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                                                                   Abstract
We present several approaches to a possible “simple” proof of Fermat’s Last Theorem (FLT), 

which states that for all n greater than 2, there do not exist x, y, z such that xn + yn = zn, where x, y, 
z, n, are positive integers.  Until the mid-1990s, when a proof was given by Andrew Wiles, this 
had been the most famous unsolved problem in mathematics.  But Wiles’ proof was well over 100 
pages long, and involved some of the most advanced mathematics of its time, and so the question 
lingers, “Is there a ‘simple’ proof of the Theorem?” 

 
Note 1:
Without question, our best Approaches to a simple proof of FLT are:

      “Approach Using Basic Algebra” on page 31 of this Part (less than one page).
      “Approach Using ‘Neighborhood‘ of Assumed Counterexample” on page 32 of this 
            Part (less than one page).
      “Four-Dimensional Cartesian Grid Approach” on page 35 of this Part (less than a page).
      ‘’Approach Using Pythagorean Theorem” on page 33 of this Part (less than one page)
      “Approach Using Inner Products” on page 32 of this Part (less than two pages);

Note 2: We are seeking a prolific published number theorist to help us prepare one or more 
proofs based on the above Approaches (or others in this paper) for submission to an appropriate 
journal.  We will offer a generous consulting fee, and, if the paper is published,  generous credit in 
the Acknowledgments, which will result in considerable prestige for the number theorist.
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Is There a “Simple” Proof of Fermat’s Last Theorem? Part (1)
Part (2) of this paper contains proofs of lemmas not proved in this Part;
 Part (3) contains descriptions of failed implementations of some ideas in this Part;
 Part (4) contains several possible proofs involving the “lines and circles” model of congru-

ence. 
All Parts are on occampress.com.

Key words: Fermat's Last Theorem
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Is There a “Simple” Proof of Fermat’s Last Theorem? Part (1)
Statement of the Theorem and Brief History
Fermat’s Last Theorem (FLT) states:

 For all n greater than 2, there do not exist x, y, z such that xn + yn = zn,
where x, y, z, n, are positive integers.

 Until the mid-1990s, this was the most famous unsolved problem in mathematics.  It was 
originally stated by the 17th century mathematician Pierre de Fermat (1601-65).

 “In about 1637, he annotated his copy (now lost1) of Bachet’s translation of Diophantus’ 
Arithmetika with the following statement:

Cubem autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et gener-
aliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis fas est 
dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non 
caparet. 

“In English, and using modern terminology, the paragraph above reads as: 

There are no positive integers such that xn + yn = zn for n greater than 2 . I’ve found a 
remarkable proof of this fact, but there is not enough space in the margin [of the book] to 
write it.”

                                       — Dept. of Mathematics, University of North Carolina at Charlotte 
                                            (http://www.math.uncc.edu/flt.php)

For more than 300 years, no one was able to find a proof using the mathematical tools at Fer-
mat’s disposal, or using any other, far more advanced, tools either, although the attempts produced 
numerous results, and at least one new branch of algebra, namely, ideal theory.  Then in summer 
of 1993, a proof was announced by Princeton University mathematics professor Andrew Wiles. 
(Actually, Wiles announced a proof of a special case of the Shimura-Taniyama Conjecture — a 
special case that implies FLT.)2  Wiles’ proof was 200 pages long and had required more than 
seven years of dedicated effort.  A gap in the proof was discovered later that summer, but Wiles, 
working with Richard Taylor, was able to fill it by the end of Sept. 1994.

Did Fermat Prove His Theorem?
Arguments That Fermat Didn’t Prove His Theorem

It is safe to say that virtually all professional mathematicians believe that the answer to this 
question is no. For example:

“Did Fermat prove this theorem?
“No he did not. Fermat claimed to have found a proof of the theorem at an early stage in his 

career. Much later he spent time and effort proving the cases n = 4 and n = 5 . Had he had a proof 

1. An obvious question is, If the original copy is lost, how do we know what his note said? Apparently his 
son, during the course of going through Fermat’s papers after his death, found the copy of Bachet’s transla-
tion and, in leafing through it, saw Fermat’s note and copied it down.
2. Aczel, Amir D., Fermat’s Last Theorem, Dell Publishing, N. Y., 1996, pp. 123 - 134.
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Is There a “Simple” Proof of Fermat’s Last Theorem? Part (1)
to his theorem, there would have been no need for him to study specific cases.
“Fermat may have had one of the following “proofs'” in mind when he wrote his famous com-

ment.
 “Fermat discovered and applied the method of infinite descent, which, in particular can be 

used to prove FLT for n = 4 . This method can actually be used to prove a stronger statement than 
FLT for n = 4 , viz, x4 + y4 = z2 has no non-trivial integer solutions. It is possible and even likely 
that he had an incorrect proof of FLT using this method when he wrote the famous theorem”.

“He had a wