand the higher syntactic esthetic, and can apply it?

I once saw a woman on 60 Minutes who suffered from a mental disability, but who neverthe-
less was able to write part of a string quartet while talking to reporter Leslie Stahl.  The woman 
made clear that she was not hearing the music as she wrote it.  The music was as new to her when 
it was later played as it was to any other listener.  Perhaps she had somehow internalized the syn-
tax of written music, and was just creating more, based on this internal grammar.

One suspects that something similar might have been going on in the case of the mathematian 
Ramanujan, who often saw mathematical expressions and equations in dreams.  

And we must ask if this higher syntactic sense might not underlie the extraordinary ability at 
determining the primality of large numbers possessed by two otherwise severely mentally dis-
abled twins, as reported by Oliver Sacks.  Could it conceivably be that they saw something in, say, 
the appearance of the numerals, that enabled them to “deduce” that a given large number was 
prime?

Perhaps the most amazing example of writing whose appeal is purely syntactic, purely visual, 
is the Codex Serafinianus (Abbeville Press, New York, 1983), which is an encyclopedia about a 
non-existent country, full of non-existent creatures and machines and other objects, hand-written 
in a non-existent language which, as far as I know, has never been deciphered, if in fact, that term 
is even appropriate.  It seems possible that one could study the text and develop a grammar for the 
language, and then write in  it, without having the slightest idea of what, if anything, the writing 
meant. 

Ramanujan and “Esthetic Grammars”
“Ramanujan generated formulas which he felt to be true on the basis of intuition and the 

checking of some special cases. He generally did not provide a rigorous proof of his results. Gen-
erally he was not strong in establishing such rigorous proofs.”  Watkins, Thayer, “Srinivasa 
Ramanujan, A Mathematician Brilliant Beyond Comparison”, www.sjsu.edu/faculty/watkins/
ramanujan.htm, Apr. 3, 2012.

We must recognize that there are different types of mathematical ability, and that these types 
range from the conceptual to the deductive to the computational to the pattern-recognizing-and-
creating type exemplified by Ramanujan.

I cannot imagine Ramanujan, for all his genius, ever coming up with proofs like Cantor’s that 
showed, e.g., that the cardinality of the rationals is the same as that of the integers, but that the 
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cardinality of the reals is not the same, or that “most” reals are transcendental.  I cannot imagine 
Ramanujan developing set theory.

Although he was mathematically precocious, his obsession with mathematics began when, at 
about the age of 17, he “came into contact with the book, A Synopsis of Elementary Results in 
Pure and Applied Mathematics by G. S. Carr.  This rather eccentric book is essentially a huge col-
lection of formulas and theorems compiled for students preparing for the celebrated Mathematical 
Tripos examination at Cambridge.”1

Calculus students can perhaps get an idea of the beginning of Ramanujan’s obsession by 
recalling their cramming for exams that involved lots of formulas, as in, say, integration.  They 
learned a few rules, e.g., integration by parts, and then they became good at applying them to 
many different problems, and doing so rapidly, aided by lots of memorization. They may recall 
how, once they were into the effort, they began to see solutions quickly.  They became good at 
solving that type of problem. Perhaps they began to feel that they had entered into a higher level 
— a kind of frenzy — as a result of the intensity of their efforts and their growing skill.  Perhaps a 
similar frenzy is what young chess players enter into when they become obsessed with the game.

But even students who are destined for careers in mathematics do other things in the subject:  
they work on proofs and try to master difficult concepts.  Ramanujan apparently stayed with the 
formulas, becoming ever more skilled at developing new ones from the ones he had developed. 
Perhaps this limitation is why Morris Kline, in his Mathematical Thought from Ancient to Modern 
Times, one of the best histories of mathematics ever written, does not mention him.

If I were going to spend a large amount of time studying Ramanujan, I would not spend it on 
trying to prove his results, but rather on investigating two types of grammar: the first I will call an 
“esthetic grammar” .  This grammar would not be the formal logical grammar underlying the sub-
jects he worked in.  Rather, it would be a very illogical, even bizarre, set of possibilities, perhaps 
along the lines of “...if this kind of expression is in the numerator, and it contains a 5, and there are 
parentheses in the expression u in the numerator, then it is possible that the denominator contains 
this other kind of expression, along with the power n, multiplied by a factor w containing the 
expression ...”  The grammar may be based on the frequency of occurrence of various strings in 
other formulas.

Computer Generation of (Some of) All Possible Strings in a Subject
A mathematical subject is a Type 0 formal language.  The grammar for such a language is 

capable of producing a shorter string of symbols from a longer one. Therefore if we tell the gram-
mar to generate all possible strings less than or equal to a specified length, we have no guarantee 
that all the strings will be generated in a finite time.  However, we can at least tell the grammar to 
show us all the strings it generates that are within the length bound we specify, and let the gram-
mar keep running until we reach the end of our computing resources.  

A string can be an expression in the mathematical subject, or it can be a statement.  In the lat-
ter case, the sequence of strings that led to the statement constitutes a proof of the statement. 

Such a grammar could be developed for the subjects that Ramanujan worked on, and therefore 
it might be possible to generate some of the strings (statements) that Ramanujan discovered.  By 
studying the sequence of strings that lead to each, we might discover something about Ramanu-
jan’s thought processes.  Of course, we might discover some important statements that he did not 

1. The Princeton Companion to Mathematics, Gowers, Timothy, ed., Princeton University Press, Princeton, 
N.J., 2008, p. 808.  
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discover.  (Note: the type of grammar I am discussing here is almost certainly not an esthetic 
grammar, as described in the previous section.)

A Note on Infinite Sequences
We must never forget that it is we who read infinities into the symbols we write.  All we have 

before us is a short string of symbols:  “1, 2, 3, ... “    This string only represents an infinite set.  
Similarly, we need to remind ourselves every once in a while that even in the most breathtaking 
perspective painting or drawing, the distant mountains are in fact as close to us as the canvas on 
which they appear.  

Sounds, Smells, Feelings in Mathematics
We take it for granted that at least some mathematical entities have visual representations.  By 

the end of our high school years, assuming we have had good math courses, we are familiar with 
the idea of graphing functions as curves, surfaces.  But we have other senses, in particular, the 
sense of hearing, and the sense of smell.

Would we gain anything by graphing functions as variations in the pitch of a musical tone, so 
that, e.g., the higher the pitch, the larger the value of the function?  (We would need some sort of 
audible clock to indicate how rapidly the values were changing as we moved along the x-axis.)  In 
the mid-nineties, I saw a PBS program that described the use of sound to represent deviation from 
statistical limits.

“Perhaps more surprisingly, the CMC [the Computer Music Center at Columbia University] is 
beginning to explore ways in which sound technology can be used to teach quantitative subjects 
like mathematics.  While rapid increases in computer power allow even undergraduates to work 
with mathematical models in four, five, or higher dimensions, it is impossible to represent these 
complex geometries visually — a significant hurdle in trying to help students really understand 
the math involved.  It does seem, however, that these geometries can be explained and understood 
through sonic modeling, which represents data as audio with specific sonic attributes.  Certain 
features of large datasets can be heard more easily than they can be seen, and relatively new areas 
of mathematics such as fractal geometries and nonlinear dynamical systems are well represented 
through sound.” — Levitt, Jesse, “The Sounds of Science”, Columbia, Columbia University, 
N.Y., Winter, 2000, p. 36.

We sometimes say, “I smell a good idea here.”  Suppose it were possible, in a systematic way, 
to associate a smell with a math subject, and even with particular concepts and theorems, so that a 
sufficiently sensitive mathematican would be able to use these smells as a basis for intuitions.  “It 
just seems to me that we might find a proof for this conjecture in subject x, although I can’t tell 
you exactly how.” 

Those readers who find these reflections too fanciful to have anything to do with real mathe-
matics, should take a look at John Conway’s book, The Sensual (quadratic) Form1, e.g., “The 
Second Lecture: Can You Hear the Shape of a Lattice?”, “The Third Lecture:..and Can You Feel 
Its Form?”, and “The Fourth Lecture: The Primary Fragrances.”

Perhaps we can go even farther in connecting physiological responses to mathematical ones.   
Einstein once remarked that he sometimes experienced intuitions as “muscle tensions”.

Is Mathematics “Continuous”?

1. Published by The Mathematical Association of America, 1997.
61



A Few Off-the-Beaten-Track Observations...
 If we conceive of mathematics as a mapping from strings representing problem statements, to 
strings representing solutions, then what sub-set of this mapping is “continuous” in the sense that 
two problem statements which are “almost the same” have solutions which are “almost the 
same”?  It may be necessary to stipulate that “almost the same” means “having almost the same 
number of bits in the minimum description”.

Take any infinite series that represents the solution to a problem, say, to a differential equa-
tion.  There will be a rule by which corresponding exponents in each term increase with each suc-
cessive term: the exponents may increase by 1 or 2 or some other number.  Similarly, there will be 
a rule by which corresponding factors develop, e.g., in the first term there may be a factor (n + 1), 
in the second, two factors, (n + 1)(n + 2), in the third, three, (n + 1)(n + 2)(n + 3), etc.  We may be 
able to write down a rule that describes how exponents, factors, etc., are related in each term.  Or 
perhaps the closed-form notation will do the job for us.

Now suppose we have such a rule, and suppose we make a “minor” change in the rule: e.g., if 
exponents increase by 2 with each successive term, we have them increase by 3, or 4.  We ask not 
merely: How will the resulting value of the series change, but whether the series will be the solu-
tion of another equation and if so, which one? How “far away” is the new equation to which the 
modified series is a solution?  (Of course, it may be infinitely far away, meaning, that there is no 
equation to which the modified series is a solution.)

A way to categorize series, though not a practical one, is to categorize them in increasing 
order of the length of the shortest description of each, where “shortest” means in number of sym-
bols.

Consider the well-known Laplacian equation.  In three dimensions, it is:

where U is a continuous function having continuous derivatives of the second order.  A great deal 
is known about this equation.  But I have never come across a discussion of the equations:
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Why haven’t mathematicians considered it as important to investigate these equations as they 
have the Laplacian?  Are the solutions to these in some way “similar” to each other, and to the 
Laplacian, just as their written forms are similar (they differ only in one positive integer)?  Know-
ing the solution to one equation, would it be easy, or at least possible, to go from that solution to 
the solution to the equation preceding or following it in the above order?

When we organize technical information alphabetically by title, it is rarely the case that suc-
cessive items correspond to meanings that are “similar”.  And if we were able to organize infor-
mation semantically, so that things having similar, or close meanings, were close, then certainly 
the titles would not be alphabetical.1  Can we every have it both ways?  If not, why not?  If so, 
how?

This notion of continuity is present in the theory of evolution, in that biologists assume that a 
slight difference in form corresponds to a slight difference in the time when an animal lived.

Is Mathematics Created or Discovered? An Answer
This question goes back to Plato at least.  The following seems to me a compelling argument 

that mathematics is discovered.  If intelligent life exists elsewhere in the universe, and if this intel-
ligent life knows and uses mathematics, then, although the symbols in which the mathematics is 
written will almost certainly be different from ours, the truths the symbols represent will be the 
same as ours in areas where our knowledge and theirs coincide.  But if this intelligent life has 
political organizations — say, the equivalent of our national states — and if any of these have tax 
codes, then it is almost certain that the tax codes will differ from ours.

How Much Mathematics Can There Be?
In the film Annie Hall there is the following scene.  Alvy Singer is the Woody Allen character.

Alvy as young boy sits on a sofa with his mother in an old-fashioned, cluttered doctor's office. 
The doctor stands near the sofa, holding a cigarette and listening. 

MOTHER (To the doctor) He's been depressed. All of a sudden, he can't do anything. 
DOCTOR (Nodding) Why are you depressed, Alvy? 
MOTHER (Nudging Alvy) Tell Dr. Flicker. (Young Alvy sits, his head down. His mother 

answers for him) It’s something he read. 
DOCTOR (Puffing on his cigarette and nodding) Something he read, huh? 
ALVY (His head still down) The universe is expanding. 
DOCTOR The universe is expanding? 
ALVY (Looking up at the doctor) Well, the universe is everything, and if it’s expanding, 

someday it will break apart and that would be the end of everything!
 Disgusted, his mother looks at him. 

1. But consider an “entity first, types second”  way of writing terms.  Thus, e.g., “finite simple group” would 
be written as “group, simple, finite”, and “second order linear differential equation”  would be written as 
“equation, differential, linear, order, second”.  With this rule for writing terms, terms that were semantically 
closely related, would be close to each other in the alphabetical list as well.
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MOTHER (shouting) What is that your business? (she turns back to the doctor) He stopped 
doing his homework. 

ALVY What's the point?  
                                                                                                 — www.script-o-rama.com

The following may seem as absurd a concern as Alvy’s, but nevertheless I feel the question 
has to be raised, namely, “How much mathematics can there be in our physical universe?”  “How 
much mathematics is there room for?”

Suppose we decided to expand  as far as the universe allows.  Assuming one atom for each 
digit, then at most about 1080 digits would be possible, with no room for anything else except 
coincidentally.  

In limited-memory domains, compromises have to be made: if you want to say more about 
subject x, if  you want more accuracy here, then you have to settle for less room to talk about that 
over there.  

How much more mathematics is there now than there was, say, in 500 a.d., as measured by, 
say, the total number of words and terms, including terms in equations, in all the mathematical 
works then and now?  Suppose we were running out of paper and computer memory: what would 
we want to throw out first?  Second? Third?  Etc.  One reply is, of course, that we could afford to 
throw out everything except all the axioms that enable us to derive all the mathematics then and 
all the axioms that enable us to derive all the mathematics now.

What exactly do we gain from a lemma or a theorem in terms of number of symbols used?  
Here is the set of all positive integers, represented, say, as N = {1, 2, 3, ... }  Suppose we think up 
the sequence of patterns which is {N mod 1, N mod 2, N mod 3, N mod 4, ...} (meaning, N orga-
nized into the finite set of residue classes for each modulus).  It has taken us additional symbols to 
define this sequence of patterns, but we now “know more” than we did before, namely, that such 
an organization is possible.  At some point (quite soon, in fact!), the number of symbols needed to 
represent our knowledge of something — in this case, of the positive integers — will start to 
exceed the number of symbols we need to represent the something itself.  What are we gaining?  
What are we giving up?

Is it possible that the ultimate limit to mathematics is the number of atoms in the universe?  In 
other words, the number of atoms that can be used to represent mathematical knowledge?

What is “all of mathematics”?  It is a countable list of axioms, definitions, lemmas, theorems, 
and proofs.  But the number of subsets of just the positive integers is uncountable.  If a subset rep-
resents a property, then we cannot even list all the properties of just the positive integers.  

Are all the subsets of a set all of its properties?  But all the subsets of a set themselves are a 
set.  What about all the sets that are subsets of other sets?  Etc.

Does a Proof Decrease the Complexity of Mathematics?
By “complexity” here I mean the number of bits needed to represent mathematics.  Something 

that has a pattern, for example, “10” repeated a billion times, requires fewer bits to represent it (I 
just gave a representation) than something that doesn’t have a pattern, for example, a typical 
sequence of two billion 1s and 0s where each 1 corresponds to a head being tossed by a fair coin, 
and a 0 corresponds to a tail being tossed. 

Consider Fermat’s Last Theorem (FLT), which, after 300 years of effort, was finally proved in 
the early 1990s.  The Theorem can be viewed as a statement about a function, namely, the func-
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tion U(x, y, z, n) = xn + yn – zn, where x, y, z, n are positive integers, and n > 2.  The Theorem 
asserts that U never has the value 0.  Before the Theorem was proved, it would be necessary, for 
sufficiently large x, y, z, n, to attempt to find the value of the function using the computer and/or 
extensive reasoning, with no guarantee of finding the answer.  

(Question: what, if anything, is known about the frequency of values of the function other 
than 0?)

Was the function U more complex before the proof of FLT than after?
What is the complexity of all of mathematics today, that is, what is the minimum number of 

bits required to represent all of mathematics today?  Will all of mathematics eventually prove to 
have a finite complexity, or an infinite complexity?

How Do We Know When a Mathematical Subject Is “Finished”?
It is sometimes said that no major new developments can be expected in the theory of com-

plex numbers, that the subject is mature — “finished”.  How is this determined?  What are the cri-
teria?  Shouldn’t mathematicians in each specialty be working toward fulfilling these criteria for 
their specialty?  Are they in fact doing so?  If not, why not?

Instead of trying to determine if a subject is finished, we might instead try to establish a mea-
sure of the degree to which it is finished.  One way might be the following: using the initial defi-
nitions, establish a formal grammar of all well-formed expressions in the subject.  For each string-
length 1, 2, 3, ..., there exists only a finite number of well-formed expressions of that length.  If 
we have proved or disproved all the well-formed expressions up to a given length n that are asser-
tions, then we know that, if there are any new discoveries to be made in the subject, their state-
ments must be of length greater than n.  Unfortunately, the most general formal grammars will 
include rules that produce strings that are shorter than the ones to which the particular rule of the 
grammar is applied, and thus in principle we will not be able to tell when we have all the strings 
of a given length.

The “Big Picture” of Mathematics: Some Surveys 
A few of us believe that, no matter how specialized our mathematical efforts become, it is 

important to maintain, throughout our careers, as broad a grasp of the whole of mathematics as 
possible.  One reason is that there is absolutely no guarantee that the problems in our specialty 
will have answers within that specialty, and so we need to know “where the concepts are”, or at 
least, where the leading concepts are. Therefore, as a service to others who believe as I do, I 
would like to offer a list of surveys of mathematics that seem to me to be useful.  As of July, 2009, 
apparently none of the software available to academic booksellers was capable of doing searches 
under this category, e.g., “survey, mathematics”, or “survey of mathematics”, so I will welcome 
suggestions from readers as to books that might be added to the list.

Items in the list are roughly in order of decreasing mathematical background required. One 
general comment is that the indexes, like those of almost every mathematics book I have ever 
seen, are usually frustratingly incomplete. I am sure the reason is that the ancient, and now obso-
lete, linear paradigm continues to rule the presentation of mathematics.  One must begin on page 
1, remember the contents, then proceed to page 2, remember the contents, then proceed to page 3, 
...  William Curtis’s important and pioneering book, How to Improve Your Math Grades1,  makes 

1. Available on the web site www.occampress.com
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a convincing case that this paradigm is not viable in a world in which some 1,500 mathematics 
journals publish more than 25,000 papers a year containing more than 200,000 new theorems.  

List of Surveys
Here is the list:

Mac Lane, Saunders, Mathematics: Form and Function, Springer-Verlag, N.Y., 1986.
The book is apparently out of print.  I was told by the manager of an academic bookstore that 

if I could find a copy for under $135, I should grab it.  I was able to buy one for $90 from abe-
books.com.

Gårding, Lars, Encounter With Mathematics, Springer-Verlag, N.Y., 1977.

Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University 
Press, N.Y., 1972.

This is the best history of mathematics I know of.  It also can serve as an excellent survey of 
mathematics up to the time of its publication. 

Aleksandroff, A. D.; Kolmogorov, A. N.; Lavrentev’, M. A.; Mathematics: Its Content, 
Methods, and Meaning, tr. Gould, S. H. and Bartha, T., 3 Vol.s, The M. I. T. Press, Cam-
bridge, MA 1963.

An outstanding work, despite the occasional baffling proof.  My only complaint — and it is a 
minor one — is that it could lead the reader who doesn’t know better into believing that just about 
all progress in modern mathematics was made by Russians.  

The Princeton Companion to Mathematics, ed. Gowers, Tim, Princeton University Press, 
Princeton, N.J., 2008.

A useful work that should be in the hands of anyone planning to devote at least part of his or 
her life to mathematics.  Its faults include its very incomplete index, the lack of an index of sym-
bols, and quite a few sections that could have been much clearer. 

Courant, Richard, and Robbins, Herbert, What Is Mathematics?, Oxford University 
Press, N.Y., 1969.

Stewart, Ian, Concepts of Modern Mathematics, Penguin Books, Great Britain, 1981.

Newman, James R., The World of Mathematics, 4 Vols., Simon and Schuster, N.Y., 1956.

Davis, Philip J.,  and Hersh, Reuben, The Mathemaical Experience, Houghton Mifflin 
Company, Boston, MA, 1981.

Critique of Three of the Surveys
I will offer a critique of three books in the above list that I think have major shortcomings.  

The rest are acceptable.  Kline’s and Newman’s can fairly be called classics.
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Mac Lane, Saunders, Mathematics: Form and Function
According to the Preface, the author wrote this book “as a background for the Philosophy of 

Mathematics”.   On the one hand the book is admirable for its range and depth given the number 
of pages (456).  Also for its emphasis on the connection between mathematics and the real world.

 On the other hand, the presentations of topics are by no means as clear as they could be within 
the same space, which is surprising, since the author is known for the clarity of his style, e.g., in A 
Survey of Modern Algebra1.  Statements that are easily understood are followed by statements 
that require long proofs, with no warning to the reader.  It is abundantly clear that the author made 
no attempt to test the clarity of his text on randomly-selected members of his intended audience. 

 His treatment of the Lagrange equations (pp. 267-274), which are representations of New-
ton’s second law, should convince any skeptics as to the clumsiness, inefficiency, obscurity and 
hence unnecessary difficulty of the discursive presentation of lemmas and theorems.  In this type 
of presentation, a long sequence of equations, with commentary, is given, at the end of which the 
reader is finally made aware of the lemma or theorem that all this effort was aimed at deriving.  
There are no sub-titles, no indication of definitions and important statements, e.g., via boldface or 
italic type, or by placing definitions and statements on separate lines. The following are some 
headings that would make this section easier to understand.  I certainly do not say this is the best 
set of headings.

Derivation of the Lagrange equations
    Rectangular coordinates expressed in terms of polar coordinates
    Radial force
    Torque
    Kinetic energy
    Derivation of the Lagrange Equations from Newton’s Second Law 
The Lagrange equations hold in any coordinate system
The Lagrange equations and generalized force for N particles
The Lagrange equations apply to motion under holonomic constraints
The Lagrange equations apply to motion under non-holonomic constraints
The Lagrange equations apply to the motion of a simple pendulum

I urge the reader to consider how much clearer and more rapidly understandable the proofs 
would have been had they been presented in the format of structured proof as described in the 
chapter “Proofs” in Curtis’s How to Improve Your Math Grades on the web site occampress.com. 
One of the characteristics of this format is that the goal (the lemma or theorem) is always given 
first. 

The section has other shortcomings.  At least one of the equations for the definition of the 
angular component of acceleration is wrong, as the reader can determine by simply drawing the 
related diagram.  Fig. 1, a diagram of the relationship between radial and angular acceleration, is 
worse than useless for what it omits.  I encourage the reader to see the correct diagram in any 
good calculus text, e.g., on p. 608 of Kline’s Calculus: An Intuitive and Physical Approach2.

1. Birkhoff, Garrett, and MacLane, Saunders, A Survey of Modern Algebra, A K Peters, Natick, MA, 1997.
2. Kline, Morris, Calculus: An Intuitive and Physical Approach, John Wiley & Sons, N.Y., 1977.
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Another example of what happens when a book like this is not tested on randomly-selected 
members of its intended audience, is the description of an ordered field in which the Archimedean 
law fails (“Comment”, p. 102).  The first part of this sub-section is perfectly clear, but then it is 
followed by a sequence of statements whose justification is utterly baffling.  We cannot help con-
cluding that during and immediately after the book was written, it was shown to a few trusted col-
leagues who were specialists in the various sections.  Each specialist knew backwards and 
forwards the material in the section that he or she was asked to review.  And everything was per-
fectly clear!  He or she was simply unaware of the missing justifications for statements, because 
statements and justifications were so familiar.  The result is a book that is guaranteed to be frus-
trating for most of its readers.  (Schorer’s Law:  Almost any presentation of a mathematical sub-
ject is clear and easy to understand for someone who already knows the subject.)

I challenge any reader who feels I am being unduly harsh in these criticisms, and who has not 
previously been exposed to adjoint mappings, to read the first few paragraphs under “Adjoints”, 
pp. 200-201.  I say it without a moment’s hesitation: this exposition is a disgrace.

 At the end of some chapters, the author includes tree-like diagrams that apparently are 
intended to show relationships between some of the concepts dealt with in the chapter.  But these 
diagrams are utterly baffling. They seem almost to result from the author’s free-associating on 
each term.   What are we to gather from a line connecting “Mechanics” to” Quantity” and another 
connecting “Quantity”  to “Dependence”?  The lines are certainly not indicative of a subset rela-
tionship. 

The number of typographical errors is a disgrace.  In a third of the pages I have already found 
more than 30. On p. 196, there are references to statements (2.1) and (2.2), but there are no such 
statements in the chapter.  The publisher, Springer-Verlag, apparently wanted to save money by 
not having a competent proof-reader make a final pass through the book before publication. 

 Some of the drawings are bizarre — e.g., the one representing the subset condition on p. 27.  
The index, as is virtually always the case with mathematics books, is woefully incomplete.  It 

has all the hallmarks of a mere afterthought.  There is an incomplete index of symbols. 

Gårding, Lars, Encounter With Mathematics
As with the Mac Lane book, statements that are easily understood are followed by statements 

that require long proofs, with usually no warning to the reader. Some of the drawings are utterly 
baffling.

Some of the proofs are so badly written as to justify being called inept.  Consider the proof of 
Fermat’s Little Theorem (p. 13), and keep in mind that the author is not writing a textbook, but 
rather a popularization for students “studying [mathematics] in the in the first year after high 
school.” (Preface)

He proceeds as follows:

The implication 

p a prime implies p divides ap – a is true for every integer a.                                  (6)

We prove the theorem the way Euler did it in 1736.  [The author has previously proved 
(5) p divides (a + b)p – ap – bp.] 
Combining a special case of (5), namely,
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p divides (b + 1)p – bp – 1

with the hypothesis that (6) is true when a = b gives the result that p divides the sum

(b + 1)p – bp – 1p + bp – b = (b + 1)p - (b + 1).

Hence, since our implication (6) holds for a = 1, induction shows that it holds when a is 
any natural number.

Although I can certainly believe that the above is based on the idea underlying Euler’s proof, 
I cannot believe that Euler’s presentation of the idea was that bad.  Here is a much better presenta-
tion.

Fermat’s Little Theorem states:

If  p is a prime and a and b are integers
Then p divides ap – a.

Proof:

We use proof by induction.

Basis Step

By (5)1 we know that p divides (a + b)p – ap – bp.
So let a = b = 1.  Then we have

p divides (1 + 1)p – 1p – 1p = 2p – 2.

Induction Step

Assume the theorem is true for all k such that 1  k   a.  That is, assume that

p divides 2p – 2, 3p – 3, ..., ap – a. 

By (5) we know that

p divides (a + 1)p – ap – 1p.       

Therefore p divides (a + 1)p – ap – 1p  and p divides ap – a, that is,

p divides (a + 1)p – ap – 1p + ap – a.

1. The author has previously proved: (5) p divides (a + b)p – ap – bp. 
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Cancelling aps, we get 

p divides (a + 1)p – (a + 1).

And we have our proof.

Obviously, our improved version can be compressed, e.g., by not writing each equation on a 
separate line.

The index is worse than even the usual mathematics index. For example, on p. 149, a matrix is 
described as “singular”.  Keeping in mind that the book was written for students who are “study-
ing [mathematics] in the first year after high school,” it is reasonable to expect that the meaning of 
the term should be readily looked up.  How long should that take?  As long as it takes to find the 
word in the index and turn to the referenced page — a few seconds.  Unfortunately, “singular” 
does not appear in the index, neither as an entry, nor as a sub-entry under “matrix”, nor anywhere 
else. Clearly, the author expects each reader of his book to start on p. 1, read it, remember the con-
tents, then go to p. 2, read it, remember the contents, etc. . In passing, I should mention that I have 
so far been unable to find the word “singular” anywhere in the book prior to p. 149, so the author 
clearly assumes that the first-year mathematics student has already had a course in linear algebra. 
It is also clear from other parts of the book that the author assumes that this student has already 
mastered advanced calculus.   

Throughout the book, we find the disgraceful practice of authors of popularizations and text-
books, namely, the not giving justifications for every statement that is not part of the subjects that 
the author assumes that all readers will have knowledge of. (Keep in mind that Gårding is assum-
ing his readers have only a knowledge of high school mathematics.)  Students, trained never to 
question the competence of anyone who writes mathematics, bow their heads in shame at their 
inability to understand the statements lacking justifications, when in fact they should start an 
international protest (never revealing their names, of course) against this practice.  A prime exam-
ple is the section, “Implicitly defined functions”, pp. 150-151.  If you don’t already know this 
material, keep a record of the total time it takes you to come to what you regard as an understand-
ing. 

A further indication of how out of touch with reality the author is, is his statement, “The clas-
sic What Is Mathematics? by R Courant and H. Robbins (Oxford 1947) is perhaps the best effort 
in this direction written for the general public.” (p. 8) The general public knows next to nothing 
about mathematics, and regards it with fear and loathing.  It is inconceivable that a reader with no 
technical training could read and enjoy Courant and Robbins’ book. Certainly any kind of appre-
ciation of the book requires at least a year or two of college mathematics.

I wonder what a superb writer of mathematics like Morris Kline1 would have produced if he 
had been asked to write a Survey.

1. As I have said elsewhere in this chapter, Kline is the author of what I regard as the best history of mathe-
matics written in the 20th century, namely, Mathematical Thought from Ancient to Modern Times (Oxford 
University Press, N.Y., 1972), and one of the two best elementary calculus textbooks (Calculus: An Intuitive 
and Physical Approach, Dover Publications, Inc., Mineola, N.Y., 1976), the other textbook being Sherman 
Stein’s Calculus and Analytic Geometry, 4th ed. (McGraw-Hill Book Company, N.Y., 1973).
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The Princeton Companion to Mathematics
 As we said above, the book’s faults include its very incomplete index, the lack of an index of 

symbols, and quite a few sections that could have been much clearer. 
 Some of these sections — for example, the one on partial differential equations — are little 

more than a list, in prose, of some of the more important types of the entity covered.  Any author 
who believes that this is the best way to present this type of material, should have no difficulty 
believing that prose is the best way to present the log tables.  In the case of partial differential 
equations, the equations should first and foremost be presented in tree graphs and/or in tabular 
form with indents to show sub-sets.  Prose commentary comes second. The fact that so many sec-
tions are presented as these prose lists is proof of the pathetically naive belief among technical 
authors that prose makes difficult subjects easier to understand for the non-specialist.  The prose 
presentation is also clear evidence that the author never bothered to test his article on randomly-
selected members of his intended audience.  What did he hope his readers would be able to do 
after reading his article?  Create the tree graphs and tables that he should have provided in the first 
place?  What else?  Did he even think to ask himself the question before he began writing?

The treatment of homology groups (pp. 389-92) is even worse, almost certainly because the 
author never bothered to ask himself, “What are my goals in this section?  What do I want the 
reader to come away with?  What tests will I give to randomly-selected readers to determine if I 
have succeeded?”  At present, the reader comes away knowing that there are different homology 
group values,  and feeling that he should understand certain drawings, e.g., of loops around 
toruses, although he does not. He is told at the start of the article that homology is a way of mea-
suring how many holes there are in a topological space, but he is told essentially nothing about 
how this is done.  I challenge the author to find even one student in a first-semester course in alge-
braic topology who can explain how the claims the author makes concerning the pinching of a cir-
cle or of a sphere follow from the definition of homology the student learned in class.

If we make the legitimate assumption that of far greater value than a collection of homology 
group values, is an idea of how these values are arrived at, then our first step is to decide what we 
will expect as minimum knowledge in any reader.  (And yes, certainly, we should say what this 
knowledge is before the section begins.)  It seems that the minimum knowledge should be the 
equivalent of, say, two undergraduate years in mathematics, including at least one semester of 
group theory.

Next, we need to state that homology is another means of answering the basic problem of 
topology, namely, determining if two topological spaces are homeomorphic or not.  To do this, we 
first “triangulate” each space, that is, carve it up into k dimensional triangles, where a 0-dimens-
tional triangle is a vertex, a 1-dimensional triangle is an edge, a 2-dimenstional triangle is our 
familar planar triangle, a 3-dimensional triangle is a tetrahedron, etc.

 There is a homology group for each k, its symbol being Hk(X), where X is the topological 
space.  Hk(X) is a quotient group, just as the set Z/pZ of integers mod a prime p is a quotient 
group. Specifically, Hk(X) = Zk(X)/Bk(X).  Zk(X) is the set of chains of k-dimensional triangles 
such that the chains are cycles, and Bk(X) is the set of chains of k-dimensional triangles such that 
the chains are not only cycles, but cycles that are boundaries.

At this point, it is time for a carefully-selected example. Probably H1(X) will be the simplest 
and clearest.  This requires a drawing.  And then we need to show, first, how to determine Z1(X), 
then how to determine B1(X), then how to determine Z1(X)/B1(X) = H1(X).  At some point, we 
should make crystal clear to the reader how the number of holes in X is determined from this pro-
cess.
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The presentation should avoid the kind of hand-waving that is so typical of textbook exam-
ples, in which geometric intuition is brought in whenever necessary in order to compensate for the 
author’s laziness in specifying what happens in each step and why. 

After the example, we can mention that cohomology is another numbering of homology 
groups, what its advantages are, and the fact that it is a dual to homology.  Finally, we can say that   
there are homologies that use generalization to triangles that have curved sides, and then to cells.

I strongly doubt that a presentation such as I have described here would take more space than 
the one in the book.  It would almost certainly be of greater value to the reader.

Courant, Richard, and Robbins, Herbert, What Is Mathematics?
The book has a very high reputation: “A lucid representation of the fundamental concepts and 

methods of the whole field of mathematics”, “A work of extraordinary perfection”, “This book is 
a work of art” (quotes from the back cover) — but the high reputation is among professors of 
mathematics, on none of whom has it yet dawned that, to a person who understands a subject, all 
presentations are clear.  

The text is the usual academic sprawl, the product of a man (Courant) who believes that a sur-
vey should be the equivalent of a collection of classroom lectures: talk plus occasional diagrams. 
What the reader should see is each important mathematical fact — theorem, lemma, corollary — 
presented in the same format: :

Title of fact in bold-face type
Statement of fact with each logical term in bold-face starting at the left-hand margin
Proof, with the major steps numbered, the step numbers flush left, and references if necessary 

to the proofs of the steps (see chapter on proofs in Curtis’s How to Improve Your Math 
Grades on occampress.com).

It should never be necessary to hunt  for the statement of an important mathematical fact in the 
prose of one or more paragraphs.

 
The failure to adhere to this strict format might be a major reason why the proof starting near 

the top of page 334 is without question one of the worst mathematical expositions I have ever 
come across.  (The proof concerns the maximum value of a set of differences.)  At present, I 
believe that not only is the exposition incompetent, it is also invalid without the use limits, since it 
is never the case that two sides of a triangle can be equal  to the third side).

And we must not fail to wonder why the contents of the book differ so much from other sur-
veys: consider the 60 pages just on maxima and minima.

How Surveys Are Written Now
It seems clear from the above examples of Surveys that the way in-depth Surveys are written 

now is somewhat as follows.  A mathematician — preferably one with a reputation as an author of 
popular textbooks — decides that it would be a service to those with any interest in mathematics 
at all, if he were to write a book that gives a survey of the major fields of mathematics at present.  
A commendable idea.
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He has a vague notion of who his intended audience will be: mathematics students in their 
first year of college, adults with a technical degree.  He sets to work in effect giving a prose sum-
mary of the general knowledge he possesses, believing (with incredible naivete) that prose some-
how makes technical material less intimidating to the non-expert. Just the opposite is the case, 
since prose forces the reader to figure out relationships that could be easily and clearly presented 
via tables and other fixed formats.  (There is a reason why the phone book is not written in prose.) 

 What the author writes is, in fact, a prose summary of major theorems, with perhaps some 
background on what led to the theorems, and a few biographical paragraphs on some of the math-
ematicans. In particular, in many cases, it is a prose description of one or more graphical trees that 
represent the hierarchy of types of entities in the subject, e.g., types of groups, types of rings, 
types of algebraic varieties, types of operator algebras, etc. — without the trees being given. .

He shows his book to colleagues, who, having been immersed in the subject matter all their 
professional lives, pronounce it clear and easy to understand. (If you already know a subject, then 
almost any presentation of it is clear.)  His publisher likes the large audience that the mathemati-
cian claims he has written the book for, and publishes the book without even bothering to do care-
ful proof-reading of the final version, because the publisher feels that even if a few errors slip 
through, the vast majority of the audience won’t notice, and the cost-saving will increase his prof-
its. 

Readers in his intended audience are confused and humiliated because some things are readily 
understandable, others are not.  They tell themselves, “I knew I wasn’t intended to study this sub-
ject.”

How Surveys Should Be Written
The project must begin with a clear definition of the audience, one that is based on minimum 

skills and knowledge that members of the audience are expected to have. Not “first year of col-
lege” but rather, e.g., “Knowledge of how to solve equations in one variable, knowledge of set 
theory and mathematical logic at the level presented in, e.g., Bittinger’s Logic and Proof, basic 
knowledge of limits as presented in ...”, etc.

Next come the crucial questions: What are the goals of the book? and What tests can indicate 
if the book is achieving those goals? 

Then as each chapter is completed, the chapter must be tested on randomly selected members 
of the intended audience.  

As the book proceeds, a complete, thoroughly cross-referenced index, including symbols, 
must be generated.

Standard notation — the most commonly-used notation in existing, popular textbooks — must 
be used throughout.

With these and related practices, the author has a fighting chance of producing something 
beyond a mere exercise in vanity.

“All Mathematical Subjects Are Boring”
These words were uttered by a student who nevertheless had considerable mathematical 

ability.  But he had come to strongly dislike the fact that, with each subject, the same processes 
were involved: the tedious memorization of definitions and facts, the having to “build an 
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understanding” of each concept, then the  labor involved in solving problems.  He detested the 
incomplete indexes in virtually all textbooks.

Years later, I came across a list of the items he was talking about.  It was in Chapter 1, “Why 
Is Math Difficult?”, in William Curtis’s How to Improve Your Math Grades,  in the section titled, 
“4. The Prestige of Difficulty Among Mathematicians”:

“name of [mathematical] entity;
definition(s) of entity;
brief history of entity;
ways of representing entity;
common operations (tasks) we perform on the entity;
properties of the entity;
types of the entity1;
theorems pertaining to the entity;
closely-related entities.'

The author then says, “Once you have begun to think of mathematical subjects in this way, 
you will see why I say, ‘All mathematical subjects are “the same”.’” 

The “Theory of Everything” in Physics vs. the “Theory of Everything” in Mathe-
matics

In physics, there is our huge universe (perhaps only one of many!), and physicists are search-
ing for the full description of it, which they believe can be contained in a shelf of volumes (rela-
tive to some audience).  So they are seeking what is an infinitesimally small description of 
something huge — “infinitesimally small” in the sense that the number of atoms required to con-
tain the description is infinitesimally small compared to the number of atoms in the universe.

But in mathematics, the situation is reversed.  Here everything is small to begin with — 
merely the positive integers, 1, 2, 3, ..., which can be represented by only a few symbols — and 
then mathematicians build volume upon volume of truths about these integers, and the structures 
that can be obtained from them.

The reader may reply that there is certainly something huge about a countable infinity, e.g., of 
the positive integers.  To which we might reply, but this something huge can be represented by 
only a few symbols.  (We can write a short computer program that, in principle, can generate all 
the positive integers.)

Is there — should there be — can there be — a “Theory of Everything” in mathematics?  If so, 
wouldn’t it be an encoding of something?  Of what?  Or are we ultimately trying to fill in “bins” 
— the 2 bin (containing everything that equals 2), the 3 bin (containing everything that equals 
3),..., the true bin (containing all true statements), the false bin (containing all false statements), 
..., the equals bin (containing all equalities), the non-equals bin (containing all inequalities) ... so 
that when we are done, we will be able to look up anything? 

1. Obviously, “types” and “properties” are the same thing, but it is sometimes helpful to have the two sets 
side-by-side.
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Gödel’s First Incompleteness Theorem
 Gödel’s first Incompleteness Theorem (1930) states:  “There are (first-order) statements

 about the natural numbers that can be neither proved nor disproved from Peano’s axioms.”1

Gödel’s proof involves first creating a means of encoding all first-order statements, then 
showing that one such statement says, in effect, “This statement cannot be proved.”  If the state-
ment could in fact be proved, that would be a contradiction, and so the only way to avoid the con-
tradiction is by accepting the statement as true.

Popularizations of mathematics  sometimes give readers the impression that Gödel’s long, 
ingenious proof is necessary to prove that there exist mathematical truths that cannot be proved.  
However, that is not true.  It is easy to prove that there are mathematical truths that cannot be 
proved.   Here is one such proof:

1. The set of all subsets of the real numbers is an uncountable set.

2. Therefore, since there is only a countably infinite number of proofs, there are “many” truths 
concerning set membership that cannot be proved.  (In fact there are “many” truths that can’t even 
be written down, because we can’t even write down “most” irrational numbers!) 

A counterargument to this proof is given below in this sub-section, along with my reply.

I have never seen any mention, in histories of mathematics covering the early part of the 20th 
century, that this, or a similar, proof, was used to prove that there are mathematical truths which 
are not provable. Hilbert, prior to Gödel’s incompleteness theorems, believed that all mathemati-
cal truths were provable.  Why did the above simple countability proof not occur to him, espe-
cially since a similar countability argument was used by Cantor in the latter part of the 19th 
century to prove that “most” real numbers are transcendental, not algebraic?  (An algebraic num-
ber is one that is a solution of a polynomial equation with integer coefficients.)  Is it really possi-
ble that, after Cantor’s proof, mathematicians did not immediately see that a similar countability 
argument could be used to prove that there are unprovable mathematical truths?  An answer to 
these questions is the following:

“There is a common misconception that Gödel’s theorem tells us that there are ‘unprovable 
mathematical propositions’, and that this implies that there are regions of the ‘Platonic world’ of 
mathematical truths...that are in principle inaccessible to us.  This is very far from the conclusion 
that we should be drawing from Gödel’s theorem.  What Gödel actually tells us is that whatever 
rules of proof we have laid down beforehand, if we already accept that those rules are trustworthy 
(i.e. that they do not allow us to derive falsehoods) and are not too limited, then we are provided 
with a new means of access to certain mathematical truths that those particular rules are not pow-
erful enough to derive.” — Penrose, Roger, The Road to Reality, Alfred A. Knopf, N.Y., 2005, p. 
377.  

The above-mentioned counterargument to the above simple proof came from a reader who 
said: 

1. The Princeton Companion to Mathematics, ed. Gowers, Tim, Princeton University Press, Princeton, N.J., 
2008, p. 701.
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“This proof leaves open the possibility that:
“(1) If for any particular real number r we might have in mind;
“(2) And any set S of real numbers we might also have in mind;
“that
“(3) Our proof methods could be strong enough to prove or disprove r’s membership in S in 

the logic LA(r,S), that is, the logic of arithmetic augmented by names for the number and set we’re 
interested in.” 

My reply is simply that there is only a countable infinity of such logics LA.  But there is an 
uncountable number of truths.

Another very simple proof that there are mathematical truths that cannot be proved is the fol-
lowing.  

1. Let a, b, c be positive integers such that we, possibly with the help of a present-day com-
puter, can determine if ab – c = 0 is true or not.

2. Then if our computations reveal that ab – c = 0, we have a proof that ab = c.  If ab – c  0, 
we have a proof that ab   c.

3. But now assume that each of a´, b´, c´ is irrational.  Then a proof that a´b´= c´ is not possi-
ble by computational means, because, since irrational numbers have only infinitely-long represen-
tations which in general exhibit no patterns over their entire length, the computation would never 
end.  However, if in fact a´b´  c´, then in principle this fact would eventually be known through 
computation (successive comparison of corresponding digits of a´b´and  c´).  

We can further argue that no proof that a´b´= c´ is possible even by non-computational argu-
ments, simply because a´, b´, c´ can never be completely described by finite expressions.

However, we can definitely do computational, and other, proofs for finite approximations to 
a´, b´, and c´.

In passing, we note that, if a´ is an irrational number, where 0  a´ < 1, and if the decimal 
digit j appears n consecutive times in the decimal representation of a´, then in principle we can 
determine that fact by testing consecutive digits in the decimal representation.  But if j does not 
appear n consecutive times in the decimal representation  of a´, we can never determine that by 
testing. (Can we say that we cannot prove that  j does not appear n consecutive times in the deci-
mal representation  of a´?) 

Toward a Possible Proof of the Twin Prime Conjecture
The Twin Prime Conjecture asserts that there are infinitely many pairs of prime numbers that 

differ by 2 (for example 3 and 5, or 11 and 13).  The Conjecture is hitherto unproved.  
At the time of this writing (March 17, 2025) the largest known twin primes are 

2996863034895 * 2^1290000 – 1 and 2996863034895 * 2^1290000 + 1 (Google).

Possible Proof
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1.It is possible that the Conjecture is true.  (If this were not possible, then the Conjecture 
would be false.)

If the Conjecture is true, then there is an infinity of primes p such that p + 2 = q, and q is 
prime.

2. Now whether or not the Conjecture is true, each prime p has a unique location in the list of 
successively increasing positive integers.  Thus, e.g., 3 is located between 2 and 4, 5 is located 
between 4 and 6, 7 is located between 6 and 8, 11 is located between 10 and 12, etc. 

3. However, if the Conjecture is false, an infinity of the primes q that make the Conjecture 
true, do not do so.  This means that these primes q do not occupy the places p + 2 that make the 
Conjecture true.

4. But by step 2,  each prime q has a unique location. Its place cannot be changed and occu-
pied by a composite integer.

We conclude that, although it is possible for the Conjecture to be true, it is not possible for the 
Conjecture to be false, hence the Conjecture is true.

A Proof of the Pythagorean Theorem Using Trigonometric Functions
In January 2025, 60 Minutes rebroadcast a segment that had apparently first been broadcast 

around May 5, 2024.  It was an interview with two high-school students at St. Mary’s Academy, 
New Orleans,  Ne’kiya Jackson and Calcea Johnson.  They claimed to have discovered a proof of 
the well-known Pythagorean Theorem,  using trigonometric functions.   Mathematicians had 
apparently agreed with their claim. The Theorem asserts that if a and b are the lengths of the two 
legs of a right triangle, and c is the length of the hypotenuse, then a2 + b2 = c2. The Theorem was 
first stated, and proved, in the early 500s BC, but no proof using trigonometric functions had been 
discovered until Jason Zimba discovered one in 2009, by which time some 300 proofs of the The-
orem were known.

We discovered one on October 5, 2022, but thinking that very many had been discovered by 
then, we made no attempt to publicize it. Our proof is presented below.

Unfortunately, an incompetent consultant destroyed the graphics functionality of our 
FrameMaker 11 word-processor.  No repair is possible, and the word-processor cannot be 
replaced, because of its obsolescence.  The result is that we must present our proof in words and 
symbols alone, i.e., with no drawings.  But any reader with a pencil and paper should have no dif-
ficulty creating the simple two drawings that are all that are needed.  We remind the reader that 
the expression “angle (ABC)” always denotes an angle having AB and CB as the two sides.

The Proof

1. Let ABC be any right triangle, where:

The leg with endpoints A, B is horizontal, with endpoint A on the left.
     This leg is of length a.
The leg with endpoints B, C is vertical, with C above B.
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     This leg is of length h
Angle ABC is a right angle.
The hypotenuse’s endpoints are A, C.
      The hypotenuse is of length d.

2. The leg AB is extended horizontally to the right to a point D such that angle ACD is 
      a right angle.
      The length of the leg BD is b.
      The length of the hypotenuse CD is c.

      Angle ACB = angle CDB because 
      AC is perpendicular to CD and 
      CD is perpendicular to AD (the angles are  equal by a basic trigonometric fact)

3. Now tan(angle ACB) = a/h
    and
    tan(angle CDB) = h/b
   Therefore, since the two angles are equal, by step 3:

    a/h = h/b which implies h2 = ab.                   (1)

4. Now sin(ACB) = a/d;
             sin (CDB) = h/c;
             sin (CDB) = d/a + b;

and since, by step 2, the two angles ACB and CDB are equal.

     a/d = h/c = d/(a + b), which implies
     a(a + b) = d2 which implies
     a2 + ab = d2.                                               (2)

5. And since 

     h2 = ab                                                       (1)

and

     a2 + ab = d2                                                        (2)

we have, in our original triangle ABC, 

     a2 + h2 = d2                         (2)

and hence a proof of the Pythagorean Theorem using trigonometric functions. 

The Real Numbers
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On the Number of Numbers in a Short Line vs. in a Longer Line 
Surveys of mathematics sometimes include a diagram showing concentric circles with a 

straight line having one end at the center of the two circles and intersecting  the circles, one of 
which is of course larger than the other.

The text then has words to the effect that the diagram shows that there are the same number of 
points in the smaller circle as there are in the larger.

But what the diagram actually shows is that there are the same number of degrees (radians) in 
a smaller circle as there are in a larger.

For example, in all circles there are 360 degrees (2 radians); and 180 degrees ( radians) and 
90 degrees (/2 radians) and in general all numbers of degrees from zero through 360.

The formula is:  (no. of degrees)/180 = (no. of radians)/ .  And so the number of radians in 30 
degrees is (30 ( ))/180 =  /6 radians.

A Note About the Following Sub-Sections On the Irrationals
After the following sub-sections on the irrationals were written, a mathematic ian informed 

me that most of those mathematicians who deny the existence of the irrationals do so for two rea-
sons:  (1) they deny the legitimacy of infinite processes, e.g., limits, and (2) they deny the legiti-
macy of completed infinites, e.g., the set of all rationals, the set of all reals.  

When asked what the deniers believe that the traditional proof that  is irrational shows, he 
said they believe only that the proof shows that  is not rational.  When asked what the deniers 
believe that Lambert proved in 1761 when he proved that is irrational, he said they believe that 
a number must be known to exist before it can be proved to have any property, and since is 
defined by a limit argument, for the deniers it has no claim to existence.

We Can Write Down All the Reals (In a Sense)
In Greg Chaitin’s Meta Math! The Quest for Omega1 the reader will find an interesting discus-

sion of some of the consequences of the fact that “most” real numbers cannot even be written 
down.  “Why should I believe in a real number if I can’t calculate it, if I can’t prove what its bits 
are, and if I can’t even refer to it?” (p. 97).  (Chaitin is the discoverer of algorithmic information 
theory.)  His question suggests that perhaps Gauss was right in his refusal to countenance the 
completed infinite, e.g., the set of rational numbers, the set of real numbers, etc.  If we limit our-
selves to decimal numbers that have finite but arbitrarily long decimal representations, then Chai-
tin could, in principle, always calculate with these numbers, and could always prove what their 
bits are, and could always refer to them.

Dialogue 1:
A: “You can’t write down all the real decimal numbers!”  
B: “Yes, I can: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.”  
A: “But those aren’t all the real decimal numbers!” 
B: “Then tell me a real number that does not begin with one of those digits.”  
A: “That’s not the point.  You haven’t written down sufficiently many digits.”
[B now writes down the hundred possible pairs of decimal digits.]
B: “How’s that?  Is there a real number that doesn’t begin with a pair in that set of a hundred?”
A: “Well, of course not, but...”

1. Vintage Books, N.Y., 2005.

2
2
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When we learn that the rationals constitute a countable infinity of numbers, but that the reals 
constitute an uncountable infinity, we may conclude that it is impossible even to lay hold of most 
of these reals.  We may imagine them as infinite strings written in unknown symbols and floating 
in a vast, dark void — as though the void were populated by uncountably many unrelated entities: 
shoes, ships, sealing wax, cabbages, kings, Swiss Army knives, moon rocks, kitchen towels, but-
terfly wings, ...  But a key difference between such a conglomeration and the reals is that with the 
former there is no obvious way to tell how much any two differ from each other, whereas in the 
latter case there is.

There are far too many reals to place in a single list, or finite set of lists, or a countable infinity 
of lists, since, as we know, all these lists have only a countable infinity of numbers. But the above 
dialogue suggests that this view is wrong.  We can lay hold of the beginnings of all the reals, no 
matter how long we choose those beginnings to be.  We can refer to them, determine their repre-
sentation in bits, and calculate with them (see “A Remarkable Fact About Adding and Subtracting 
Irrationals” on page 100).

The argument that, in principle, we can write down any rational number, but, in principle, we 
can never write down an irrational number needs to be looked at more closely.  Surely at any 
given time, there are rationals — in fact, integers! — that cannot be written down simply because 
to write any one of them down would require more computer memory than exists in all the com-
puters in the world at any given time.  For example, consider the set S of all integers each of 
which, r, expressed in binary digits, is random, meaning, according to algorithmic information 
theory, that the shortest program needed to write down r is essentially as long as r is itself.  Now 
consider the subset S1 of S such that the length of each element r of  S1 is, say, greater than a bil-
lion times the number of atoms in the universe. It seems to me legitimate to say that, although 
each such r is an integer, it cannot be written down.

But the same applies to our successive approximations to the reals.  So, exaggerating only 
slightly, as far as basic arithmetic is concerned, as long as there is a physical limit to the size of 
integers we can write down, then there is no difference between rationals and irrationals. 

An Argument Against the Claim that Irrationals Do Not Exist
Dialogue 2

A: “Tell me something that doesn’t exist.”
B: “Well, a real number that is the square root of – 1.”
A: “Can you give me the first few digits of that number?”
B: “Of course not.  It doesn’t exist!”

A: “Tell me something else that doesn’t exist.”
B: “Well, the integer that lies between 0 and 1.”
A: “Can you give me the first few digits of that integer?”
B: “Of course not.  It doesn't exist!”

A: “Tell me something else that doesn’t exist.”
B: “Well, any non-computable irrational number1.”
A: “Can you give me the first few digits of any non-computable irrational number?”
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B: “Sure!  Let T be an infinitely deep, ten-ary tree.   Each branch is labeled 0, 1, 2, ..., 9, which 
is also the label of the node at the end of each branch. Let the root of the tree represent the 
decimal point.   
“For any positive integer n, I can give you a finite set of all sequences of n decimal digits.  
This set will contain all the sequences that are the first n digits of any irrational number.”

A:  “Do you mean any arbitrarily large n?”
B: “Sure!.”
A: “Well, I am impressed by your ability to approximate something that doesn't exist with 

such accuracy — in fact with unlimited accuracy!”

Question: suppose s is an infinitely long string of decimal digits.  How many real numbers 
does it (or can it) represent?  Answer: a countably infinite number, because there is one real num-
ber for each possible position of the decimal point in the string.

A Proof That Irrationals Exist
Note: This proof would not be accepted by finitists, since it contains infinitely-long paths.
Before I begin, I must put the question to those who don’t believe that irrationals exist: “What 

do you think  and e, the base of the natural logarithms, are if not irrational, as they were proved 
to be long ago?”

Proof:
1. Let T be an infinite ten-ary tree.  The root node is the decimal point. Descending from each 

node are 10 branches labeled 0, 1, 2, 3, …, 9.  Each branch ends in a node.  Level n, where n  0, 
in the tree is the set of all paths from the root that are of length n.  Each such path represents a dec-
imal number of n digits. 

2. Now let S denote the set of all infinite paths in the tree.  We ask if the set is countable or 
uncountable.  We now apply Cantor’s reasoning.  Assume countable.  Then it is possible to make 
a list of all the infinite paths.  Let L be any such list.  But we can go down through that list chang-
ing the ith digit in the ith path to a different digit.  But then the resulting path cannot be in the list.  
So the number of infinite paths is uncountably infinite.  But the number of rationals is countably 
infinite.  So numbers other than rationals exist.  These numbers are represented by infinite paths 
of decimal digits, each path having the property that no finite sequence of digits in it repeats 
indefinitely.  . We can call them irrationals. 

An Irrational Need Not Be a Single Infinitely Long Decimal Number!
Perhaps the deniers of the existence of irrationals are simply denying the existence of (deci-

mal) numbers consisting of an infinite number of digits.  Suppose that an irrational is simply an 
infinite sequence of increasingly-long prefixes having the property that no finite sequence of dig-
its is repeated infinitely often in this infinite sequence of prefixes.

But if this is what the deniers have in mind, then they must also deny the existence of ratio-
nals, since each proper fraction, represented as a decimal, has an infinite number of digits.  For 
example 1/7 = 0.142857..., where “...” consists of 142857 repeated infinitely often. The deniers 

1. A computable irrational is, for example, since closed-form expressions for it exist.
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can, of course, argue that the decimal representation of each rational consists of an infinite 
sequence of increasingly-long prefixes...

Perhaps the deniers will argue that each rational has a finite representation a/b, in addition to 
its infinite decimal represent.  But so do at least some irrationals.  For example,  is a finite rep-
resentation of an irrational.  If someone were to ask us, “What does that representation denote?”, 
we would reply, “A number that, when multiplied by itself, yields 2.  Furthermore, that number is 
the length of the hypotenuse of a right triangle whose two sides are length 1.”  

A Program That Generates All the Irrationals
Chaitin points out somewhere that a short program can be written that, in principle, will gen-

erate all the non-negative integers, 0, 1, 2, 3, ...  Similarly, a short program can be written that, in 
principle, will generate all the reals, including the irrationals, between 0 and 1.  It can work as fol-
lows. Assume the root of the ten-ary tree described in “Dialogue 2”  is unlabeled.  The ten 
branches from the root are labeled 0, 1, 2, ..., 9.  Then:

1.The program first generates, and stores, all paths of length 1.
2. It then generates, and stores, all paths of length 2, doing this by extending each path of 

length 1 by ten branches, each labeled 0, 1, 2,...,9.
3. It then generates, and stores, all paths of length 3, etc.

In the limit, the program generates paths representing all the reals from 0 to 1.  

Chaitin remarks, regarding his program that generates the positive integers, that it is possible 
to find, for arbitrarily large m, an m-bit integer that requires a program at least as long as m bits to 
generate it and it alone.  There is an infinity of cases where m will have more bits than the number 
of bits in the program that generates, in principle, all the integers!  It seems strange that the whole 
(the set of all non-negative integers) should be “less than” (require a smaller program to generate 
it) than just one of its parts.  

Similarly, a short program can, in principle, generate all m-digit strings of decimal digits, 
where m is small enough to allow all the strings to be stored in computer memory. We may regard 
each such string as the m-digit prefix of a real number, regardless whether the number is rational 
or irrational.  

We could legislate an upper bound on the length of all decimal numbers used in mathematics 
or anywhere else, based on our current computing capacity.  “Each decimal number must be less 
than a million digits long!” And then we could always raise this bound as our computing capacity 
increased. 

There is a world of difference between finite,  finite but arbitrarily long, and infinite!  Select a 
positive integer.  The number of its prime factors always was and always will be a fixed, finite 
number.  But every finite string of decimal digits can be extended to any length our computing 
facilities allow.

The Reals are Consecutive (In a Sense)
Mathematics students learn early in their studies what a “sequence” is. Thus, e.g., the positive 

integers form a sequence.  A fundamental characteristic of a sequence is that there is exactly one 
term — a “next” term —  following each term except in the case of the last term of a finite 

2
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sequence.  Students learn that the rationals and the irrationals, on the other hand, do not form a 
sequence because, e.g., given a rational a/b, there is no next rational.

But there is a way in which the rationals and the irrationals can be made elements of a 
sequence, and it derives from the material in the previous sub-section.  Consider the infinite ten-
ary tree in which the nodes at level 1 are labelled 0, 1, 2, 3, ..., 9.  Each of these nodes has ten 
branches, the ends of which are nodes labelled 0, 1, 2, 3, ..., 9.  These nodes are at level 2.  Etc. A 
number in the interval [0, 1] is given by a finite sequence of nodes traversed downward through 
the tree.  Thus, e.g., 107752 corresponds to a path, downward through the tree, that corresponds to 
the number 0.107752.  

Then for any positive integer n, we can let Sn be the set of all downward paths of length n in 
the tree.  This set corresponds to the set of n-digit numbers in [0, 1].  These numbers can be 
ordered sequentially in accordance with their magnitude.  Thus, for any n, we can speak of the 
next n-digit real number.

A Naive Thought About the Binomial Theorem
First-year college math students are taught the Binomial Theorem, which for each expression 

(a + b)n,  where a, b, n are integers, with n positive, gives a polynomial whose coefficients are the 
elements of the nth row in Pascal’s triangle.  The proof is by straightforward induction.  The stu-
dents may also be taught that if n is rational, i.e., n = r/s, then there is an infinite series represent-
ing (a + b)n. 

As we contemplate both cases of the Theorem, the thought might suddenly occur to us, “Why 
do we make such a big deal out of the sum of two integers raised to a power?  The sum is an inte-
ger, and every pocket calculator contains a button that gives yx for any real y, x.  It is true that, for 
non-integer x, the result is only an approximation, but if we need greater accuracy, we can just buy 
a better calculator, or use a full-fledged computer.  

We may also observe that each xy, where y is an integer, is really a finite set of binomials 
raised to the yth power, the set being (1 + (x – 1))n, (2 + (x – 2))n, (3 + (x – 3))n, ... , (x + (x – x))n. 
It would seem that, although the elements of Pascal’s triangle are the same in all these cases, the 
values of the terms mi(x – m)j, where i + j = n, differ.  Is that possible? If so, then how can all of 
the polynomials have the same value, as they must?

Is there a Trinomial Theorem, and a Quadrinomial Theorem, and a Quintinomial Theorem, 
and ...?

A Minor Problem Concerning the Nature of Number
We know, if we are students of modern logic, that a number n (where here n is a positive inte-

ger) is the set of all sets that have a one-one match with a set containing n elements.  Suppose n = 
3.  How can we be sure that a collection of things contains three elements?  Suppose the things are 
so close together that even under our highest power of magnification, they look like one thing?  
Suppose they are so far apart that we don’t even know they constitute three things?  It would seem 
that we cannot legitimately ask for a list of all sets containing n elements.  

The Concept of “Nice”
“Often, when we are studying a subject, we come across theorems which, in  essence, say that, 

in such-and-such circumstances, things go as we would like them to go; in other words, things 
exhibit “nice” behavior.  For example, if a function is commutative, e.g., if  f(a, b) = f(b, a) for all 
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a, b, that might be considered a “nice” property of the function; if the product of a finite set of 
topological spaces retains a property which each of the spaces has, that might be considered a 
“nice” property of the product; if a function called a “sum” behaves in a way analogous to the way 
the arithmetic sum behaves — e.g., the “sum” of a, b  is always “at least as large” as the larger of 
a and b — then that might be considered a “nice” property of the sum.

“Then we may ask of a given subject, how much of the entire subject is “nice”, and how much 
isn’t?  If we could make this concept more precise, then, it seems, our job as students — as users 
— of the subject, would be made much easier, in that we would know a great deal more about the 
subject at the start, with much less effort. “  — Curtis, William, How to Improve Your Math 
Grades

Let me give a more extended example.  Let us assume that a graduate student needs to quickly 
get an idea of the main concepts in the subject of algebraic topology because someone has told 
him that this subject might be useful in helping him to solve an important problem in his PhD 
thesis.  He finds another graduate student who knows something about the subject, and asks him 
to give him a briefing.  The other says he is very busy, but he’ll be glad to talk to him during a 
walk across campus to his next class.  The second graduate student then begins as follows:

“OK, so a fundamental problem in topology is telling if two spaces are homeomorphic — you 
know: can one of them be deformed into the other without gluing or tearing. To use the standard 
example, a coffee cup and a donut are homeomorphic, because you can deform a coffee cup into a 
donut, and vice versa. (Think of them as being made of modeling clay.)

“Well, there are various techniques for solving this fundamental problem of telling if two 
spaces are homeomorphic. And one of them was discovered, or rather glimpsed, at the end of the 
19th century by several mathematicans, including Betti and Poincaré.  And the basic idea is this: 
suppose you’ve got these two topological spaces.  And they’re really complicated, and 
furthermore they’re not merely complicated three-dimensional objects, but n-dimensional objects, 
where n is much larger than three.  You want to find out if the spaces are homeomorphic. So what 
these early mathematicians found is this:

“You can use lines, triangles, tetrahedrons, and their higher dimensional analogues as building 
blocks of each space. These can be thought of as being “minimal” building blocks because in each 
case they are made from the minimum number of points you can have to get an object of the 
specified dimension.  In other words, speaking informally, two points is the minimum number of 
points you can have and still make a line; three points is the minimum number of points you can 
have and still make a two-dimensional object (a triangle), and four points is the minimum number 
of points you can have and still make a three-dimensional object (a tetrahedron).  Etc.

“Then, for each dimension in each of the spaces, you can ‘cover’ (I am using the term 
informally here) the space in that dimension using the corresponding building blocks.  So,  in the 
second dimension you can cover the space with triangles, in the third dimension you can cover it 
with tetrahedrons, etc.  OK?

“Now you can assign an orientation — clockwise or counterclockwise — to all the building 
blocks in each of the dimensions.  In the line case, an orientation establishes in which direction 
you are to move down the line; in the triangle case, an orientation establishes if you go around the 
sides clockwise or counterclockwise.  In the tetrahedron case, an orientation establishes if you go 
around all the triangles in the one direction or the other.

“Now once you’ve got an orientation assigned, you’ve got all you need to start talking in 
terms of groups.
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“And from these groups you can make other groups, so that you wind up with a special group 
for each dimension (it’s called a homology group).

“Now here’s the payoff: these homology groups are topologically invariant.  What does that 
mean?  It means that if the two spaces are homeomorphic, then the homology groups at each 
dimension are isomorphic.  Or, to turn that around (using the contrapositive) what you can say is 
that if the groups are not isomorphic at any one or more dimensions, then the spaces cannot be 
homeomorphic.  Neat, huh?

“Now, things turn out to be pretty much nice from here on.  I mean you can generalize up from 
triangles and tetrahedrons and their higher dimensional analogues to cells and even more abstract 
things.  And, let’s see, you can make other groups out of the homology groups — e.g., you can 
make what are called cohomology groups.  And, there are nice mappings (homomorphisms, 
naturally, since we’re in an algebraic world here) connecting all this stuff.  And some of these 
mappings yield or induce other mappings in a nice way.  And if you take the product of several 
spaces, these products behave nicely in many cases.  Etc.

“So that’s pretty much it.  Which is not to say that all the proofs are easy, of course.  But that’s 
the Big Picture.”

If, at the conclusion of this informal explanation, the second graduate student were to hand to 
the first student a Venn-diagram-like map showing the various subsets of complexes and groups 
encountered  in algebraic topology — singular complexes, simplicial complexes, chain 
complexes, ..., chain groups, homology groups, cohomology groups,... — the first graduate 
student would have obtained, in a matter of minutes, a view of the subject which would have 
taken him hours if not days or weeks to obtain from a textbook alone.  Perhaps the concept of nice 
can be made more precise.  I don’t know.  But even in the form presented by the above examples, 
it would seem to be enormously useful in shortening the amount of time required to obtain a 
certain kind of basic understanding of a subject.

A Tally of the Uses of Mathematical Subjects
An ongoing tally of all the actual instances of use of each mathematical subject, and important 

equations, formulas, lemmas, and theorems in each subject, would be of interest, I think, not only 
to students but to a few professionals as well.  Suppose one could get a histogram of calculations 
made, throughout the world, using Maxwell’s equations over the past month?  Of applications of 
Dirichlet’s integral?  Of Rolle’s Theorem?  Of the Hardy-Weinberg equation?

The Essence of Mathematics...
Sometimes I think that ultimately, mathematics boils down to nothing more than a collection 

of complicated ways of saying, “This is a that.”

Algebra
 Is Transcendental But...

It was proved at the end of the 19th century that is a transcendental number, i.e., a number 
that is not the solution to any algebraic equation.  But how can this be, given that  is the solution 
of the algebraic equation, x -  = 0?  (Answer: by definition, the coefficients of an algebraic equa-
tion are rational numbers only.)
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What, if anything, of interest can be said about the set of polynomials all of whose coeffi-
cients are transcendental numbers?  Or the set some of whose exponents are transcendental num-
bers?

Cataloging All the Polynomials
The general form of an algebraic equation (in one variable) is:

where the ci are complex  numbers.  Suppose we were librarians working in a library that stored 
nothing but polynomials, i.e., nothing but the left-hand sides of such equations.  How might we go 
about cataloging these polynomials?  One answer might be: “Lexicographically”, meaning, in this 
case: put the one-term polynomials (monomials) first, then the two-term polynomials (binomials) 
next, then the three-term polynomials (trinomials) next, etc.  For each type of polynomial, we 
might then order the polynomials by coefficients, treating each sequence of coefficients in a given 
polynomial of degree n as an (n + 1)-digit number in an infinite number system.  (Each coefficient 
in the polynomial is one digit of the number.) 

Although this cataloging scheme seems easy to understand, it leaves us with the problem that 
each kind of polynomial has an infinite, in fact, an uncountably infinite number of instances.

The thought may now occur to us that we can dispense with the division of the set of polyno-
mials into monomials, binomials, trinomials, etc., and instead consider them all as n-nomials for 
some sufficiently large n to suit our purposes.  Monomials are then simply n-nomials having 0 as 
coefficients for all terms except the first; binomials are simply n-nomials having 0 as coefficients 
for all terms except the first and second, etc.

Let us generalize.  For each k  0, and for each n  0, there exists an infinite set of expressions,

where ci, 1  i   n,  is a complex number, and no two terms are symbolically identical. There is 
no requirement that the sum of the exponents in each term of a given expression equal a fixed 
number, e.g., n. If each xi can be any complex number, then each expression can be regarded as 
defining a point in a complex-number space, where the coordinates of the point are the values of 
ci, the xi, and the .  Clearly, any set of forms, and any set of traditional, single-variable polyno-
mials, is a subset of the set of expressions we have defined.

What good is all this? you ask.  Well, our cataloging scheme — our system of “points” —  
enables us to assign a value to any given point (namely, the value of the expression defined by the 
coordinates of the point), and then, thereafter, if we want to find the value of another expression, 
we can find it by “getting to it” via appropriate changes in the coordinates. “If you know the value 
here, and you want to find the value there, why, then, you need to do only the additional calcula-
tion required, and not start from scratch.”  (See also “A Thought on Differential Equations” on 
page 112.)

As far as coefficients are concerned, we can summarize our idea by saying, “A coefficient is 
simply an index of a point.”

c0xn c1xn 1– c2xn 2–  cn 1– x cn+ + + + + 0=

c1x1

u11x2

u21xk

uk1 c2x1

u12x2

u22xk

uk2  cnx1

u1nx2

u2nxk

ukn+ + +

uij
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Toward Possible New Proofs of the Fundamental Theorem of Algebra
The Fundamental Theorem of Algebra (FTA) states that a polynomial with coefficients that 

are complex numbers has all its roots in the complex field1.

Toward Possible New Proof 1
1. Assume that the FTA is false. Then there exists an n-th degree polynomial P(x) = anxn + 

an–1xn–1 + ... + a0  such that all coefficients are complex, but such that no root is complex. 

2. By Vieta’s formulas, 

(1)
 x1 + x2 + ... + xn = – an–1/an, 

where the xi are all the roots.  But by assumption, none of the xi  is complex, and so the com-
plex number on the right-hand side of (1) is equal to a sum of non-complex numbers.

But if we add (1) to itself, we have, on the right-hand side of the resulting equation — call the 
equation (2) —  a complex number, since, because the complex numbers are a field, they are 
closed under addition.

However, the left-hand side of  (2), being the sum of non-complex numbers only, cannot be a 
complex number. This impossibility implies that our assumption was false and that FTA is true.

.
Toward Possible New Proof 2

1. For each sequence of the n coefficients (all of them complex) in each nth-degree polyno-
mial P(x) (the sequence running from left to right), where n there exists an nth-degree poly-
nomial having the coefficients as roots.

Proof: if r1, r2, ..., rn are the coefficients, then the polynomial is (x – r1)(x – r2)...(x – rn).

2. Let S denote the set of all pairs <P, Q> where P is a polynomial with complex coefficients, 
and Q is the polynomial whose roots are the coefficients of P.

3. Assume to the contrary that there exists a polynomial Q at least one of whose roots is not a 
complex number.  But then there must exist a polynomial P, in the pair <P, Q>,  at least one of 
whose coefficients is not complex.  But this is contrary to our definition of each P as a polynomial 
all of whose coefficients are complex.  Therefore we have a contradiction that implies FTA is true.

Determinants
Determinants are an example of a simple representation (numbers in rows and columns form-

ing a rectangle) but complicated, or at least tedious, rules for evaluation.  Can each such case be 
converted into simple rules for evaluation at the cost of a complicated representation?

1. Herstein, I. N., Topics in Algebra, John Wiley & Sons, N.Y., p. 337.
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On Investigating “How Abelian” (Commutative) a Finite Group Is
Soon after students begin their study of group theory, they are introduced to the type of group 

known as “abelian”.  This is a group in which all elements commute with each other, that is, for 
all a, b in the group, it is the case that a • b = b • a.

It is natural for students with the gift of idle curiosity to wonder if there is a way of determin-
ing, for any non-abelian group — or at least for any finite non-abelian group —  just how “abe-
lian” the group is, meaning, just how many pairs of elements do in fact commute with each other.  
The students know that there are always some elements of each group that commute with each 
other, namely, by definition, each element and its inverse, since for all elements a of a group, we 
have a • a–1 = a–1• a = e, the identity element.

Students also learn, early in their study of groups, that sets have been defined that are directly 
related to the commutative property: the centralizer of an element a is defined to be the set of all 
elements of the group that commute with a.  Similarly, one can speak of the centralizer of a set of 
elements.  The center of a group is the set of elements that commute with all elements of the 
group.  (Clearly, if the center of a group is the group itself, then the group is abelian.)

But the student may feel that these definitions are too limited.  The student may want to think 
in terms of all the subsets of the group and ask of each, Are all the elements in this set commuta-
tive?  

How can we organize an answer to the student’s question?
Well, we can begin with the set of all subsets of the group.  We know from elementary set the-

ory that if the group has n elements, then the number of subsets is 2n.   We can arrange these into:

all subsets consisting of just one element;
all subsets consisting of just two elements;
all subsets consisting of just three elements; ...;
all subsets consisting of n elements, where n is the number of elements (i.e., the order) of the 

group.

We can now associate with each subset, the term S(u, r, s, t), where u is a list of the elements 
of the subset, r denotes the number of elements in the subset, s = 1 if all the elements commute, 0 
if not, and t = 1 if the subset is a subgroup, 0 if not (we know that if e is not an element of the sub-
set, then the subset cannot be a subgroup).

It might be of interest to use the computer to generate all S terms for as many finite groups of 
increasing size, beginning with 1, as computer resources allow.  Perhaps from these S’s, we may 
learn something new about the nature of groups.

Toward a Poor Man’s Proof That There Are No General Formulas in Radicals for the Roots 
of Algebraic Equations Beyond Degree 4

It is sometimes a good exercise to ask of some major mathematical problem that was solved in 
the past, “How would I have thought about solving this problem?”  The question becomes more 
interesting if you still do not fully understand the solution that eventually was arrived at.  The 
point of the exercise is not to discover a previously unthought-of solution to the problem, nor is 
the point to test to see if you are at least intelligent enough to re-discover what the mathematicians 
of that earlier time discovered.  The point is simply to investigate your own thinking processes.
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Take, for example, the theorem that was proved by Abel in 1830 that, for each n greater than 
4, there does not exist a general solution in radicals to algebraic equations of degree n.  We imag-
ine that we are living in the early 1800s, and the mathematical world, or at least part of it, is 
talking about a proof of whether such general formula is possible for degree 5 and higher.  Hoping 
to make a name for ourselves, we might begin reasoning as follows. 

Initial Thoughts
Clearly there are some general solutions to subsets of all equations of degree n, where n is 

greater than 4.  For example, 1 is a solution of every equation xn – xn–1 + ... + x2 – x = 0 for n even. 
And for each prime p 5, each of the p pth roots of unity is a solution of the equation xp – 1 = 0.

We must remember that all we have to do is show that, for each n  5, there is just one case for 
which a general formula in radicals could not apply.  So that suggests a proof by contradiction in 
which we assume a general formula, and then show that it will not work in one case for each n 
5.  

Why Does the Quadratic Formula Always Work?
In high school we learned that the two roots of any quadratic equation, ax2 + bx + c = 0 are 

given by:

We also learn the derivation of this formula by the process called “completing the square”.  
But even though the derivation is correct, we might be curious as to how that formula always 

gives exactly 0 when it is plugged into the quadratic equation — no matter what the coefficients a, 
b, c may be: rational, irrational, or complex numbers.  So let us plug the formula into the equation 
and see how things work out.  We have on the left-hand side of the equation (considering just the 
positive square root for now):

or

We want to see if this equals zero, no matter what the coefficients are, and no matter what the 
square root terms are: rational, irrational, or complex numbers. Expanding the squared term, we 
get:
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(1)

We see that the first and third terms minus the fifth term of (1) gives us 0.  That is:

Next, we see that the fourth term and the last term of (1) likewise give us 0.  That is

And finally, we see that the second and the sixth terms of (1) give us 0.  That is:

And thus we have shown that expression (1) = 0, which was our goal.
We should not hesitate to regard this result as rather remarkable — it applies regardless what 

kinds of numbers — rational, irrational, complex — happen to be involved.  
By rights, we should carry out the same process that we just did on quadratic equations, on 

degree 3 and degree 4 equations.  The calculations would be more complex, as the reader can see 
by looking at the general formula for degree 3 equations in “Appendix B — General Formulas in 
Radicals for Solution of Equations of Degree 1 Through 3” on page 141.  Until we complete those 
calculations, let us consider an assumed degree 5 general formula.

A Look At An Assumed Degree 5 Formula in Action
Let us assume that a general formula to solve degree 5 equations could be written in the bino-

mial form  u + v for each root, that is, that each of the five roots could be expressed as u1 + v1, u2 
+ v2, ..., u5 + v5,  where  , and  wi  ri

5. This is a reasonable assumption considering the 
general formulas for the degree 2 and degree 3 cases (see “Appendix B — General Formulas in 
Radicals for Solution of Equations of Degree 1 Through 3” on page 141). So the degree 5 equa-
tion could be written:

(2)

The following table represents the expansion of some of the terms of (2) according to the 
binomial theorem: (Pascal’s triangle):

a
b

2

4a
2

-------- 2ab
b

2
4ac–

4a
2

------------------------- a
b

2

4a
2

-------- a
4ac

4a
2

---------– 
 + +–

b
2

–
2a
-------- b b

2
4ac–

2a
----------------------------+ c+ +

b
2

4a
------ b

2

4a
------ b

2

2a
------–+ 0=

a
4ac

4a
2

---------– 
  c+ 0=

2– ab
b

2
4ac–

4a
2

------------------------- b b
2

4ac–
2a

----------------------------+ 0=

ui wi
5=

ui vi+ 5 a1 ui vi+ 4 a2 ui vi+ 3 a3 ui vi+ 2 a4 ui vi+  a5+ + + + + 0=
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Now we ask: if uk and ukare incommensurable (see next sub-section) when k  k, then is it 
possible that the sum of the terms in each uk column in the above table can equal zero?  If the 
answer is no for just one set of coefficients a1, a2, a3, and a4, then we have a proof that a general 
solution in radicals is impossible for degree 5.  

The Problem of Incommensurability
One thing that seems to be in our favor is the fact that for some j, k, where j k, ui

j and ui
k in 

the above table are incommensurable.  Thus if the terms in one of these powers are going to equal 
0, it will have to be a result of the arithmetic on these terms alone.  In the case of the quadratic for-
mula, we had only the first power of the square root to deal with, and these terms canceled nicely. 

We now show that, e.g., the ui
4 and the ui

3 terms in the above table are incommensurable.  
Assume the contrary.  Then there exist integers a, b, c, d such that

 a/b(wi
1/5)4 = c/d(wi

1/5)3.  

We assume that all common factors in a, b, c, d have been canceled, that a/b is in lowest terms, 
and similarly for c/d, and that all 5th powers of primes in wi have been factored out and canceled 
on both sides of the equation.  

Then raising both sides to the 5th power we get

 a5d5wi
4 = b5c5wi

3 

or

M5wi = N5

But since all 5th powers have been removed from wi, this implies that there are prime powers 
in the left-hand side that are not 5th powers, which is not possible, since all prime powers in the 
right-hand side are 5th powers.  So we conclude that wi

4/5 and wi
3/5 are incommensurable.  Infor-

mally, they cannot together yield 0, regardless of the values of a1, a2, or a3 or vi.  If our argument 

Table 1: 

ui
5 terms ui

4 terms ui
3 terms ui

2 terms ui terms

(ui + vi)
5 ui

5 5ui
4vi 10ui

3vi
2 10ui

2vi
3 5uivi

4

a1(ui + vi)
4 a1(ui

4) a1(4ui
3vi) a1(6ui

2vi
2) a1(4uivi

3)

a2(ui + vi)
3 a2(ui

3) a2(3ui
2vi) a2(3uivi

2)

a3(ui + vi)
2 a3(ui

2) a3(2uivi)

a4(ui + vi) a4(ui)
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can be made rigorous, then we have our proof that there is no general formula in radicals to solve 
degree 5 equations.

A Conversion of Polynomials That Is Related To Our Degree 5 Table
Suppose we have a polynomial f(x) = –18 + 21x – 26x2 + 22x3 –8x4 + x5.  One of the roots of 

f(x) is 2.  We can re-write f(x) in terms of (x – 2), and get f(x) = 5(x – 2) –6(x – 2)2 – 2(x – 2)3 + 
2(x – 2)4 + (x – 2)5. Observe that f(2) = 0 in each version of f(x). To check that the two versions of 
f(x) are in fact equal, we can simply expand each power of (x – 2) using the binomial theorem, 
then gather all x terms, all x2 terms, ..., and all x5 terms and observe that the sum of their coeffi-
cients for each power of x equals the coefficient for that power of x in the first version of the poly-
nomial1.

But this is precisely the technique we propose in our degree 5 table, except that there we 
attempt to show that there are coefficients that do not allow some incommensurable powers of our 
assumed radical formula for a root, to equal zero.

Vieta’s Formulas and Solutions to Polynomial Equations
Vieta’s formulas state that for each complex coefficient ai of a polynomial xn + a1xn–1 + a2xn–

2 + ... + an,  (–1)iai is the sum of all products taken i at a time of all roots of the polynomial. 
It is natural to ask if this fact can be used to solve the polynomial equation.  I have never come 

across a consideration of this question in any algebra textbook.  So I offer the following thoughts. 

 There are n equations in n unknowns, which seems encouraging.

 But we must be clear on what we are hoping to accomplish.  Given a specific polynomial 
with specific numerical coefficients, we are hoping to find numerical values for each of the roots 
xi.  This may not be possible.  But nevertheless we can make the following observations:

The number of terms in the ith equation is .

 It is easy to see that:

for each i, where 1 i n, there are n equations xi = ... ;
for each i, j, where 1 i, j n, i  j, there are n – 1 equations  xixj = ... ;
for each i, j, k, where 1 i, j, k n, i  j k, there are n – 2 equations  xixjxk = ... ;
...
for 1, 2, 3, ..., n, there is one equation x1x2...xn = (–1)an.

The nth equation isx1x2... xn = (–1)an.  If we know that all the roots are rational, then this 
implies that there exists at most a finite number of sets of possible roots of the equation. For each 
set, we can then try the roots on the equations listed in the previous dotted item, until we get an 
inequality, in which case we know that the set is not the set of roots of the equation.  If we don’t 
get an inequality, then we know we have the set of roots.  Does this strategy apply if we assume 
that at least one root is a complex number?

1. Gouvêa, Fernando Q., “Local and Global in Number Theory” in The Princeton Companion to Mathe-
maics, Princeton University Press, Princeton, N.J., 2008, p. 241.

n
i 

 
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Each equation can be represented as several inner products, all having the same value.  Are 
there known inner product facts that could help us here?

We must not forget that if, for each root xi, we multiply the ith sum by xi
n–i, where 1  i   n 

– 1, and then add xi
n and an, we get zero!

Topology
How Many Topologies?

How many possible topologies are there on a set of n elements, n ?

Topologies of Topologies
Is there anything useful to be gained by considering topologies of topologies, and if so, what? 

Very roughly, a topology defines what is “close” to what in a set of objects, e.g., numbers. A 
topology of topologies would tell which topologies are “close” to which topologies, i.e., which 
definitions of “closeness” are close to which others. 

Radical Questions About Algebraic Topology
No can deny the fundamental importance of the ideas underlying algebraic topology, specifi-

cally , the ideas underlying homotopy groups, homology groups, and cohomology groups. How-
ever, the calculation of these groups is tedious, and most of the proofs of important lemmas and 
theorems require an extraordinary amount of memorization of facts in the subject, or, at least, a 
complete index that includes an index of every term and symbol that is peculiar to the subject. 
There are many hundreds of such terms and symbols.  Two of the leading textbooks in the subject 
have no such index, and, in addition, frequently omit steps in proofs, and justifications for the 
statements that are included.  See Appendix C, “Two Notably Bad Textbooks”, in chapter 2, 
“Mathematics in the University”, in William Curtis’s How to Improve Your Math Grades, occam-
press.com.  The result is that, for virtually all students, the subject can only be learned in the class-
room, where the professor can fill in all the material that is missing from the textbooks.

Two questions that I am sure have never occurred to the authors of the above two books, or to 
the overwhelming majority of mathematicians in any subject, are 

(1) “What does the number of terms and symbols peculiar to a subject, say about the nature of 
the subject — at least about the structure of the subject?”,  and

(2) “What, if anything, can be done to significantly reduce the number of terms and symbols 
peculiar to a subject?”

Another question that must be asked is based on the following facts.  In homology theory, p-
dimensional chains are sums of functions whose domain is the set of p-dimensional simplexes 
(simplices).  In cohomology theory, p-dimensional cochains are sums of functions whose domain 
is the set of p-dimensional chains.  Does anything of value result if we continue this process of 
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successively making the functions at level n, where n  1,  become the elements of the domain of 
functions at level n + 1?

I will welcome hearing from knowledgeable readers.

Knot Theory
Is it possible to devise a computer program that could slowly “deform” a knot according to 

one or more rules?  (More precisely, we are asking for an algorithm that would always be able to 
determine if two knots are equivalent.)

  
Is it possible to devise a computer program that would act as a kind of inertial navigation 

device with a built-in recorder so that the device could travel, like a rocket, inside the tube  
(curve) defining the knot, keeping track of changes in direction and of crossings of other parts of 
the string?   Then if the records of travel for two knots were “the same”, the knots would be equiv-
alent.

Why don’t we routinely “rectify” knots — i.e., convert them into a sequence of lines parallel 
to the x, y, and z axes?  Thus, let: 

N (north) denote movement in the positive y direction;
S (south) denote movement in the negative y direction;
E (east) denote movement in the positive x direction;
W (west) denote movement in the negative x direction;
U denote movement in the positive z direction;
D (down) denote movement in the negative z direction.

Then a knot could be described by a finite sequence of the letters N, S, etc.  If each letter 
denotes a movement of length 1 unit in the given direction, then there will be sequences of letters 
that allow for a line to pass under or over or to the left or right of another line.  For example, for a 
line a traveling south to cross over a line b traveling west, the following letters represent the 
crossing by a: D,S,U,S...

Obviously, each knot would be represented by at least two sequences of letters, one for the 
“right-hand side” of the knot, the other for the “left-hand side”.

We can stipulate that two knots always begin at the same level y, and make other restrictions 
to standardize the representation of knots.

What property of the sequences would imply the knots were in fact different?

A question in elementary knot theory is: are the trefoil knot and its mirror image “the same” 
(i.e, isotopic)?  The answer is no, but the proof is not trivial.  And yet the fact is that if we turn the 
mirror image over, we get the original trefoil knot!  (Or, we could tape the mirror image knot to a 
window, and then go around to the other side of the window, and see the original knot.)  

This tactic is not allowed because the proof that two knots are isotopic must rely on continu-
ous deformations of one or both knots.  But nevertheless, it seems to me worth investigating 
whether a generalization of “going around behind the knot” might prove to be a useful proof tech-
nique in other subjects.
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A Question About the Jordan Curve Theorem
“In topology, a Jordan curve is a non-self-intersecting continuous loop in the plane...The Jor-

dan curve theorem asserts that every Jordan curve divides the plane into an ‘interior’ region 
bounded by the curve and an ‘exterior’ region containing all of the nearby and far away exterior 
points, so that any continuous path connecting a point of one region to a point of the other inter-
sects with that loop somewhere.” — “Jordan curve theorem”, Wikipedia, 8/26/16.  

The question arises, Is it possible to tell quickly if a point not lying on the curve, is in the inte-
rior region or not?  The answer is Yes, but only if the curve is simple enough.  Draw a straight line 
from the point to a point in the exterior region.  If the line crosses an even number of points on the 
curve, then the original point lies in the exterior region.  If it crosses an odd number of points, then 
it lies in the interior region.

A Shortcut Through n-Space?
One way of turning something that is, say, right-handed in n space, into a left-handed version 

of the same thing in n space, is by rotating it in n + 1 space.  But we can turn a right-handed glove 
in 3-space into a left-handed glove by simply turning it inside out!  The same can be done with a 
glove in 2-space (as long as the opening for the two-dimensional hand is in fact open in 2-space).  
Is there something important about this ability to “save having to go through n + 1 space”?  Is it a 
shortcut that we can exploit?

A Shortcut Through the Irrationals
The hypotenuse of a right triangle whose sides equal 1 is a shortcut through the irrationals.  

For, no matter how “narrow” our attempted approximation to the hypotenuse using rationals — 
i.e., no matter how small the steps we make out of increments parallel to one leg of the triangle 
and increments parallel to the other leg, in order to approximate the hypotenuse — the sum of all 
these increments is always 2.   We always have to travel a distance of 2 in order to get from the 
extremity of one leg to the extremity of the other leg via these increments.  But if we are allowed 
to use irrationals, then we can reduce the length of our travel to 2.  Exercise: Give other exam-
ples in mathematics where the introduction of a new type of number allows one to shorten dis-
tances or to otherwise reduce a certain quantity

The Chicken Salad Sandwich Scene in the Film “Five Easy Pieces”
     Some readers may recall the chicken salad sandwich scene in the 1970 film, Five Easy Pieces:

[Scene: roadside restaurant.  Bobby, his girlfriend, hippie girl and her female friend at a table.]

Bobby [Jack Nicholson] to waitress: I’d like a plain omelette, no potatoes, tomatoes instead, a cup 
of coffee, and wheat toast.

Waitress: No substitutions.

Bobby: What do you mean, you don’t have any tomatoes?
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Waitress: Only what’s on the menu.  You can have a No. 2, a plain omelette.  It comes with cot-
tage fries and rolls.

Bobby: Now, I know what it comes with but it’s not what I want.

Waitress: Well, I’ll come back when you’ve made up your mind.

Bobby: Wait a minute!  I have made up my mind.  I’d like a plain omelette, no potatoes on the 
plate.  A cup of coffee and a side order of wheat toast.

Waitress: I’m sorry, we don’t have any side orders of toast.  English muffins or a coffee roll.

Bobby: What do you mean you don’t make side orders of toast?  You make sandwiches, don’t 
you?  

Waitress: Would you like to talk to the manager?

Hippie girl: Hey, mac!

Bobby: [To girl] Shut up.  [To waitress] You’ve got bread and a toaster of some kind?

Waitress: I don’t make the rules.

Bobby: OK, I’ll make it as easy for you as I can.  I’d like an omelette, plain, and a chicken salad 
sandwich on wheat toast, no mayonnaise, no butter, no lettuce, and a cup of coffee.

Waitress [reading from her pad]: A No. 2, chicken sal san, hold the butter, the lettuce and the may-
onnaise, and a cup of coffee.  Anything else?

Bobby: Yeah, now all you have to do is hold the chicken, bring me the toast, give me a check for 
the chicken salad sandwich, and you haven’t broken any rules.

Waitress: You want me to hold the chicken, hunh.

Bobby: I want you to hold it between your knees.

Waitress: You see that sign?  Yes, you’ll all have to leave.  I’m not taking any more smartness or 
sarcasm.

Bobby: You see this sign? [Makes obscene gesture in his lap, then sweeps dishes and silverware 
off the table and gets up]

[Later, in car]

Hippie girl: Fantastic that you could figure that all out and lie [sic] that down on her so you could 
come up with a way to get your toast.  Fantastic!
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Bobby: Yeah, well I didn’t get it, did I?

Hippie girl: No, but it was very clever.  I would have just punched her out.
    

The scene sets forth (however crudely) an important mathematical idea.  One way of thinking 
of the idea is as a certain kind of continuous transformation.  Assume you have a function f(x1, x2, 
..., xn), defined everywhere in some domain. Let  f(a1, a2, ..., an) = a (this represents the situation 
described by the menu and rules).  You want  f(b1, b2, ..., bn) = b (this represents what Nicholson 
wants).  But assume the only way you can achieve this is by continuously changing the value of 
each argument.  In other words you simply can’t replace the ai values with the bi values.   You 
have to “get there”.  The idea is vaguely reminiscent of defining a circle as the limit, as n 
approaches infinity, of n-gons.  Or is this simply the idea of homotopic transformation in topol-
ogy, in which we continuously transform one function into another, e.g., a function defining any 
closed curve into a function defining an arbitrarily small circle about a point located in the region 
enclosed by the original curve?  Topologies can be defined on finite sets, so something like the 
chicken sandwich transformation is legitimate.

On the other hand, one can look at the problem as one in graph theory, in which the arrows in 
a graph define allowed sequences of nodes, so that the problem is simply to find a path from one 
node, A, in the graph, to another node, B.

Another Fixed-Point Theorem
Theorem:
Let D denote a disk of radius 1 and center O.
Let C denote the circle that is the boundary of D.
Then there exists a function f of domain within D, onto the circle C, such that for all x, f(x) = x.

Proof:
1. Let C’ denote a circle concentric with C and lying within D.

2. Let the horizontal radial straight line r from O to C denote 0 degrees.
All larger angles are counterclockwise from r.

3. All circles have the same number of degrees, namely, 360.

4. A radial straight line r’ from O intersecting C’ and extended to intersect C, meets C’ and C
 at the same angle.

5. Let x be a point on C’, and let f(x) be the point on C that is met by a radial straight line
from O through x.

     Then clearly, f(x) = x.  

What is a Point on a Circle or on a Straight Line?
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Circle

 1. Let C’ and C denote concentric circles with center O, with the radius of C’ less than that 
of C.

2. Let the horizontal radial straight line r extending to the right from O to C denote 0 degrees.
All larger angles are counterclockwise from r.

3. A radial straight line r’ from O at any angle cuts C’ and  C at the same angle.  Yet there 
 cannot be a one-one matching of points in each circle, since  the  arc length to the cutting 
 point of r’ in C’ is  less than the arc length to the cutting point of r’ in C.

      4.  We conclude that “points” is an erroneous term here.  What is matching in the two circles
      is the angle at which r’ cuts each circle.  Putting it another way, what is matching is the 
      percentage of the circumference of each circle at which r’ cuts each circle.
      The circumferences of the circles differ, but each circle has the same number of degrees,
      namely, 360.

Straight Line

     5. Let T be an isosceles triangle ABC, with BC the horizontal base, and A the vertex above it.

     6.  Let DE be a horizontal line through the triangle at any level.

     7.  Let AF be a line from the vertex A down through DE, intersecting DE at a point G, and 
     intersecting the base BC at a point F.

8. Clearly there  cannot be a one-one matching of points  in DE and BC, since the length
 of DE is less than the length of BC.

      9.  It seems we must conclude that “points” is an erroneous term here.  What is matching is the 
      percentage of the length of DG to the length of DE, and the percentage of the length of BF to
     the length of BC.  (Similar triangles.)

Calculus and Analysis
And Why Exactly Did Newton Need to Discover the Calculus in Order to Formulate His 
Theory of Gravity?

I have never seen a calculus textbook that explained why Newton needed to discover the cal-
culus in order to formulate his theory of gravity.  Sometimes we read that his first proofs were 
“geometric”, and did not explicitly involve the calculus because of his fear that if they were pre-
sented in terms of that new subject, they would be discounted.

The only readily accessible history of the discovery of the calculus that I know of is Boyer’s 
The History of the Calculus and its Conceptual Development1.  Boyer devotes a few pages to 

1. Dover Publications, Inc., N.Y., 1949
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Newton’s mathematics in the book in which the latter set forth his theory (Philosophiae Naturalis 
Principia Mathematica) but not a word that I can find relating these calculations to the orbits of 
planets or the force of gravity.

The time is long overdue for a clear, understandable, historically-accurate, student-tested pre-
sentation of this fundamentally important part of the subject of the calculus.  The only reason this 
hasn’t been done long ago, it seems to me, is the shameful contempt for the history of mathemat-
ics on the part of academic mathematicians.

It is a worthwhile exercise to try to prove, from first principles, that if the force exerted by the 
sun on the planet is F = (Gm1m2)/r2, there G is the gravitational constant, m1 is the mass of the 
planet, m2 is the mass of the sun, and r is the distance from the sun to the planet at each moment of 
time, then the planet is in an elliptical orbit around the sun as Kepler described, 

Our first thought is probably that, when the planetary orbits were established, there must have 
been pieces of matter that simply plunged into the sun.  So what were the conditions that led a 
piece of matter to start on an elliptical orbit?

Next, we can imagine the movement of the planet as being approximated by a sequence of 
finite straight-line movements, and the gravitational force as being approximated by a sequence of 
pulls on the planet, so that the planet makes a finite straight-line movement, then a gravitational 
pull is exerted on it, causing it to change direction of motion.  Then the planet makes a finite 
straight-line movement in the new direction, a gravitational pull is exerted on it, causing it to 
change direction again. 

Determining Volumes, Areas, and Curve Lengths Without Using the Calculus
In calculus courses we learn to:

determine the volume of an object by slicing it into ever thinner slices;
determine an area, e.g., the area under a curve,  by dividing the area into ever narrower rectan-

gles, and
determine the length of a curve by approximating the curve by ever shorter straight lines.

However, we should remember that there are other ways of determining these properties.  We 
can

determine the volume of a container of any shape, e.g. of a vase, by filling the container with 
water, and then pouring the water into a graduated cylinder; to determine the volume of 
any solid object, we can fill a container with water, then submerge the object, then mea-
sure, using a graduated cylinder, the volume of water spilled;

determine an area by using a planimeter; and
determine the length of a curve by laying a string over the portion of the curve whose length is 

to be determined, then cutting the string at start of the portion, and cutting it at the end of 
the portion, and measuring the length of the string.

(Prior to the discovery of the calculus in the latter part of the 17th century, Descartes, for one, 
didn’t believe it was possible to determine the length of a curve segment. The length of a 
curve segment was not “rectifiable”.)
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An Amusing Fact About the Area and Circumference of the Circle
Consider the function A = r2, i.e., the area of circles as a function of their radii.  This is a 

parabola.
Now consider the derivative,

The derivative of the area function is the circumference function!

Can Rationals Be Approximated by Irrationals?
Does it make any sense to speak of approximating rationals with irrationals?  Consider the 

successive digits of the irrational. 

Rationals Are the Limits of Infinite Series
Let c/d be any positive rational.  Then there exists an infinite geometric series whose limit is  

c/d.
Proof:  Since 

where b – c = d. 

A Remarkable Fact About Adding and Subtracting Irrationals
An irrational number is represented by a decimal number such that there is no infinitely-

repeating sequence of digits in the digits to the right of the decimal point.  In other words, in gen-
eral one cannot state what the nth decimal digit of an irrational number is, where n is arbitrarily 
large.

It is therefore plausible to say, for example, “One thing we know about arithmetic on the irra-
tionals is that, except in trivial cases, no calculation can ever be completed.” However, this is 
wrong. Consider any expression (ab)/c, where a, b, c are positive integers, and such that ab = c.  
Thus (ab)/c = 1.  Take the natural logarithm of both sides of this equation.  We get ln a + ln b – ln 
c = ln 1.  Now it is well known that the natural logarithm of a positive integer is irrational.  It is 
also well known that ln 1 = 0.  And so we have the sum of two irrationals, minus a third irrational, 
equaling the integer 0.
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This fact holds for any fraction whose numerator and denominator are products of positive 
integers, provided only that the numerator equals the denominator.  In short, it holds for a count-
able infinity of cases.  

How can irrational numbers have this remarkable property?  Does it hold for any positive inte-
ger besides 0?  

In passing, we remark that the fact that the natural logarithm of a positive integer is irrational, 
enables us to quickly answer the question, Are there irrationals a, b such that ab is rational? The 
answer is yes, because, since the natural logarithm of any integer (a rational number), say, 5, is 
irrational, this means that er = 5, where e is the base of the natural logarithms, and r is the natural 
logarithm of 5. Both e and r are irrational.

Against a Claim of N. J. Wildberger Regarding Multiplication of Irrationals
In a series of lectures on YouTube (they were viewable in July, 2015), N. J. Wildberger claims 

that one argument against the existence of irrationals is that multiplying two irrationals is a com-
plex and uncertain process, because we have to multiply from left-to-right (since each irrational 
has infinitely many digits to the right) whereas in multiplying rationals, we can proceed in the 
usual way by multiplying from right-to-left.  (Thus, e.g., to multiply a/b by c/d, we can multiply 
the integers a and c, then multiply the integers b and d, giving us the rational number ab/cd.)

But Wildberger’s argument is not valid. For, to multiply two irrationals, I can proceed as fol-
lows:

1. Compute the product of the most significant digit of each irrational.  
2. Replace the product obtained in step 1 with the product of the two most significant digits of 

each irrational.
3. Replace the product obtained in step 2 with the product of the three most significant digits 

of each irrational.
etc.

This is, of course, an infinitely-long process, as is Wildberger’s multiplication procedure.  But 
each step is simple, and there are no uncertainties. Furthermore, the limit of the succession of 
products approaches the product of the two irrationals. 

The Missing Irrationals
We frequently read that every real number can be approximated by rationals.  Some of the 

infinite series that approximate irrationals like and e are well known.  The question now arises 
whether a representation of such a series must be capable of being written down (i.e., must be 
capable of being represented by a  finite string of symbols). If the answer is Yes, then  it seems we 
face a problem of missing irrationals, since there is only a countable infinity of finite strings, but 
an uncountable number of irrationals.

Of course, the reader may question the requirement that a series have a finite representation, 
and argue that a series is merely an integer-valued function on the non-negative integers, and that 
there is an uncountable number of such functions.  Is this in fact the answer to the problem of the 
missing irrationals?
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The Irrational in the Real World
A meter is defined as the length of a certain metal rod in Paris.   Suppose someone uses this 

rod, plus all the care humanly possible at this time, to create a right triangle each of whose legs is 
of length 1 meter, and whose hypotenuse is therefore  meters.  Suppose someone else is look-
ing for a unit to measure by.  Communications get scrambled, and this second person is sent, not 
the 1 meter length, but the  length.  He uses it to create a right triangle each of whose legs is 

.  Of course, since he thought he started with a unit, he thinks that the hypotenuse is irrational, 
namely, .  We know it is rational, namely 2.

How do we know that any length we take to be a unit, no matter how accurately measured, is 
rational or irrational?  Doesn’t this uncertainty render suspect many calculations in physics?

On x, y, dx, dy and the Nature of the Infinitesimal
See the paper, “A New Insight Into an Old Calculus Mystery: x, y, dx, dy and the Nature of 

the Infinitesimal” on the web site occampress.com.

On Functions Continuous Everywhere and Differentiable Nowhere
In the mid-19th century, Weierstrass and others exhibited functions that were continuous 

everywhere and differentiable nowhere — a deeply troubling discovery for mathematicians of the 
time.  But the definitions of these functions are difficult to understand, at least for me.  The ques-
tion is, why didn’t a much simpler function suffice?  For example, the limit f of an infinite 
sequence of functions fn like the following:

Here, the period of each sawtooth waveform is, say, halved with each increment in n, the ampli-
tude remaining the same. 

A plausibility argument that f is nowhere differentiable is the following: 
(1) for each n > 1 the function fn has no derivative at any apex point, because the left-hand 

limit of the derivative (slope) as x approaches the x-value of the apex point does not equal the 
right-hand limit of the derivative (slope) as x approaches the x-value of the apex point.

(2) let fn(x) be a point on any straight-line portion of fn.  Clearly the derivative (slope) of fn(x) 
exists. 

(3) let n increase. Then steps (1) and (2) apply, except that the absolute value of the derivative 
(slope) in step (2) is now greater than it was for fn.  Thus in the limit, the absolute value of the 
derivative (slope) is infinite. We conclude that f is differentiable nowhere.

It might be argued that, in the limit, every point in the function f is a vertex point, but this is 
not correct.  Although the sequence {1/2, 1/3, 1/4, 1/5, ... } approaches zero, it never contains 
zero.

2

2
2

2

...
1
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A Thought Regarding the Infinitesimal
A few calculus students (I was one), although they may be reluctant to admit it, were greatly 

bothered by the question, What is the nature of the infinitesimal?  How can a number be arbi-
trarily small but not zero?  In my first semesters of calculus, I walked the campus trying to imag-
ine a long line of fractions extending indefinitely far ahead of me; I kept trying to get to the one 
that was arbitrarily small but not zero.  Sometimes, for a moment, I thought I had succeeded, but 
then I realized that there is a smaller fraction beyond that one!

Naturally, I assumed that the nature of the infinitesimal was crystal clear to all the other stu-
dents and, of course, to the professor.  Only years later did I discover that the question had per-
plexed some of the best mathematicians in England and Europe for more than 150 years, until 
Cauchy found a formal definition for “limit” in the 1830s.

But I continued to try to imagine a number that was arbitrarily small but not zero.  Then I 
heard that, in the 19th century, some mathematicians had proposed that the infinitesimal could be 
imagined as a function that asymptotically approached zero.  The values of the function, taken as 
a whole,  most certainly could be said to be “arbitrarily small but not zero”.  Of course, one had to 
be able to accept the idea of a “number” being an infinite set of numbers.  But an ideal, in algebra, 
was such a number (e.g., all multiples of a given prime integer, say, 5, constitute an ideal).  And, 
of course, any fraction can be considered equivalent to a set of numbers, e.g., the fraction 1/2 can 
be considered equivalent to the infinite set of numbers 1/2, 2/4, 3/6, 4/8, ...

But still, in my idle moments, I couldn’t help wondering if there might not be a single number 
that is the infinitesimal.  I eventually heard about Abraham Robinson’s discovery of non-standard 
analysis in the early 1960s, but I didn’t understand it.  It then occurred to me:

Why not do with the perplexing quantity, the infinitesimal, what mathematicians had done in 
order to deal with the perplexing quantity, ?  Instead of spending more years trying to imag-
ine what the square root of –1 could possibly be (what number can we possibly multiply by itself 
to get –1? how would that multiplication proceed?, etc.), mathematicians simply defined a new 
kind of number (called a complex number), whose general form is a + bi, where a and b are real 
numbers, and i = , and built a consistent arithmetic (and calculus) upon it.

Why not do the same kind of thing with the infinitesimal? — decide on the general form for 
the infinitesimal, perhaps something like a + bi, and what the basic rules are that govern calcula-
tions with the infinitesimal, and leave it at that?

It turns out that someone has done this.  In Google, enter

Non-nonstandard Calculus, I | The Everything Seminar

(This was written Jan. 9, 2021.)

Global vs. Local Approximation
In mathematics, I often have at least two choices: I can learn more and more about one spe-

cific local thing, e.g., a certain value of a function, or I can learn more and more about one global 
thing, e.g., an entire function.  For example, the frequencies produced by a Fourier transform 
approximate an entire time function.  They tell you something about the entire function, even 
though they do not tell you the precise value of any given point.  Certainly a worthwhile project 

1–

1–
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would be to collect, in one book, an overview of these two types of approximation, giving refer-
ences to the various subjects in which they occur.   

Global vs. Local More Generally
Suppose we have a grid in which each cell is either black or white.  

Well-Ordering the Reals
So far, no one has been able to produce a well-ordering on the reals, even though such well-

orderings exist.  Suppose all mathematicians agree to start with any likely candidate, and develop 
the set as they need to.  Then is it correct that there is no problem with this approach as long as no 
contradictions develop?   

“Francisco Antonio ‘Chico’ Doria, a Brazilian mathematician...suggested [that] when mathe-
maticians encounter an apparently undecidable proposition, they can create two new branches of 
mathematics, one that assumes the proposition is true, and one that assumes it is false. ‘Instead of 
a limit of knowledge,’ Doria concluded, ‘we may have a wealth of knowledge.’” — Horgan, John, 
The End of Science, Broadway Books, N.Y., 1996, p. 231. 

Integration Forever
Is there anything to learn from the study of the repeated integration of functions?  In other 

words, in the case of functions of a single variable, for each such integrable function,  f(x), we 
integrate the function, then integrate the result, then integrate the result, repeating this an arbitrary 
number of times.  What functions cannot eventually be “reached” in this way?

A Student’s Difficulty With the Integral of a Function
(Note: the following assumes that the reader knows the equivalent of at least one semester of 

calculus.)
The student reasons as follows:
“Let f be the derivative function, and F the integral of f.  Let the two functions be on separate 

x-y axes.  Consider the two functions from x = a to x = b.
“Divide the x axis interval [a, b] into a sequence of arbitrarily small intervals x.
“Then the area of the rectangle with sides  f(xi), x is  (f(xi))(x).  This area is the value of the 

point F(xi).  
“We are then told that the area under the f  curve between x = a and x = b is F(b) – F(a).
“But in general that is nonsense!  All that the subtraction gives us is the difference between a 

very small area and a smaller very small area!”

“It is Impossible to Write Down the Fourier Inversion Theorem!”
Every student of analysis learns the two equations that constitute the Fourier Inversion Theo-

rem:

F t( ) e
ixt–

f x  xd=
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But it would seem that neither of these equations can ever be written down in its entirety, 
because if we substitute the value of f(x) into the right-hand side of the first equation, we then 
have to substitute the value of F(t) into the resulting expression, and then f(x) into the resulting 
expression, etc.  And similarly beginning with the right-hand side of the second equation. What is 
wrong with this argument? 

Taylor’s Formula: the Derivation Made Clear
Taylor’s Formula, which is familiar to most first-year calculus students, is a way to approxi-

mate functions f(x) that have derivatives of all orders, by a simpler function g(x), at and in the 
vicinity of a real number a.  Taylor’s Formula states:

Taylor’s Formula should not be confused with Taylor’s Theorem, which specifies the error in 
the Taylor’s Formula, depending on how far from a the x is. We will not be concerned with the 
Theorem here.

Many students feel that although, on the one hand, the standard textbook derivation of Tay-
lor’s Formula seems simple and straightforward, it is nevertheless difficult to keep straight in the 
mind — it seems slippery, it seems almost to have a vicious-circle quality about it.  The following 
is an attempt to provide a derivation that, I hope, the student will find more straightforward.  The 
format is in accordance with one of the recommendations in William Curtis’ How to Improve Your 
Math Grades1, namely, that things that are “the same” should look “the same”, even down to the 
structure of the sentences used. In this case, I have used a programming format to make clear 
exactly how the steps in the derivation are the same, and yet how they do not involve circular rea-
soning. 

I can do no better than begin by quoting from Morris Kline’s Calculus: An Intuitive and Phys-
ical Approach2, which is the best first-year calculus book I have ever come across.

“If we are to approximate a given function f(x) by another, g(x) say, then the second function 
should certainly be a relatively simple one so that we can integrate this second function or calcu-
late its values, because these processes are the ones that cause trouble in the case of the compli-
cated function.  Now, the simplest functions to work with are the polynomials, and therefore we 
shall look into the question of the approximation of functions by polynomials.

“Generally, one is interested in the values of a function over some domain of x-values. This 
domain might be the interval over which one is integrating the function or it might be the domain 
over which one wishes to calculate the values of the function.  Hence the problem we face is that 
of approximating a function over some domain of x-values. If we approximate a function very 
closely at and near some one value of x in that domain, we have some reason to expect that the 
approximation will still be good at values in the entire domain, at least if the domain is not large.  

1. accessible on the web site www.occampress.com
2. Dover Publications, Inc., Mineola, N.Y., 1977
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Let us therefore look into the simpler problem of approximating a function around one value of x 
and then see what follows.

“Suppose that we have a function f(x) and consider approximating it around or in the neigh-
borhood of x = 0.  Since, as already noted, polynomials are desirable approximating functions, let 
us consider the approximation

(1)                 g(x) = c0 + c1x1 + c2x2 + c3x3 + ... + cnxn .1

What follows is now my rewriting,  in the “programmatic” format mentioned above, of 
Kline’s derivation.

Find the values of c0, c1, c2, c3, ..., cn.
     To do this:
          0. Find the value of c0.
               To do this:
                0.0 Find g (x).  We already know this.  It is 
                      g(x) = c0 + c1x1 + c2x2 + c3x3 + ... + cnxn .

                0.1 Set x = 0.  This gives:
                      g(0) = c0 .

                0.2 But certainly we want our approximating function g(x) to agree with our
                      function  f(x) at x = 0, so we set:
                      g(0) = c0 = f(0).

         1. Find the value of c1.
               To do this:
               1.0 Find g (x).   By basic rules for derivatives, working from g (x) in step 0., this is
                    g (x) = c1+ 2c2x1 + 3c3x2 + ... + n cnxn  .

                1.1 Set x = 0.  This gives:
                      g (0) = c1 .

               1.2 But certainly we want the first derivative g (x) of our approximating function g(x)
                     to agree with the first derivative f (x) of our function f(x) at x = 0, so we set:
                     g (0) = c1 = f (0).
                    
      
         2. Find the value of c2.
               To do this:
               2.0 Find g(x).   By basic rules for derivatives, working from g (x) in step 1., this is
                    g(x) = 2c2 + 2•3c3x1 + ... + (n  1)n cnxn  .

                2.1 Set x = 0.  This gives:

1. ibid., p. 634
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                      g(0) = 2c2 .

               2.1 But certainly we want the second derivative g(x) of our approximating function
                     g(x) to agree with the second derivative f (x) of our function f(x) at x = 0, so we
                     set:
                    g(0) = 2c2 = f (0), or c2  =  f (0) / 2

         3. Find the value of c3.
              To do this:
               3.0 Find g(x).   By basic rules for derivatives, working from g(x) in step 2., this is
                    g(x) =  2•3c3+ ... + (n 2)(n 1)n cnxn .

                3.1 Set x = 0.  This gives:
                      g(0) = 2•3c3 .

               3.2 But certainly we want the third derivative g(x) of our approximating function
                     g(x) to agree with the third derivative f (x) of our function f(x) at x = 0, so we
                     set:
                    g(0) = 2•3c3 = f (0), or c3 =  f (0) / (2•3)

...

          n. Find the value of cn.
              To do this:
               n.0 Find g(n)(x).   By basic rules for derivatives, working from g(n )(x) 
                    in step n 1., this is
                    g(n)(x)  =   1•2• ... (n 2)(n 1)n cn + ... [terms in x].

                n.1 Set x = 0.  This gives:
                      g(n)(0) =  1•2• ... (n 2)(n 1)n cn .

               n.2 But certainly we want the nth derivative g(n)(x) of our approximating 
                     function g(x) to agree with the nth derivative f(n)(x)  of our function f(x) 
                     at x = 0, so we set:
                    g(n)(0) = 1•2• ... (n 2)(n 1)n cn  = f (n)(0), or 
                    cn =   f (n)(0) / (1•2• ... (n 2)(n 1)n)

          And hence, we get, substituting in the values for the coefficients cn we have found, and 
using factorial notation:
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We have derived Taylor’s Formula at and in the vicinity of x = 0  How about in the vicinity of 
a, whether a is equal to 0 or not?  We quote from Kline:

“...instead of approximating f(x) by g(x) at and near x = 0, we could equally well make the 
approximation at and near some other value of x, say x = a. If we proceeded to do this by using the 
form (1) for g(x) and the above method of determining coefficients c0, c1,..., we would not suc-
ceed. We can see that we would be blocked in the very first step because for x = a

g(a) = c0 + c1a1 + c2a2 + c3a3 + ... + cnan ,

and we would like to have this expression equal f(a).  However, this time we do not obtain the 
value of c0 at once as we did in the preceding case of x = 0. There might still be some way of pro-
ceeding with the form (1) of g(x), but a wiser procedure is to recognize that the proper form of 
g(x), which generalizes the form of (1), is 

(6)                   g(x) = c0 + c1(x  a) + c2(x  a)2 + c3(x  a)3 + ... + cn(x  a)n .

That is, we recognize that the form of (1) is really of the form

g(x) = c0 + c1(x  0) + c2(x  0)2 + c3(x  0)3 + ... + cn(x  0)n 

and that (6) is the proper generalization.”
“With the form (6) for g(x) we can use the procedure above to determine the coefficients so 

that at x = a, f(x) = g(x) and each of the successive derivatives of f(x) up to the nth derivative 
agrees with the corresponding derivative of g(x).”1

So we proceed as before:

Find the values of c0, c1, c2, c3, ..., cn.
     To do this:
          0. Find the value of c0.
               To do this:
                0.0 Find g (x).  We already know this.  It is 
                      g(x) = c0 + c1(x  a) + c2(x  a)2 + c3(x  a)3 + ... + cn(x  a)n .

                0.1 Set x = a.  This gives:
                      g(a) = c0 .

                0.2 But certainly we want our approximating function g(x) to agree with our

1. ibid., p. 636
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                      function  f(x) at x = a, so we set:
                      g(a) = c0 = f(a).

         1. Find the value of c1.
               To do this:
               1.0 Find g (x).   By basic rules for derivatives, working from g (x) in step 0., this is
                    g (x) = c1+ 2c2(x  a)1 + 3c3(x  a)2 + ... + n cn(x  a)n  .

               1.1 Set x = a.  This gives:
                      g (a) = c1 .

               1.2 But certainly we want the first derivative g (x) of our approximating 
                     function g(x) to agree with the first derivative f (x) of our function f(x) at 
                     x = a, so we set:
                     g (a) = c1 = f (a).
                    
      
         2. Find the value of c2.
               To do this:
               2.0 Find g(x).   By basic rules for derivatives, working from g (x) in step 1., this is
                    g(x) = 2c2 + 2•3c3(x  a)1 + ... + (n  1)n cn(x  a)n  .

               2.1 Set x = a.  This gives:
                      g (a) = 2c2 .

               2.2 But certainly we want the second derivative g(x) of our approximating function
                     g(x) to agree with the second derivative f (x) of our function f(x) at x = a, so we
                     set:
                    g(a) = 2c2 = f (a), or c2  =  f (a) / 2

         3. Find the value of c3.
              To do this:
               3.0 Find g(x).   By basic rules for derivatives, working from g(x) in step 2., this is
                    g(x) =  2•3c3+ ... + (n 2)(n 1)n cn(x  a)n .

               3.1 Set x = a.  This gives:
                     g(a) = 2•3c3

               3.2 But certainly we want the third derivative g(x) of our approximating function
                     g(x) to agree with the third derivative f (x) of our function f(x) at x = a, so we
                     set:
                    g(a) = 2•3c3 = f (a), or c3 =  f (a) / (2•3)

...
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          n. Find the value of cn.
              To do this:
               n.0 Find g(n)(x).   By basic rules for derivatives, working from g(n )(x) 
                    in step (n 1)., this is
                    g(n)(x) =   1•2• ... (n 2)(n 1)n cn + ... [terms involving (x - a)].

n.1 Set x = a. This gives:
                    g(n)(a) =   1•2• ... (n 2)(n 1)n cn .

               n.2 But certainly we want the nth derivative g(n)(x) of our approximating 
                     function g(x) to agree with the nth derivative f (n)(x) of our function f(x) 
                     at x = a, so we set:
                    g(n)(a) =   1•2• ... (n 2)(n 1)n cn  f (n)(a) or
                    cn =  f (n)(a) / (1•2• ... (n 2)(n 1)n)

          And hence, we get, substituting in the values for the coefficients cn we have found, and 
using factorial notation:

A Challenge for Calculus Students: Laplace’s Clever Series
In his history of mathematics, Mathematical Thought from Ancient to Modern Times1, Morris 

Kline states (p. 1098), “The asymptotic evaluation of integrals goes back at least to Laplace.  In 
his Théorie analytique des probabilités (1812) Laplace obtained by integration by parts the 
expansion for the error function

(1)

”
The first question is, why did Laplace go to the trouble of obtaining this series rather than sim-

ply using the standard one that is obtained by integrating term-by-term the series expansion of the 
integrand, i.e., 

1. Oxford University Press, N.Y., 1972  This is the best history of mathematics I have ever come across.
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yielding,
(2)

The answer almost certainly is: because the upper limit of the definite integral in (1) is 
hence it is not obvious that the series in (2) will yield a finite value.  And yet we know1 that it 
must, because 

Thus we know that, if T 

So it is understandable that Laplace would look for another series.  But how did he find the 
one in (1)? Kline says he used integration by parts, a rule that asserts that, if u, v are functions of 
x, then 

However, when we try this in the obvious way on the integral in (1), we find it doesn’t work.  That 
is, letting 

we get
(3)

which does not give us the desired series because, e.g., letting 

1. I do not know if Laplace knew this at the time he derived his series.
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we get, for the integral on the right in (5), 

etc.

So what was Laplace’s trick?  The answer is very simple , once we see it. Since some students 
may not want to see it before they have had a chance to discover it on their own, it has been 
placed in  “Appendix A — Derivation of Laplace’s Series” on page 139.

Linear vs. Non-linear
Why not think of a non-linear (single-argument) continuous function as a linear function in 

which certain ranges of the x axis have been compressed or expanded, e.g., as though the (rubber-
ized) paper was scrunched together too much, or stretched apart too much,  in these ranges?

A Thought on Differential Equations
Almost everyone who begins the study of differential equations is struck by the wealth of 

material to be learned — the fact that each equation, or each class of equations, seems to require 
its own methods.  Is there any way the subject can be simplified?

Let me begin with a very simple example.  Consider standard 2-dimensional Cartesian coordi-
nates.  But instead of regarding an ordered pair of integers, <x, y>, as defining a point, i.e., the 
intersection of a vertical grid line and a horizontal grid line, let the ordered pair define a square.  
Specifically, we define a new set of coordinates in which points have been “expanded” to squares, 
all squares being of the same size.  Thus, <x, y> now denotes the location of a square.  

We can fill this new grid of squares with the values of a function taking two integers as argu-
ments, and returning integer values, e.g., the ordinary arithmetic functions addition, subtraction, 
multiplication, and division.  Let us consider the case of multiplication.  In the square <x, y> we 
place the value of x  y.  Now, observing this grid of values, we see that the value in the square
 <x + 1, y> is (obviously) simply the value in the square <x, y>, + y.  The thought may now occur 
to us that, once we have gone through the labor of computing the value in square <x, y>, it only 
takes “a little more” labor to find the value in square <x + 1, y>.  And not much more labor to 
compute the value in square <x + 2, y>, or in square <x, y + 1>, or in square <x, y + 2>, etc.  We 
don’t have to compute each value from scratch.

Let us see if this idea has any validity in the realm of differential equations.  We can define an 
ordered n-tuple that allows us to represent each differential equation. Now the question is, assum-
ing we know how to solve the differential equation in n-tuple t, is there a transformation that will 
give us the solution to the equations represented by adjacent tuples and do so with “less work” 
than we would have had to expend in figuring out from scratch how to solve these equations?  
And if not, why not?
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The Application of m-Dimensional Matrices to Number Theory
The basic idea in the above section can be applied to integer functions in number theory.  An 

example will illustrate how this can be done.
“Consider a four-dimensional matrix M  such that cell (u, v, w, k) is occupied by the value of 

uk + vk –  wk , where u, v, w, k are positive integers. The matrix makes it possible to speak of the 
values of neighboring cells, given the value and location of a cell — if we know u, v, w, k, then we 
can compute the value of uk + vk –  wk , and then we can compute the value of, for example,  (u – 
1)k + vk –  wk , which is the value of one of the cells next to that containing uk + vk –  wk.  In fact, 
there are 10 cells next to each cell except where one of the arguments = 1, because each of the 
arguments (or “coordinates”) can be increased by 1 or decreased by 1. 

“The matrix provides a framework for mathematical induction on any coordinate. We assume 
that a cell contains 0, which would be the case if a counterexample existed, and then compute the 
value of each neighboring cell such that at least one of the coordinates is decreased by 1.  We then 
repeat this process until we arrive at a cell the value of whose contents is known from other 
results.  If the values differ, then we know that the assumption of a counterexample was false, and 
thus FLT is proved.

“As an example of our inductive process, let us consider the cell (x, y, z, p), whose value, by 
our assumption of a counterexample, is 0.  Does the adjacent cell ((x – 1), y, z, p) contain a nega-
tive or a positive value?  We see immediately that it contains a negative value, because (x – 1)p +  
yp –  zp  + (xp – (x – 1)p )  =  x p +  yp –  zp = 0, and (xp – (x – 1)p) is positive.  Informally, if we add 
a number a to a positive number b and get zero, then a must be negative.

“We conclude that the cell (1, (x – 1),  (y – 1), z, p) contains a more negative number than (1, 
(x – 1), y, z, p).”  — Schorer, Peter, section “Four-Dimensional Matrix Approach” in “Is There a 
‘Simple’ Proof of Fermat’s Last Theorem?”, www.occampress.com.

It appears that, in general, the values of any integer function of a finite number m of values 
can be represented by such an m-dimensional matrix.  Mathematical induction, including Fer-
mat’s “method of infinite descent” is captured by this scheme. Furthermore, we can move in any 
of m directions in order to build a proof. 

The Complex Plane vs. the Real Plane
Granted, this is only a student question, but I have never seen an answer to it: what exactly is 

different, in terms of results, theorems, lemmas, between the complex plane and the real plane?  
Can we pair up the results for each, so that we can say, “This is the real plane version of this com-
plex plane theorem”, etc.? 

Graphics as an Independent Variable
Project: Devise a program that gives the equations of a surface as the surface is changed.    

Such a program would do just the opposite of what graphing programs normally do, namely, show 
how the surface changes as the equations change.

Curved Space: Is There a Simpler Approach?
Certainly tensor calculus is one of the most difficult mathematical subjects.  We recall that 

Einstein, when trying to learn it for use in his General Theory of Relativity,  was driven to write to 
his colleague, Marcel Grossman, “Marcel: Help me!”  Not the least reason for its difficulty at 
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present is the poor quality of presentation of the subject.  One need only consider the definition of 
a tensor.  Different texts seem to have entirely different definitions.  No text that I am aware of 
provides proofs of the equivalence of the definitions.  No text that I am aware of gives a formal 
definition of a general tensor, that is, one of arbitrarily large dimension, and of arbitrarily large 
rank (n + m).  No text that I am aware of explains what motivated the transformations that are 
used (in some cases) to define tensors, or why there are covariant, contravariant and mixed ten-
sors, or what motivated the contraction operation.

Tensor calculus can be described as the calculus of curved spaces.  This made it the appropri-
ate branch of mathematics for Einstein’s General Theory of Relativity, in which gravity curves 
space-time.

Let us for the moment step back from the details of tensor calculus, including the fact that, if a 
tensor equation is true in one set of coordinates, it is true in all sets of coordinates, which allowed 
Einstein to say that if a law of physics (expressed in tensors) is true in one set of coordinates, it is 
true in all sets of coordinates.

Let us imagine a metal bar with the ends bent downward.  The bar is our curved space.  Let us 
further imagine that, before the bar was bent, throughout it there were straight lines running the 
length of it.  These lines are bent in conformity with the bending of the bar.

We ask, now, if it is possible to give a mathematical description of each of these lines without 
referring to coordinates.  Because, after all, the bent bar, and its lines, are the same no matter what 
the coordinates of the space we might place it in.

Or suppose we imagine a long tunnel in space.  The tunnel curves in various directions.  Sup-
pose our task is to guide a plane along the center of the tunnel.  Then to remain in the center, we 
will have to cause the plane to turn in various directions.  The angle of rotation of the steering 
wheel at each moment, and the speed of the plane at each moment, together give us a description 
of the curve — without coordinates. 

Can we apply the idea of an inertial navigation system here?

The astute reader will point out that we will need to specify, using coordinates, the beginning 
the curve (the point that we consider the beginning, for our purposes), and similarly, the beginning 
of each line that runs the length of our metal bar.  We can take each of these beginnings as the ori-
gin  of a set of coordinates.  In other words, in the scheme we are describing, there is an origin of 
the set of coordinates for each curve in space, or each line in our metal bar!

Is this a beginning of an alternate approach to the calculus of curved spaces?  What about a 
mesh throughout curved space, the mesh having edges of any finite length we choose (all the 
lengths being the same)?  Suppose we can choose between the edges being straight lines but the 
angles between them at the nodes being allowed to vary?  Or suppose the edges can be curved?

Two Questions Re Parallel Transport of Vectors
In an n-manifold, the notion of vectors being constant (parallel) throughout the manifold, or a 

part of it, is important, but difficult to formalize.  Textbooks typically explain some of the difficul-
ties by moving a given vector around on the great circles of a sphere in 3-space.

Would anything be accomplished if the vector were held in place, and the sphere were rotated 
about its center?

Would anything be accomplished if we began with the desired vector v with its lower end 
positioned (“fastened”) at a desired point p on a curve C?  Then suppose we positioned a copy v´ 
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of v at a small distance ds from v on C, parallel to v, and fastened the copy at that point p´.  Then 
suppose we repeated this process with copies of v as far along C as we wished.

When we were finished, we would have a “picket-fence” of parallel vectors fastened to a suc-
cession of points on C.

The Spinning Top
I have so far seen only three expositions of elementary facts about the child’s toy, the spinning 

top: one by Saunders Mac Lane in his book Mathematics Form and Function (Springer-Verlag, 
N.Y., 1986, pp. 295-301), one by Michael Fowler in his lecture “Euler’s Angles” (Google), and 
one by two physicists (see“An Example of (Part of) the Job Done Right” on page 116). 

Overcoming Incompetent Presentations
Of the three, Mac Lane’s is by far the worst1, but we can get at the reason for the poor quality 

by asking the Student’s Forbidden Question, namely, “Why is this difficult?”
The first answer is, “Because necessary diagrams are either missing altogether, or are very 

hard to understand”.  The second answer is, “Because we often do not know what the purpose is 
for all the complicated mathematics.”

Both of these difficulties could be greatly reduced by a presentation in the following form:

A large diagram showing the top with its axis z of rotation at an angle from the vertical 
axis Z, and 

The other two axes x, y of the top, and
The other two axes X, Y perpendicular to Z.
The location of the center of mass in the top, and
A labeled line showing the distance of the center of mass from the point on which the top 

spins.

An informal description of the behavior of the top, beginning with it being spun with its axis 
z vertical, then eventually, the axis making an angle with the vertical and rotating about the ver-
tical axis (precession), then the axis starting to bob (nutation), and the bobs becoming larger in 
amplitude, until the top falls over on its side.  

The description would conclude with a statement to the effect that we will be considering this 
entire behavior of the top.

list of the principal properties of the top, with brief definitions.  This list would include:
 Euler’s angles (these three angles fix the position of the top at any moment; one of the angles 

is the above ;
The rate of change of each of Euler’s angles 
The angular speed of rotation about each of the three axes x, y, z of the top.
The moment of inertia for each of the three axes of the top (the moment of inertia is the equiv-

alent in rotational motion of mass in rectilinear motion);
The angular momentum about each axis of rotation;

1. If someone  had told me, in my youth, that the portion of Mac Lane’s presentation of the spinning top on 
pp. 298-299 of his book (ibid.) was “real mathematics”, I would have taken up sociology or literary criticism 
instead.
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The kinetic energy of the top at any moment;

A more formal description of the behavior of the top over time (its trajectory), beginning at 
time t = 0 with the axis of the top vertical and the top given a specified starting angular speed of 
rotation.  The time from t = 0 is divided into arbitrarily small increments t; at any time t = nt, 
where n we can observe the value of each principal property by looking at a curve of its val-
ues plotted on two-dimensional Cartesian coordinates, with the horizontal axis showing nt, and 
the vertical axis showing the units in which the property is measured.  Thus there will be several 
different sets of two-dimensional Cartesian coordinates.

If at some point we find it desirable to know a speed or velocity of angular rotation in terms of 
other speeds or velocities of angular rotation, then we shall carry out the derivation.  But it must 
be supported by clear diagrams.

However we will absolutely not include text like the following without explaining why it is 
not nonsense:

“[Vector representation of velocities of angular rotation] is used because it is effective in com-
bining two angular velocities.; by calculating the composite of two rotations one can prove that 
the effect of combining the two such angular velocities is represented by the sum of the two vec-
tors.”1

Suppose I have an electric drill.  It is rotating at a certain speed.  The drill is pointing in a cer-
tain direction. It is represented by a vector.  Suppose I have a second electric drill.  It is rotating at 
a different speed and is pointing in a different direction. It is represented by a different vector.  
What does “the sum of the two vectors” mean?  That as soon as I think of this sum, a third electric 
drill will come into being, rotating at the speed and pointing in the direction that is dictated by the 
sum of the two vectors?

And so the presentation must make crystal clear what it means to say that a given velocity of 
angular rotation has coordinates that are other velocities of rotation. 

Unquestionably, the presentation should include an explanation of the physics governing the 
top’s behavior — the physics making clear why the top’s behavior from the initial spinning to its 
finally falling over on its side, is as it is.

I refuse to believe that such a presentation would not be more appreciated by students, and be 
of more interest to them, and of more ultimate use to them, than the complicated, seemingly point-
less, mathematics in the Mac Lane and Fowler presentations.

An Example of (Part of) the Job Done Right
One of the reasons that rotational motion is a difficult subject is that there are so many new 

symbols and technical terms, which, in keeping with the mathematicians’ refusal to question if 
prose is always the best way to present mathematics, are always presented in a many-page sprawl 
of prose. 

But sometimes someone sees the light — in this case, two authors of a standard textbook, 
Physics2.  On p. 278 of Part I, in the first chapter on rotational dynamics, is a table comparing 
some of the basic properties of rectilinear motion with some of the basic properties of rotational 

1. Mac Lane, ibid., p. 297.
2. Resnick, Robert, and Halliday, David, Physics, John Wiley & Sons, Inc., N.Y., 1966.
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motion about a fixed axis.  Thus, for example, we can see at a glance that mass, M, in rectilinear 
motion, is analogous to rotational inertia, I, in rotational motion, and that linear momentum, Mv, 
where v is velocity, is analogous to angular momentum, I where is angular velocity.  But the 
table should appear at the start of the chapter, not 19 pages into the chapter.

And, of course, the index of the book should include each and every symbol and technical 
term, so that the reader can find out in a matter of seconds the definition of I, and each of the 
many other symbols and technical terms in the subject of rotary motion (and indeed of all subjects 
covered in both Parts of the book).

Note: I’m afraid that the above authors at times slip into standard textbook-author-incompe-
tence, as, for instance, in their derivation of the speed of precession on p. 297, in which we are 
asked to believe that there exist isosceles triangles in which one of the base angles, hence both, 
can be 90 degrees.

There Were Self-Similar Structures Long Before Fractals!
Roughly speaking, a self-similar structure is one that “looks the same” no matter how small a 

piece of it we view.  Fractal geometry, which was discovered by Benoit Mandelbrot in the latter 
half of the 20th century, deals extensively with such structures.  But they were known already to 
the ancient Greeks.  

Consider the Golden Rectangle, which is a rectangle whose sides are in the ratio (1 + 
Each Rectangle consists of a square and a rectangle which is another, smaller, Golden Rectangle.  
And similarly inside that Golden Rectangle, etc.

Or consider the Greek representation, using dots, of successive squares of positive integers. 
Begin with one dot.  Make an L-shape out of 3 equally-spaced dots, and place that L-shape at the 
right-hand side of the initial dot so that a square, two dots on a side, is formed.  Now make an L-
shape out of 5 equally-spaced dots, and place that L-shape at the right-hand side of the square 
consisting of four dots.  We now get a square of three dots on a side.  Etc.  

By this  sequence, we see that the sum of the first n odd positive integers equals n2. 
The L-shapes are called “gnomons”.  Other gnomons are known in plane geometry for the 

successive expansion of parallelograms..  
We can consider the geometric squares inside the succession of Golden Rectangles to be gno-

mons.

Number Theory

Geometrical Domains for Number Theory Functions
In my research on several difficult number theory problems, I have found that considerable 

progress can be made by mapping (in an informal sense) number theory functions onto appropri-
ate geometric domains.  (The term “domain” here does not mean the domain in the formal defini-
tion of any function.)

This idea is different from the mere graphing of the function, as the reader will see in the fol-
lowing examples.  I will begin with one of the simplest.
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The Multiplication Plane
Let x be the horizontal axis and y the vertical axis in the traditional Cartesian axes.  We here 

consider only non-negative x and y.  But now, instread of (x, y) denoting a point, we let it denote a 
square (all squares are the same size), and for the multiplication function f(x, y), we let the square 
(x, y) contain the product x y.  Thus, e.g., the square (124, 7965) contains 987,660.  But now 
observe:  if we want to know the product of 124 and 7966, we do not need to carry out the entire 
multiplication again.  We need simply add 124 to 987,660, yielding 987,784.  And similarly for 
the product 125 and 7965, we simply add 7965 to 987,660, yielding 995,625.  In the case of 123 
or 7964, we subtract.

The point is that if we know the contents of a square, we can easily determine the contents of 
an adjacent square.

The 4-Dimensional Space for Fermat’s Last Theorem
The same idea can be carried out with number-theoretic functions of more than two variables.  

Consider, for example, the function xk + yk – zk, where x, y, z, k are positive integers.  Here, instead 
of a plane, we use a 4-dimensional integer space such that the contents of the 4-dimensional box 
(x, y, z, k) contains xk + yk – zk.  Once again it is easy to see that if we know the contents of such a 
box, we can easily determine the contents of an adjacent box, and this might be useful if we 
assume that a counterexample xk + yk – zk = 0 to Fermat’s Last Theorem exists.  In particular, it 
might allow us to invoke an inductive argument that proceeds downward through decreasing val-
ues of x, y, z, or k.  Further details will be found in the section, “Four-Dimensional Matrix 
Approach” in Part (1) of the paper, “Is There a ‘Simple’ Proof of Fermat’s Last Theorem?” on 
occampress.com.

Geometrical Models of Congruence
It is possible to represent geometrically the integers mod m, where m is any positive integer 

greater than 1, in at least three ways, (1) the wheel-and-spokes representation; (2) the helical rep-
resentation; and (3) the lines-and-circles representation.  All can easily seen to be equivalent.  
Here are the details.

The Wheel-and-Spokes Representation of Congruence
Divide a circle into m equal segments, making the segments  such that one begins at the lowest 

point of the circle; place a tick mark at the end of each segment; at each tick mark, draw a straight 
line (a “spoke”) outward on a radius of the circle through the mark.  Place tick marks at intervals 
of a constant distance d on each spoke.  Now begin at the base of the lowest spoke and mark it 0.  
Proceed counterclockwise around the circle, marking the base of each successive spoke, 2, 3, 4, 
..., m - 1.  (We say that these numbers are on level 0). Now proceed to the next level (level 1) of 
tick marks, and proceed counterclockwise, marking each tic mark m, m + 1, m + 2, ..., 2m - 1.  
Then proceed to the next level (level 2), etc.

The Helical Representation of Congruence
Here we again begin with a circle, but we orient it horizontally, then use it to define an infinite 

cylinder in the vertical directions upward and downward from the circle.  We now select a 0 point 
on the circle, and define a helix passing through that point and running upward and downward 
around the cylinder.  We place tick marks at regular intervals on the helix so that they define m 
vertical lines (corresponding to the spokes in the wheel-and-spokes model).  The positive (and 
118



A Few Off-the-Beaten-Track Observations...
here, negative) integers are marked at the tic marks in a manner analogous to that for the wheel-
and-spokes model.  Levels are numbered similarly.

The Lines-and-Circles Representation of Congruence
This is virtually identical to the helical representation, and is described in my paper, “Is There 

a ‘Simple’ Proof of Fermat’s Last Theorem?”, accessible as a downloadable PDF file on the web 
site www.occampress.com.

These representations make certain relations in elementary congruence theory much easier to 
understand.  For example, x y mod m simply means that x and y lie on the same spoke or the 
same vertical line. x = qm + r simply means that x lies at the intersection of level q and spoke (or 
line) r.

These models also suggest approaches to the solutions of problems (see, e.g.,“Is There a ‘Sim-
ple’ Proof of Fermat’s Last Theorem?” on occampress.com).  

Furthermore, eliminating the rods for the moment, but keeping the integers with their associ-
ated tick marks, we can imagine the radius of the cylinder increasing continuously, and then ask 
questions about the change in location (their angle) of various integers as this process occurs. 
Clearly, if the radius increases without limit, then the integers will eventually line up as for mod 2, 
mod 3, mod 4, ..., mod m, ...  for any m.  Given that the definition of equality in modular arithme-
tic is, a = b iff a   b mod m for all m, we might begin to wonder how equality is even possible 
when viewed in terms of the continually increasing diameter of the cylinder!

Another question that arises is whether we can generalize the notion of modulus, remainder, 
etc., to other operators.  In the case of modular arithmetic, we have addition, subtraction, multipli-
cation, and, in certain cases, division.  Suppose we take as our fundamental operation, exponenti-
ation relative to a base m, as opposed to addition relative to a modulus m.   Then corresponding to 
0, m, 2m, 3m, ... on the 0 spoke (or 0 line) would be m0, m1, m2, m3, ... on the 0 spoke (line).  Cor-
responding to remainders mod m would be fractional powers except that here we would have to 
limit the number of decimal places for each such fractional power in order to ensure only a finite 
number of such fractions between each successive power of m. 

Ackermann’s function, well known to computer scientists, might lend further insight into the 
idea of higher level moduli.

The Prime Numbers Plane
Here, we map (informal sense) all the positive composite numbers and all multiples of each 

prime, onto to the positive plane.  Details will be found in the section “Graphing the Primes” on 
page 121 . 

The Tree of Tuple-sets for the 3x + 1 Problem
The 3x + 1 function can be mapped (informal sense) into an infinite tree of planes, each plane 

containing what I have called a “tuple-set”.  The tuple-set structure as of now seems to make pos-
sible a remarkably simple proof of the 3x + 1 Conjecture.  See the paper, “A Solution to the 3x + 1 
Problem” on occampress.com.

Mappings Between Moduli
Why is it that there are so few results, in elementary congruence theory, concerning mappings 

between moduli ?  What can we know about mappings from smaller moduli to larger, and vice 
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versa?  How many such mappings are there from a given modulus?  Which ones are of particular 
interest? (We are really talking here about mappings between arithmetic series, because each resi-
due class mod m is in fact an arithmetic series.)  

Divisibility
In determining if an integer y is evenly divisible by an integer x,  is it ever advantageous, com-

putationally, to convert y into a number in base x and then simply check if the least significant 
digit is 0?  Is the answer yes only if it is necessary to determine divisibility of a large number of y 
by a given x?

A counterargument is probably that the computational labor in converting y into a number in 
base x, is greater than the computational labor of simply dividing y by x and seeing if there is a 
remainder.

But suppose there were a list of a very large number of positive integers in base 2, and list of a 
very large number of positive integers in base 3, and ... 

Then to determine if a given positive integer n were prime, one would only need to look at the 
nth item in each list for all lists up to the smallest base greater than the square root of n...

The second-hand of a watch or clock is seen to land in between the seconds divisions at each 
tick.  What condition would be necessary for the hand eventually to land at every point on or 
between divisions?

Counting Made Difficult
Instead of counting 1, 2, 3, ...  why not count interestingly, e.g., (complicated integral that 

equals 1), (complicated something else that equals 2), (complicated something else that equals 3), 
etc.  Then everyone’s counting would be individualized, and, in particular, counting would be a 
challenge again.  Well, no, it probably wouldn’t, because once everyone knew that the activity of 
counting was going on, they wouldn’t have to figure out each number.  But they would if it 
became the practice to express every integer, whether in a counting sequence or not, via a compli-
cated expression.

Calculating With Waves
      What kinds of calculations can we perform using waves?  For example, I can determine the 
least common multiple of any two positive integers by superimposing waves having frequencies 
corresponding to the two integers, then (assuming the waves are in phase) looking for the points at 
which their peaks coincide. We can add or subtract any two numbers by representing the numbers 
by the amplitudes of in-phase waves and determining the amplitude of the resulting wave.  Calcu-
lating with waves would allow the loss of many points of the waves without rendering the result 
ambiguous. 

A Challenge for the Creative Few
Make a useful calculator out of a piece of cloth the size of, say, a men’s handkerchief.  The 

cloth can be printed with any desired figures, lines, colors. 

Number Popularity
Let us say that powers of integers — squares, cubes, etc. — are popular because the corre-

sponding functions — y = x2, y = x3 —  are popular functions.  The question is, are there  some 
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numbers which are “lonely” because they occur in hardly any functions?  Begin with the lexical 
ordering of all Turing machines under some Turing machine formalism, tally the numbers which 
they produce (out to some reasonable maximum) for the lexical ordering of all inputs.

On Determining if a Number is Prime
Preliminary Remark

The literature on determining if a number is prime is extensive and profound.  An unsophisti-
cated reader could almost imagine that the primes occur randomly in the sequence of positive 
numbers.  And yet the fact is that the primes result from an extremely orderly process: it is known 
as the Sieve of Eratosthenes and is as follows.  The first prime is 2.  Delete from the set of positive 
integers all multiples of 2 (except 2 itself).   Now go to the next larger number that is not a multi-
ple of 2.  That is 3.  Delete from the set of positive integers all multiples of 3 (except 3 itself).  
Now go to the next larger number that is not a multiple of 2 or 3.  That is 5. Delete... etc.  The 
numbers left by this process are all and only the primes.

I assume that the only reason that this process can not be automated via a computer program is 
that the number of known primes at present is so large that determining the next larger number 
that is not a multiple of all known primes is beyond the powers of modern computers (and com-
puter memory).  

But can the Sieve not be the basis of a means for determining if a number is prime? 

Graphing the Primes
Consider a line graph of all the positive composite integers and all the positive primes created 

as follows. Let the vertical left-hand axis contain the positive integers.  All of the following verti-
cal axes are evenly spaced from each other and from the vertical left axis.  The first axis to the 
right contains 2 and all the positive multiples of 2.  Each number on this axis is on a horizontal 
line drawn extending from the same number on the vertical left axis.  Each multiple of 2 is marked 
by a heavy dot.

  The next axis to the right contains 3 and all the positive multiples of 3.  Each number on this 
axis is on a horizontal line drawn extending from the same number on the vertical left axis.  Each 
multiple of 3 is marked by a heavy dot.

The next axis to the right contains 4 and all the positive multiples of 4.  Each number on this 
axis is on a horizontal line drawn extending from the same number on the vertical left axis.  Each 
multiple of 4 is marked by a heavy dot.

The next axis to the right contains 5 and all the positive multiples of 5.  Each number on this 
axis is on a horizontal line drawn extending from the same number on the vertical left axis.  Each 
multiple of 5 is marked by a heavy dot.

Etc.
Then, to determine if any given positive integer u is a prime, simply move horizontally from u 

on the vertical left axis rightwards to the vertical axis with u at its base.  If you do not intersect 
any heavy dots in the process, then u is prime.  If you do, then u is composite.

For example, if u is 12, then in moving rightwards from 12, we intersect a heavy dot on the 2 
vertical axis (2  6 = 12), so we know that 12 is composite; then, moving rightwards, we  intersect 
a heavy dot on the 3 vertical axis (3  4 = 12); then, moving rightwards, we  intersect a heavy dot 
on the 4 vertical axis (4  3 = 12); then, moving rightwards, we intersect a heavy dot on the 6 ver-
tical axis (6  2 = 12).  We intersect no further heavy dots until we reach 12 (12  1 = 12).  We 
stop.  
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In the case of u = 13, we intersect no heavy dots until 13, and conclude that 13 is prime.
This is an extremely simple way to determine the primality of positive integers!  The only 

drawback is that it requires unlimited space (computer memory) for the graph. On the other hand 
it allows us to implement a rule of “no repeats of the same calculation!”  That is, up to the limits 
of our computer memory, and the spare computer time between other tasks, we could have the 
computer calculate the heavy dots.  Once they were in the graph, they would not have to be calcu-
lated again. 

The question now is: What is the largest square matrix that can be stored in a modern com-
puter, if each element of the matrix is either empty or contains a heavy dot?  Such a matrix could 
be filled with heavy dots according to the rule described above, in times when the computer was 
idle.  This could, and should by done, via a sequence of smaller matrices of successively increas-
ing sizes, growing from the lower left-hand corner, e.g., the 1 x 1 maze, then the 2 x 2 maze, then 
the 3 x 3 maze, then ...  A test to see if a number u is prime would then begin with a query as to 
size of the largest maze that had been filled.  If the size was greater than or equal to  u x u, then the 
above-described method for determining if u could be carried out.

In passing, we raise the following question: considering the extensive computations that are 
currently needed to determine primaility, and the simplicity of the above graphical method, is it 
possible that we can view exxtebsuve computations as a way of attempting to deal with too-lim-
ited space?  Are computations what we must do to “get around” our having too little space to 
make them simple — to “spread things out”?

We also ask if it is possible that a graphical representation like this is what enabled the 
remarkable twins described by Oliver Sacks to quickly determine if large integers were prime or 
not.

Questions Regarding Determining If a Number is Prime
When we think of the question of whether a given number c is prime, we regard it as a ques-

tion about its factors, hence a question about division.  Is it possible that an efficient way to deter-
mine if c is prime might be to compare the result when c is multiplied by a prime and the result 
when c is multiplied by a composite?  Is it possible that an efficient way to determine if c is a 
prime might be to observe properties of all a, b such that a + b = c?   

But this seems to require much more computation than simply dividing c by the primes in suc-
cession, up to the square root of c.

A Technique for Determining a Probability That a Number Is a Prime
Let c be a positive integer.  Divide c by the largest known prime p such that p  c.  (The larg-

est factor of c must be c.)  
If there is no remainder, then we know that c is composite.  If there is a remainder, i.e., if c = 

qp + r, where 1  r < q, then we may think that all we know is that p is not a factor of c.  But we 
know more.

Consider the segments, s0 = {0, ..., p – 1}, s1 = {p, ..., 2(p – 1)}, s2 = {2p, ...  3(p – 1)}, etc. 
The integer c must be in one of these segments.  In fact, c is in the segment sq.  Now consider all 
primes p1, p2, p3, ..., pk, where  pk  is the largest prime < p.  Then the segment sq contains multi-
ples of each of these primes. Let Sp denote the number of all these multiples that are in the seg-
ment sq.  We can therefore conclude that the probability that c is prime p – Sp)/p.  
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Unfortunately, the amount of calculation needed to implement the above procedure, is not less 
than that required to divide c by each prime c, and thus the procedure is impractical.

A Technique for Determining if a Number Is a Prime
Let c be a positive integer.  If all primes p such that p  c are known, then the following pro-

cedure might be a computationally-feasible way to determine if c is a prime.
1. Compute the product P1 of all successive primes 2, 3, 5, ..., pk, where pk is the largest prime 

such that P1 can be computed in an acceptable time. 
2. Compute the greatest common divisor (P1, c) of P1 and c.  If (P1, c)  1, then stop:  c is 

composite.  Otherwise, go to step 3.
3. Compute the product P2 of all successive primes pk +1, ..., pk + j, where pk + j is the largest 

prime such that the product can be computed in an acceptable time.
Repeat steps 2 and 3 with appropriate modifications and with the successive primes increasing 

in the obvious way.
If the greatest common divisors (Pi, c) = 1 for all products Pi up to the one that includes the 

largest prime c, then c is prime. Otherwise c is composite.
Obviously, the Pi  can be computed beforehand and stored.  The only limitation on the tech-

nique, then, is the computation time of the greatest common divisors.  The computations of these 
can be parcelled out among several computers — ideally, so that each computer is only burdened 
with one such computation.

A Technique for Determining the Factors of a Number
Assume that we have a very simple hardware circuit, which we will call a divider, that does 

nothing but repeatedly subtract a given prime divisor p from a given dividend n, pausing after 
each subtraction to determine if the result is greater than or equal to 0.  If a value less than 0 is 
reached, then the divider prints, “n is not divisible by p”.  If 0 is reached, then the divider prints, 
“n is divisible by p”. 

Our circuit thus performs division without being concerned about a quotient. Thus it does not 
require any memory except that required to hold the dividend n (the result of each subtraction of p 
is stored back into the memory that held n) and the divisor p, and, of course, the very simple sub-
traction circuitry.  We assume that this division can be very fast, giving the current state of hard-
ware technology. 

At the time of this writing (April, 2013), numbers consisting of more than 100 decimal digits 
are considered difficult to factor.  Assume that the number of binary digits is roughly four times 
the number of decimal digits.  So we need at least 400 bits to hold the dividend n and, as a worst 
case, at least 400 bits to hold the divisor p.  Assume another 200 bits to hold the subtraction cir-
cuitry.  Thus each divisor requires at least 1,000 bits.  

A large number of divisors can be wired in parallel on a single integrated circuit chip, and then 
a large number chips can be wired in parallel.  We assume, initially, that current technology per-
mits at least 1,000,000 such dividers — in other words, we assume that 1,000,000 trial divisions 
(each consisting of subtractions only) can be made simultaneously.  We assume that each trial 
division can be done in no more than one second, hence we can perform 1,000,000 trial divisions 
in no more than one second.
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Let k denote the number of dividers.

An outline of an algorithm for determining the factors of a positive integer n (and hence for 
determining if n is prime) is the following.  

1. Load n as dividend into each of our k dividers.  Load the jth prime as divisor into the jth 
divider, for 1  j  k.

2. Start all the dividers.  Each divider then repeatedly subtracts its divisor p from n until it 
returns “n is not divisible by p” or “n is not divisible by p.”  We remark in passing that as soon as 
the latter message appears, if in fact such a message ever appears in our tests of n, we know that n 
is not prime.

As each divider produces its result, the next untested prime is loaded as divisor into the 
divider, and the process is repeated.  It continues until all primes less than or equal to n have 
been tested.  (Obviously the algorithm will have to deal with the possibility that the largest known 
prime is less than n.) 

According to the Prime Number Theorem, the number of primes less than a number x is given 
by (x/(log x)), where “log” here is the natural log. 

Assuming we test 1,000,000 primes a second, that means we can test 86.4 billion primes, or 
86.4  primes in 24 hours.  Assume n = is a 100-digit number, that is, that n = 10100.  Then n 
= 1050 . For ease of calculation, use base 10 log instead of natural log. The number of primes less 
than 1050 is then about 1050/50, or more than 1048.  Sadly, our one day of prime testing will not 
bring us anywhere near the number of primes that need to be tested.

The reader will find a more sophisticated discussion of the problem of determining if a num-
ber is prime in The Princeton Companion to Mathematics, ed. Gowers, Tim, Princeton University 
Press, Princeton, N.J., 2008, pp. 348-362 .

. 

How Odd That There Is Not An Odd Number Like 2!
If we want to make an even number out of an odd number, we need simply multiply it by 2.  

Yet if we want to make an odd number out of an even number, there is no integer we can multiply 
it by to make it odd.  Instead, we have to divide it by the largest power of 2 that is one of its fac-
tors.  Why isn’t there an integer that serves the same purpose as 2 does in the first case?

“What Is the Next Number in the Following Sequence of Numbers...?”
Intelligence tests almost always have questions in which the test taker is asked to write down 

the next integer in a given sequence of integers.
I have always been bothered by these questions, because I think that, except in the most obvi-

ous cases, e.g., when the given sequence is something like 2, 4, 6, 8, 10, what the test designer 
requires as the correct answer is nothing more than what he has decided is the correct answer. Yet, 
in fact, there are at least two ways of deciding objectively what the correct answer is.  However, 
each one requires far more time (and computing power) than the test taker will have available to 
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him or her during the test. For this reason, I am sure that the test designer’s decision as to the cor-
rect answer is never based on either of the two ways.

The first of the two ways is the following: (1) choose a Turing machine formalism that is 
capable of representing every computable sequence of integers; (2) of all the Turing machines that 
generate the given sequence of integers, find the shortest one — that is, the machine that is 
defined by the shortest string of symbols; (3) the next integer that is generated by this machine is 
the correct answer to the intelligence test question.

The second way uses a basic procedure in the mathematical subject called Finite Differences. 
The procedure begins with one writing down the difference between each successive pair of inte-
gers in the sequence in the test question, then the difference between each successive pair of those 
differences, etc., until one arrives at a sequence of identical integers.  From the number of 
sequences of differences, one is able to write down a certain polynomial.  One then goes through 
a process that yields, from the polynomial, a set of j simultaneous equations in j unknowns.  The 
solutions then allow one to determine the next integer in the original sequence, and hence the 
answer to the test question.

I do not know of any proof that the answers arrived at by these two ways are always identical.

Is There A Number Too Large To Be Written Down?
In his book, Littlewood’s Miscellany1, J. E. Littlewood asks, “could there be a case in which, 

while pure existence [of a number] could be proved, no numerical X could be given because any 
possible value of X was too large to be mentioned?”

Suppose N is the smallest value of X, i.e., the smallest number that is too large to be men-
tioned. (“N”, of course, is simply a name of the number.)  Have I just mentioned a number that is 
too large to mention?  Any irrational number, e.g., the base e of the natural logarithms, cannot be 
written down in its entirety, but we can write down approximations of it. Is there a difference 
between mentioning a number and writing it down and writing down an approximation of it?

Littlewood describes a recursive sequence, based on exponents, that yields ever larger num-
bers. We can stop the sequence at any time, and consider the number thus expressed (mentioned). 
It is certainly true that a sufficiently large such number cannot be written down as a normal inte-
ger in decimal notation at any given time because there is not sufficient paper in the world, or suf-
ficient computer memory. 

There is, of course, an infinity of integers so large that the shortest known representation of 
such an integer requires more binary digits than, say, the number of atoms in the universe.  For 
example, we know, from algorithmic information theory, that there are finite binary sequences 
whose shortest representation is essentially as long as the sequence itself.  These sequences are 
called random. So let S be the set of all binary sequences of length, say, the number of atoms in 
the universe.  Each sequence represents an integer in binary.  A subset of S  consists of sequences 
that are random.  Let s be the sequence in the subset representing the smallest integer of all the 
integers represented by sequences in the subset.  Then I have described a specific, very long 
sequence, but I can’t even write down, say, the first five bits of it.

Here is a tentative proof that there is no number that is too large to be written down. 
Assume, to the contrary, that there is such a number.  Assume that N is the smallest such num-

ber.  We now ask if N – 1 can be written down.  It it can, then certainly (N – 1) + 1 = N can also be 

1. ed. by Béla Bollobás, Cambridge University Press, Cambridge, 1990, p. 112.
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written down, contrary to our assumption. So N – 1 can’t be written down.  But then N – 1, and 
not N, is the smallest number too large to be written down.  This contradiction gives us our proof.

A question in passing is: suppose N is the largest number that can be written down.  Then how 
does the person, or computer, acquire that number, so that it can be written down? Presumably, it 
must be written down and then copied.  But then how did the person, or computer acquire that 
number so that it could be written down?  Etc.

On Inner Products and Finite Sums of Powers of Consecutive Positive Integers
In mathematics, there is a set of finite sums of powers of consecutive positive integers, for 

example, 13 + 23 + 33 + ... + k3.  Formulas are known for the sums.
In contemplating such a sum, we might see it as an inner product, namely, <u, v>, where u = 

(1, 2, 3, ..., k) and v = (1n–1, 2n–1, 3n–1, ..., kn–1).  (In our example, n = 3.)
It is a well-known fact that 

(1)
cos  = (<u, v>)/(||u|| ||v||), 

where ||u|| = <u, u>, and similarly for ||v||, and is theangle between the vectors u and v.

We observe in passing that (1) implies the Cauchy-Schwartz Inequality, namely, |<u, v>| ||u|| 
||v||.

Can we make anything of the fact that a finite sum of powers of consecutive positive integers, 
can be represented by an inner product?

We observe that our set of finite sums is a function F(k, n).  We can list the ordered pairs of 
this function in an infinite matrix, in which row headings are the values of k (namely, 1, 2, 3,...) 
and column headings are the values of n (again, 1, 2, 3, ...).  The matrix cell (k, n) contains the 
value of F(k, n).   If we compute a sufficiently large number of these values, do we observe any 
patterns that enable us to find values of F(k, n) much more rapidly than any of the formulas do?

Set Theory 
A Question About Categorizing a Finite Set of Things

Our question is simply: What is the “best” way to categorize a finite set of things?
We might ask this question when, e.g., designing a company organization chart (to be distrib-

uted on paper) that includes departments and job titles.  Programmers and users often disagree on 
the best categorization: “It’s better if you organize them like this.”  Sometimes they put the same 
subset inside several other subsets, e.g., “programmers” inside “marketing”, “programmers” 
inside “engineering”, “programmers” inside “manufacturing”.

What are they attempting to optimize? What are we saying when we say, “This categorization 
is better than that one?” Merely that the access time, or memory usage, is less?  Or that the catego-
rization is easier to comprehend for humans?  Is anything known about the complexity, ala algo-
rithmic information theory, of different categorizations?  How are different categorizations even 
possible?  Because each thing has more than one property, and a property defines a set?  What is 
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the property of each subset in the power set of a set?  Is it simply the property of having only its 
elements?

Or suppose we want to make a tree showing the subsets of a class of mathematical entities, say 
of rings (these are sets of numbers or other entities that behave like the integers under addition, 
subtraction, and multiplication).  We would like the top of our tree to have just two branches.  So 
we might choose to have one branch for, say, commutative rings and the other for non-commuta-
tive rings. But we could also choose one of the top two branches to be for rings with the unique 
factorization property, and the other for rings without this property.  Or we could choose to have 
the top two branches represent quadratic rings and non-quadratic rings.  Etc.  What is the “best” 
way?

Or suppose we want to categorize (sort) all the subsets of a finite subset?  What is the “best” 
way?

A Tentative Answer to the Question 
Our tentative answer to the question is the following. Let n be the number of objects in the set. 

Number the objects 1, 2, 3, ..., n.  Suppose each object can have from 0 to k properties numbered 
0, 1, 2, ..., k.   Associate with each object a binary string of length k.  If an object has the property 
k, then let the kth digit from the right in the string be 1; otherwise let it be 0.

We see immediately that there are many ways that we can categorize the objects in the set by 
their properties.  We can begin by collecting into a subset, all objects having a certain property 
(any property), then, within that subset, we can collect all objects having another property, and 
then, within the resulting subset, we can collect all objects having still another property, etc.

The “best” categorization is then a matter of our personal wishes and needs.  We might decide 
on a property that is most important for us, and collect all objects having that property, then con-
tinue down through subsets of that subset. Or we might want the categorization that has the most 
levels in the vertical direction (the “deepest” categorization).  Or we might want a categorization 
that has the least levels in the vertical direction (the “flattest” categorization).  (There may be 
more than one categorization in each of these cases.)  Etc.

A Historical Question About Infinite Sets
It is easy to show that the number of points in a long line is exactly the same as the number in  

a short line: simply center the short line above the long one so that the two are parallel.  Then 
from a point above both it is possible to draw a straight line through any point of the longer line 
that intersects a point of the shorter line, and vice versa.  Or consider two concentric circles: the 
radius through any point on the smaller circle meets a point on the larger circle, and vice versa.  
The Greeks were perfectly capable of recognizing these facts.   Why didn’t they?  If you reply that 
they would have considered it nonsensical for a smaller-diameter circle to have as many points as 
a longer-diameter circle, I reply that they could have proven the fact by using a technique they 
were familiar with and accepted, namely, approximating a circle by a sequence of regular poly-
gons of increasing number n of sides.  For some n, inscribe a regular n-gon in the smaller circle, 
and then inscribe an n-gon in the larger concentric circle so that corresponding vertices of each n-
gon lie on the same radius.  Then regardless how large n is, it is clear that the points in the smaller 
circle match one-one with those in the larger.  Unfortunately, this argument holds only for a count-
able infinity of points in each circle, whereas the number of points in each circle, as we now 
know, is uncountable.
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“Proclus [412-485], the commentator on Euclid, noted that since a diameter of a circle divides 
it into halves and since there is an infinite number of diameters, there must be twice that number 
of halves. This seems to be a contradiction to many, Proclus says, but he resolves it by saying that 
one cannot speak of an actual infinity of diameters or parts of a circle. One can speak only of a 
larger and larger number of diameters or parts of a circle. In other words, Proclus accepted Aristo-
tle’s concept of a potential infinity but not an actual infinity.  This avoids the problem of a double 
infinity equaling an infinity.

“Throughout the Middle Ages philosophers took one side or the other on the question of 
whether there can be an actual infinite collection of objects.  It was noted that the points of two 
concentric circles could be put into one-to-one correspondence with each other by associating 
points on a common radius.  Yet one circumference was longer than the other.

“Galileo struggled with infinite sets and rejected them because they were not amenable to rea-
son.” — Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University 
Press, N.Y., 1972, p. 993.

 
Is the Set of All Sets “Like” a Klein Bottle?

I will assume that the reader is familiar with the Klein bottle.  Its form suggests the following 
“demonstration” that the set of all sets contains itself.  

Imagine the set of all sets inside a gourd-shaped container that has a hole in the end of the nar-
row neck.  Now make a small hole in the side of the container, then extend the narrow neck and 
curve it around so that the hole in the neck can be inserted into the hole in the side.  The set of all 
sets now contains itself.

On the Size of the Set of All Sets
Let S denote the set of all sets.  Then certainly {1, 2, {3, 4}} is an element of S.  And so is {3, 

4}. And so is each set that is an element of another set. And so is {1}.  And {{1}}.  And {{{1}}}. 
And ...   And a similar infinite sequence can begin with anything that can legitimately be enclosed 
in a pair of curly braces.

The set of all irrational numbers is an uncountable infinity.  And each irrational number d is 
associated with an infinity of sets, namely {d}, {{d}}, {{{d}}}, ...

We must not forget that since S is a set, so is {S}, and {{S}}, and {{{S}}}, and...
It is difficult to see how the set of all sets as we have described that set, can somehow “fit” 

into the gourd-shaped container described in the previous sub-section.  And, of course, we must 
recognize that if T is a set, {T} does not contain “itself”.  {T} is a set that contains T; {T} does not 
contain{T}.

Cantor showed that there is an infinity of infinities.  Is one of those infinities the cardinality of 
the set of all sets?

Carrying the Theory of Types to Extremes
Consider the concept of the number of numbers, e.g., three 3’s.  Would anything useful result 

if we imposed a strict hierarchy of types on everything we did that was concerned with the non-
negative integers, so that, e.g., we would speak of a 3 of Type 0 (a 3 standing alone), a 3 of Type 
1(a 3 that was counting, or multiplying another number), a 3 of Type 2 (a 3 that was counting or 
multiplying another number which in turn was counting or multiplying another number), etc.? 
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Would some things become clearer?  Suppose numbers were “color-coded” to represent their type 
in a given context.

The Borges Set
Exercise: make Venn diagrams to represent a few reasonable interpretations of the classifica-

tion of animals described in the following passage:
“These ambiguities, redundancies, and deficiencies recall those attributed by Dr. Franz Kuhn 

to a certain Chinese encyclopedia entitled Celestial Emporium of Benevolent Knowledge.  On 
those remote pages it is written that animals are divided into (a) those that belong to the emperor, 
(b) embalmed ones, (c) those that are trained, (d) suckling pigs, (e) mermaids, (f) fabulous ones, 
(g) stray dogs, (h) those that are included in this classification, (i) those that tremble as if they 
were mad, (j) innumerable ones, (k) those drawn with a very fine camel’s hair brush,  (l) others, 
(m) those that have just broken a flower vase, (n) those that resemble flies from a distance.” — 
Borges, Jorge Luis, “The Analytical Language of John Wilkins,” 1941, quoted in Rucker, Rudy, 
The Fourth Dimension: A Guided Tour of the Higher Universes, Houghton Mifflin Company, 
Boston, 1984, p. 197.

Cryptography
 A mathematician I know claims that every code, except, possibly for those used in one-time 

messages, can be broken.   
But J. E. Littlewood, one of the great mathematicians of the first half of the 20th century, said:
“The legend that every cipher is breakable is of course absurd, though still widespread among 

people who should know better, ... [although] it is sufficiently obvious that a single message can-
not be unscrambled.”1

Littlewood’s book was first published in 1953, before the development of the high-powered 
computers that are used today to break codes.  Yet even so, I doubt if, even now, he would con-
cede that every code can be broken.  I certainly do not believe that.

 The correct answer to the question, “Is this coded message decipherable?”, is “It depends”.  
Thus, e.g., sufficiently numerous messages sent using a simple substitution code, will eventually 
result in the breaking of the code by well-known statistical facts concerning the language in which 
the message is written.  But a message requiring very large computer resources, including time, to 
be deciphered, might not be deciphered before the message has become obsolete.  Which is as 
good as saying that the message was not decipherable.  

It seems to me that the proper way to think about codes is to think in terms of the values of 
items in a table of parameters such as the following:

1. How much of the message the recipient already has (see “Item 1 Notes” below);
2. How often messages in a single code are sent, and/or how long the average message is;
3. The code used;
4. How much of the context of the message is known to the potential code-breaker (see “Item 

4 Notes” below);
5. The decoding equipment available to the potential code-breaker (pencil and paper vs. high 

powered computer with sophisticated software);

1. Littlewood, J.E., Littlewood’s Miscellany, Cambridge University Press, New York, 1990, p. 43.
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6. The maximum amount of time available to break the code, after which the message is obso-
lete;

7. Concealing from the potential code-breaker, the starting point of the message.  Suppose that 
the sender sends a sequence of characters starting at 12:05 a.m. each day, and continuing until 12 
midnight that day.  The recipient would have been given, in advance, the date and a positive inte-
ger n to indicate that, on that date, the message starts with the nth character sent that day.

8. Possibility of the potential code-breaker finding out the location of the recipient, and cap-
turing him and torturing him to make him reveal the code;

9. The electromagnetic frequency over which the message is to be sent, and the speed at which 
the characters will be sent.  This would seem to require a very large investment in equipment 
(how many possible frequencies are there, at any given time, over which a message could be 
sent?).

Item 1 Notes
Suppose that, in World War II, the Allies had a spy in France.  The complete plans for the pos-

sible attack at Normandy, and the complete plans for the possible attack at Calais, had been deliv-
ered to him by hand, along with the fact that, at a certain specified time, at a certain specified 
wavelength, a 1 would be sent if the attack was to be at Normandy, and a 0 if it was to be at Calais.

Clearly, this one-bit message could not be deciphered — not even if the Germans knew that 
the bit referred to which plan was to be implemented!

So that is one extreme.  The other would be if the recipient had no idea what the coded mes-
sage was to tell him.

In war at least, the recipient usually has a very clear idea what the message will be about — a 
prospective attack by his side, a change in physical direction and speed for his vehicle(s).  So why 
not number all the possibilities beginning at 1, where one possibility might be, say, “Attack [name 
of town] at 5 a.m.”, another might be “Attack [name of town] at 6 a.m.”, etc.  Since there are only 
a finite number of towns and a finite number of attack hours, a number can be assigned to each 
possibility.  Similarly for other commands, e.g., “Continue on present course until 9 a.m., then 
turn left 45 degrees”, “Continue on present course until 10 a.m., then turn left 45 degrees”, etc.  
The number of the possibility can then be buried in a pre-agreed-upon location in a code text 
whose other numbers and letters are randomly chosen.  

Or suppose there are, say, five attack plans, each numbering many pages.  The code recipient 
has a copy of each. Then to send the message, “Attack according to plan no. 3”, only the number 
3 need be sent (at a pre-agreed-upon location in a text otherwise filled with randomly-selected 
characters)1.  

Why wouldn’t such codes be harder to break than traditional ones?
(We might call this the “pre-sent messages” approach to cryptography.) 

1. One reader whose extensive knowledge of advanced cryptographic techniques made it impossible for him 
to think about simple things, told me that the coding idea in this section was trivial and unimportant.  I asked 
him how trivial and unimportant Hitler would have considered knowing which of two numbers, 1 or 0, 
referred to the plans for the D-Day invasion, where, say, 1 referred to the plans for the Normandy invasion, 
and 0 referred to the plans for the invasion via Calais (which was also under consideration at the time). Even 
even if he had a copy of each set of plans, and even if somehow he was able to locate the number (1 or 0) in 
the stream of characters he intercepted, he would still not know where the attack was to take place without 
knowing which number had been assigned to which set of plans.
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Item 4 Notes
Thus, e.g., the breaking of the code that the Germans used with their Enigma machines (one of 

which had been stolen by the Allies in Poland early in the war), was certainly made easier by the 
fact that all the messages pertained to military activity in Europe and in the Atlantic (submarine 
warfare).

Other Thoughts
If I were asked to break a code, I would think about the problem topologically and in terms of 

algorithmic information theory.  Suppose you have a text to be encoded so that the enemy can’t 
read  it.  Suppose that you decide to substitute letters, but what you will do is, letter by letter, 
select its substitution at random.  So, in effect, if the first word were “This” you would randomly 
select a character from the alphabet and substitute it for “T”.  Then do the same for “h”, “i”, “s”, 
and continue this process throughout the message, so that the substitution for a given letter will in 
general depend upon where it appears in the message.  The trouble is that the only way you can 
tell your agent the code is by sending him the original text along with the replacement characters, 
and if you can send him the original text, why bother with the replacement characters?  On the 
other hand, if the enemy somehow manages to get only the encoded text, they can learn nothing 
about the code, because it is new for every character.  Putting it topologically, nothing is “near” to 
anything else.  If I know something, I don’t also know something else.  So, in my coding school, 
we begin by looking at all possible topologies that are applicable to strings of characters.  

In ordinary replacement ciphers, such as appear on the puzzle page of Sunday papers, e.g., the 
San Francisco Chronicle,  what are the chances we are wrong once we have found a substitution 
that works for two words?  Three?  Four?  Etc.  This is a question about how “prickly” the English 
language is from a topological point of view.  See my paper, “Occam’s Razor and Program Prov-
ing by Test”, on the web site www.occampress.com .

Consider the following coding system.

1. Assume there are 40 alphanumeric symbols.  Now consider a tape with, say, 1,000 divisions 
marked on it.  (Obviously, such a tape can be represented in a computer.)

2. Divide the tape up into 40 segments of arbitrary length.

3. Randomly associate each segment with an alphanumeric symbol.

4. A message is a sequence of three-digit integers in the range 000 to 999, where 000 denotes 
the first division after the start of the tape, and  999 denotes the end of the tape.

The alphanumeric character indicated by the three digits xyz is the character that was ran-
domly assigned to the interval containing the division xyz.

A message consists of a sequence, without breaks, of three-digit sequences in the above range. 
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Observe that the same text can be represented by several different messages, since more than 
one three-digit sequence can represent the same character if there is more than one division in the 
interval associated with that character.

It seems to me that this would be a difficult code to break, since the enemy does not know (1) 
that we are using such a scheme in the first place; (2) how many divisions there are in our tape, (3) 
what divisions are associated with what intervals, and (4) what alphanumeric character is associ-
ated with each interval.

In principle, the code can be broken, via the following program:

For all numbers-of-divisions d up to the limits of the computer do
    for all sequences of 40 intervals each of any length as long as the total length of all the 
               intervals = d do
        for all possible assignments of 40 alphanumeric characters to the intervals do
             compute the resulting sequence of alphanumeric characters.  
Compare all the sequences of alphanumeric characters, and choose the one most likely to be
             the original text.

Cluster Theory
In a math class for liberal arts students, the following was a homework problem:

Suppose a student got the following grades on different tests: 80, 90, 85, 90, 50, 78, 84. What 
is the best single number to assign as a grade for this student?

The professor asked his students to consider mean, median, mode and midrange for these 
grades, as possibly providing the answer.  But insofar as that implies that one or more of these 
measures can be used in general to give the best grade, it is misleading. I can only hope that, in 
going over the homework problem, the professor pointed out that a good answer can be arrived at 
by computing the center-of-gravity of the grades.  He could ask the class to imagine a metal rod, 
say, 100 inches in length.  Each grade could represent a point on this rod.  Thus, e.g., the grade of 
50 is 50 inches from the left-hand end, the grade of 78 is 78 inches from the left-hand end, etc.  At 
the point that each grade represents, a string can be tied to the rod and, say, 1 inch below it, a 1 
pound weight attached.  (There would be a two one-pound  weights below 90.)  The professor 
could then explain that there is a point on the rod which, if the rod were held aloft on the end of a 
finger placed exactly at that point, the rod would balance.  The best grade – the most representa-
tive grade – is the distance from the left-hand end of the rod to that point.  

He could then state that the formula for the center-of-gravity cg is:

where xi in the present case is the distance from the left-hand end of the rod to a grade, and mi is 
the number of pounds suspended at that point (all the mi  are 1 except for 2, below the grade of 
90).

cg
x1m1 x2m2  xnmn+ + +

m1 m2  mn+ + +
--------------------------------------------------------------=
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Filling in the values in the above formula we get cg = 79.57. The reader can verify that the 
sum of the clockwise torques to the right of the cg, exactly equals the sum of the counterclockwise 
torques to the left of the cg.  Hence the rod, if held aloft on one’s finger at that point, exactly bal-
ances, i.e., does not rotate about the point either clockwise or counterclockwise.

Reversing the Names of Courses
A major subject in mathematics is algebraic topology. Why is there no subject, topological 

algebra?  What might such a subject consist of?  We can ask equivalent questions about algebraic 
geometry and arithmetic geometry.

Troubled Thoughts About Symmetry
In elementary mathematics courses and popularizations, symmetry is taught using symmetric 

geometrical figures, for example, the square.  The vertices of a square are labeled, then an opera-
tion is performed that demonstrates the symmetry of the square, for example, rotating it clockwise 
by 90 degrees about its center,  The rotated square is shown to be superimposed on the original 
square, and the vertices of the rotated square are shown to be different than the vertices of the 
original square.  This gives rise to a discussion of permutation of vertices, and an answer to the 
question, How many different symmetric operations of the square are there?

But a square is not a geometric figure with labeled vertices.  Given a square without labeled 
vertices, we can perform various operations that result in the same square being present, and 
superimposed on the previous square.  We can make a list of all the operations that have this 
effect, and we can then observe that arbitrarily long finite sequences of these operations will 
always result in the same square being present, and superimposed on the previous square.

I want to say: and that is all we can legitimately do!  To talk of labeled vertices, and how the 
vertices move as a result of an operation, is to talk, not of a square, but of something we should 
call a labeled square.  Which is not the same thing.

Kakeya’s Problem
Kakeya’s Problem is to “find the region of least area in which a segment of unit length can 

turn continuously through 360 (minimize area swept over).”1

Littlewood says that it was long thought that the minimum area was This  was achieved 
by a “triangle” of certain dimensions with the sides curved inward by the same amount.  The unit 
segment s could then be slid along each side and pivoted appropriately when one end reached a 
vertex of the “triangle”.  

But Littlewood then says, “... A. S. Besicovitch  (Math. Zeit.  27(1928), 312-320) showed that 
the answer is zero area (unattained).  : given an arbitrarily small area  the area swept can be less 
than .  As  tends to 0, the movements of the segment become infinitely complicated  and involve 
excursions towards infinity in all directions.”2

As a personal challenge, I have deliberately not looked up the solution.  However, Ian Stewart 
in his The Problems of Mathematics3, pp. 173-174, says that, in the course of the development of 

1. Littlewood, J. E., Littlewood’s miscellany, Cambridge University Press, New York, 1990, p. 38.
2. ibid.
3. Oxford University Press, N.Y., 1992
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Lebesgue measure, “it transpired that sufficiently messy and complicated sets may not posses 
well-defined areas and volumes at all.”

In 1924, the Banach-Tarski Paradox was published.  It states that it is possible to dissect a 
solid sphere into six pieces, which can be reassembled, by rigid motions, to form two solid 
spheres each the same size as the original and each having the volume of the original.  “The trick 
is that the pieces are so complicated that they don't have volumes.”

The zero-area solution to Kakeya's Problem was published in 1928.  My guess is that it is an 
application of the measure theory that yielded the Banach-Tarski Paradox.

The Game of FreeCell
The computer game of FreeCell (Windows 7.0 version): 52 cards are dealt randomly in 8 rows 

so that there are 4 columns containing 7 cards each, and 4 columns containing 6 cards each.  On 
top are 4 free cells on the left, and 4 final cells.  The goal, as in solitaire, is to wind up with the 4 
final cells containing ace through king, with ace on bottom, for each suit.  Same moves are 
allowed as in solitaire.  

“Help” for the game says all games are winnable but it seems easy to come up with an initial 
layout that is not, e.g., all four aces at top of leftmost four columns; in front of them all four kings; 
all four fours at top of rightmost columns, then all four threes, then all four twos, then successive 
rows of same color as possible.  

Does the game have a winning strategy?  
The Windows 10.0 version allows the player to choose the level of difficulty, from Easy, 

Medium, Hard, and Expert.  How are these levels determined?
Suppose we sorted all possible games.  Each possible initial layout of cards would be the root 

of a tree. The first level [not the same as a level of difficulty] would be the result of all possible 
single moves.  The second level would be the result of all possible single next moves. The third 
level would be ...   

Clearly, we could use the computer to find all possible successful games.

A Question About Strategy and the Sorting of Games
A Game, e.g., chess, checkers, a card game, a board game, consists of various games each of 

which is defined by the starting positions of the pieces, or the initial distribution of the cards, etc. 
The question is: if we know how to sort the games in order of increasing difficulty (more than 

one game may have the same level of difficulty, of course), do we have a strategy for winning 
each game?

Posed Problems
Although I have never come across these problems in the course of reading or study, I make 

no claim that any of them is original.

The Cross-Number Problem
In cross-number puzzles such as appear on the Sunday puzzle page of the San Francisco 

Chronicle, what is the minimum number of rows and/or columns and/or diagonals we have to 
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check before we know our answer is correct?  What is the minimum number of correct numbers 
we have to have in place in order to force a correct solution?

A Pendulum Problem
Suppose that a pendulum were suspended inside a given pendulum, how would this second 

pendulum behave as the first swung back and forth?  Consider several cases, e.g., (1) if the initial 
position of the second were the same as the initial position of the first; (2) if the initial position of 
the second were the opposite (i.e., far left if the first were far right, etc.); (3) various lengths of the 
second relative to the length of the first; (4) a third pendulum inside the second, etc.

“Build your own chaos machine. One of the best non-computer projects I know for 
observing chaos involves building a double pendulum — a pendulum suspended from another 
pendulum. The motion of the double pendulum is quite complicated.  The second arm of the 
pendulum sometimes seems to dance about under its own will, occasionally executing grace-
ful pirouhettes, while at other times doing a wild tarantella.  You can make the double pendu-
lum from wood. At the pivot points, you might try to use ball bearings to ensure low friction...

Place a lead weight at the bottom of the first pendulum so that the pendulum will swing for 
a longer time. (The weight stores potential energy when the pendulum is lifted.) The second 
pendulum arm can be about half the length of the first. You can place a bright red dot, or even 
a light, on one end of the second pendulum so that your eye can better track its motion. Note 
that your pendulum will never trace the same path twice, because you can never precisely 
reposition it at the same starting location, due to slight inaccuracies in knowing where the 
starting point is.  These small initial differences in position are magnified through time until 
the pendulum’s motion and position become unpredictable.  Can you predict where the lower 
pendulum will be after two or three swings? Could the most powerful supercomputer in the 
world predict the position of the pendulum after 30 seconds, even if the computer were given 
the pendulum’s precise equations of motion?” — Pickover, Clifford A., A Passion for Mathe-
matics, John Wiley & Sons, Inc., Hoboken, N.J., p. 190.

The Parking Place Problem
What is the smallest parking place a car can be driven out of?  Assume that all cars are the 

same width (though lengths can vary), that they are all rectangular when viewed from above and 
that they are all parked parallel to the curb.  The turning radius of the car is given, i.e., for each 
position of the steering wheel, the forward and backward trajectories of the car can be determined.  
Tentative answer: a car can get out of any parking place whose length is greater than the diagonal 
of the car.  

The Income Tax Problem
Assume you paid, say, $5,000 in income taxes last year.  Late in the year you are amazed to 

hear about something actually constructive the federal government did, e.g., that it gave several 
million dollars to a company to develop solar power generators.  You tell a friend how much tax 
you paid, and then you say, “It feels good to know my money is helping solve our energy prob-
lems.”  The friend shakes his head and says, “But you don’t know that your $5,000 went to the 
solar project. As a matter of fact, I am quite sure it went to the Iraq war.”  Are you both wrong, 
and why? Or, if one of you is right, which one and why?
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The Cassette Tape Problem
Write an equation to describe the speed of a tape casette wheel containing tape which is being 

wound onto another wheel of identical dimensions, assuming the second wheel runs at constant 
speed, s,  and the tape is of some fixed thickness, t.  

Describe the behavior of a tape casette as a group, in which the group elements are tape 
unwinding (tape rewinding), and turning over of the cassette (always beginning with the tape flat 
on the table, with the longer  edges parallel to the front of the table), the direction of rotation of 
the cassette always being the same.  (We may imagine that when we are listening to the tape, i.e., 
running it in the forward direction, a person in a mirror universe is rewinding it, and vice versa.)

The Laundry Bag Problem
Suppose shirts cost $w each, and each shirt can be worn x days (not necessarily x consecutive 

days) before it needs to be washed.  You must wear a shirt every day.  Shirts wear out and must be 
discarded after u washings.  The washing machines at the local laundromat can hold at most y 
shirts per load.  Washing a load (or partial load) costs $z.  How many shirts should you own if you 
want to spend the least amount of money on shirts (buying and washing)?

The Leaf-Raking Problem
Your task is to rake the leaves on a large rectangular lawn and place them in a compost pile 

not on the lawn.  How should you go about performing the task if you want to perform it with the 
least amount of work?

The problem definition can be made more precise if, instead of leaves, we consider n stones, 
all of uniform size and weight, distributed at random on the lawn, our task being to move all of 
them to a pile not on the lawn.  Assume that the task is to be performed by only one person, and 
that the person can carry at most m stones at a time, where m may be less than, equal to, or greater 
than n.  Assume further that the work involved in carrying a stone from point A to point B is c 
times the distance between A and B, regardless of the number of stones (less than or equal to m) 
being carried.  (c is a constant > 1.)  Thus, the work involved in carrying k stones from A to B is k 
times c times the distance from A to B.  Assume that the work in simply walking from A to B 
empty-handed is equal to 1 times the distance between A and B.

The Hedge Clipping Problem
Normally we clip the entire hedge when we feel it needs it, and do no clipping in between.  

Why not instead clip just those branches that pass a certain length, or grow beyond a certain 
boundary we define in advance?  Which is the more efficicient, i.e., which, in the long run, 
requires the least time, including the time required to get the shears out of the garage and put them 
back?  Clearly the strategies are the same if all branches grow at the same rate, because then on a 
certain day they all pass the limit and must all be trimmed.  But suppose all the branches do not 
grow at the same rate.  To go to extremes, suppose all branches but one don’t grow at all.  Then 
our only choice is to cut that one branch when it passes the limit.  What is the point — what is the  
percentage of faster-growing branches — at which it just becomes more efficient for us to clip 
them all?

The Tree Cutting Problem
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Given a handsaw with saw teeth along only one side of the blade, and with a handle that is 
thicker than the saw blade, and ignoring energy requirements, fatigue, etc.,  can you always cut a 
tree in two, regardless of its diameter, assuming the cut must always be perpendicular to the axis 
of the trunk? The answer is yes, because you can always cut sufficiently thin slices so that you 
create a wide enough slot for the handle and your hand to move in.  Assuming this technique is 
not allowed, for a given length of saw, what is the largest diameter trunk the saw can cut in two?

The Carrier-Based Aircraft Problem
Carrier-based aircraft are to fly an attack mission that is at the limit of their flying range.  

After launching their torpedoes, the aircraft will be a few hundred feet above the surface of the 
ocean.  Should they immediately gain altitude so that if they run out of gas, they will be able to 
glide the remaining distance to the carrier, or should they stay at their initial altitude and thus save 
the gas they would otherwise have to burn in order to gain altitude?  Assume that all relevant data 
are known, including glide ratio, gas consumption for each rate of climb including the zero rate. 
Initial thought: if the glide ratio is sufficiently large that it outweighs the cost in range of achiev-
ing high altitude, then they should gain altitude.

The Netflix Problem
In the queue of previously-chosen DVDs that each Netflix subscriber sees when he accesses 

his account in the Netflix website, there is a button at the left-hand end of each line containing the 
title of a DVD.  It is labeled “Top”.  If it is clicked, that DVD is moved to the top of the queue, and 
thus will be the first DVD sent when the subscriber has at least one less DVD at home than the 
maximum he is allowed.

What is the most efficient algorithm, using only the “Top” button,  for moving any DVD in the 
queue to any other position in the queue without disturbing the relative order of the others?

The Lunacy of Martin Gardner
Martin Gardner had a well-deserved reputation as an expert on mathematical games and puz-

zles — for many years he edited the “Mathematical Recreations” department in Scientific Ameri-
can.  He was also known as a popularizer of various subjects in mathematics and science, and as a 
debunker of pseudo-scientific claims.  His The Annotated Alice, which is an annotated edition of 
Lewis Carroll’s classics, Alice’s Adventures in Wonderland and Through the Looking Glass, is a 
masterpiece of scholarship.

However, readers of his essay, “The Irrelevance of Conan Doyle” in his Science Good, Bad 
and Bogus,  are in for a shock, because in this essay he claims, in apparent complete seriousness, 
that “[Arthur Conan] Doyle had almost nothing to do with either Homes or Watson.”  The basis 
for his claim is that, since Doyle believed in spiritualism — the possibility of communicating with 
the dead — he couldn’t possibly have created a character as logical and as dedicated to facts, as  
Sherlock Holmes. Gardner also denies that Cervantes wrote Don Quixote, claiming instead that 
the books were written by — Sancho Panza!  

I have so far been unable to find, on the Internet, any explanation by Gardner for these bizarre 
beliefs.  However, he is by means the only person with a strong technical mind who has also had 
bizarre beliefs.  For example, there is a well-known mathematician who is convinced of the valid-
ity of pyramid-power, which is the belief that, e.g., sitting under an object that is shaped like a 
pyramid, will result in long life and other benefits.
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“Never imagine yourself not to be otherwise...”
As a public service, I herewith attempt a parsing of the Duchess’s “simplification” of her 

moral, “Be what you would seem to be”, in Alice in Wonderland. The passage is as follows:

“ ‘Oh, I know!’ exclaimed Alice... ‘ [mustard is] a vegetable.  It doesn’t look like one, but it 
is.’

“ ‘I quite agree with you,’ said the Duchess; ‘and the moral of that is — “Be what you would 
seem to be” — or, if you’d like it put more simply — “Never imagine yourself not to be otherwise 
than what it might appear to others that what you were or might have been was not otherwise than 
what you had been would have appeared to them to be otherwise.”’” — Carroll, Lewis, Alice’s 
Adventures in Wonderland, in the edition with introduction and notes by Gardner, Martin, The 
Annotated Alice, New American Library, N.Y., 1960, p.122. 

It is possible that the “simpler” version of the Duchess’s moral was derived from Carroll’s rec-
ollection of a passage in Book II, XII, of  Cicero’s De Officiis: “Quamquam praeclare Socrates 
hanc viam ad gloriam proximam et quasi compendiaram dicebat esse, si quis id ageret, ut, qualis 
haberi vellet, talis esset.” [“And yet, as Socrates used to express it so admirably, ‘the nearest way 
to glory — a short cut, as it were — is to strive to be what you wish to be thought to be.’”] — 
Cicero, De Officiis, w. English tr. by Walter Miller, William Heinemann Ltd., London, 1956, pp. 
210-211. 

We can quite easily figure out a meaning for the first part of the Duchess’s “simplification”  if 
we add an assumed concluding independent clause: “Never imagine yourself not to be otherwise 
than what you want to appear to others to be otherwise than”.  Now “Never imagine yourself not 
to be otherwise than” is equivalent to “Always imagine yourself to be otherwise than...”  And so 
the independent clause, in our modified form, is:

“Always imagine yourself to be otherwise than what you want to appear to others to be other-
wise than.”

Thus, e.g., if you want to appear to others to be a truth-teller, then you should always imagine 
yourself to be otherwise than a liar.

So it must be that “what it might appear to others that what you were or might have been was 
not otherwise than what you had been would have appeared to them to be otherwise” is equivalent 
to “what you want to appear to be otherwise than”.     

I will welcome hearing from readers.
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Appendix A — Derivation of Laplace’s Series

1. Laplace’s Series is:
(1)

It will make our explanation easier if we multiply the right-hand term through by the term to the 
left of the parentheses.  This gives us:

(2)

2. We use integration by parts, which asserts that

We obtain the following equation.  Explanation of the terms follows:
(3)

where, on the left-hand side of the equation,

We have taken v to be .  The derivative of v is the above term, dv.  To obtain it, we had to 
multiply by (–2t), and to compensate, we must multiply by the inverse, (–1/2t), which we called u, 
above.

The first term on the right-hand side is easily seen to be uv, which evaluates to the first term on 
the right-hand side of the series (2).

The leftmost term, , of the integrand on the right of (3) is v, as we have said.  The remain-
der of the integrand is the derivative of  u = (–1/2t), as the reader can verify.
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3.  We now iterate our process.  The right-most term in the previous step becomes the basis for 
the left-hand term in the following equation.  Explanation of the terms follows:

(4)

where, on the left-hand side of the equation,

As in the previous step, we have taken v to be .  The derivative of v is the above term, dv, 
as in the previous step.  To obtain it, we had to multiply by (–2t), and to compensate, we must 
multiply by the inverse, which, with the term we began with (from the last integrand in the previ-
ous step) gives us the indicated term for u.

The first term on the right-hand side of equation (4) is easily seen to be uv, which evaluates to 
the second term on the right-hand side of the series (2).

The leftmost term, , of the integrand on the right is v, as we have said.  The remainder of 
the integrand is the derivative of  

as the reader can verify.

Each succeeding term of the series in (2) is obtained by a similar iteration.

Laplace’s trick is not mentioned in elementary calculus texts, as far as I have been able to 
determine.  This is a shame, since it would seem to be a powerful tool for expanding the applica-
tion of integration by parts.
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Appendix B — General Formulas in Radicals for Solution of Equations 
of Degree 1 Through 3

Degree 1
The general equation is:

And the general formula to solve that, which we learn in jr. high school, is very simple:

Degree 2
The general equation is:

And the general formula to solve that, which we learn in high school, is only a little more 
complicated than that for degree 1:

Degree 3
The general equation can be written:

Viete’s formula for the solution is

Now the general formula gets more complicated.  Cardan’s formulas are as follows:  Let:
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and

and let

and

Then, with proper choice of the cube roots, the roots of the equation are:

where  is a cube root of 1.  (I have here used the presentation of the formulas in Herstein, I. 
N., Topics in Algebra, John Wiley & Sons, N.Y., p. 251.)  

p a2

a1
2

3
----- 
 –=

q
2a1

3

27
---------

a1a2

3
-----------– a3+=

P
q
2
---–

p3

27
------ q2

4
-----++3=

Q
q
2
---–

p3

27
------ q2

4
-----+–3=

x1 P Q a1 3 –+=

x2 P 2
Q a1 3 –+=

x2 2P Q a1 3 –+=

 1

x2  t3 2
t3–=

x3 2
t3  t3–=
142



A Few Off-the-Beaten-Track Observations...
where t, u are terms that are derived and is a complex root of x3 – 1 = 0. (See Kline, Morris, 
Mathematical Thought from Ancient to Modern Times, Oxford University Press, N.Y., 1972, p. 
267.)

The formula for degree 4 is even more complicated, and will not be reproduced here.
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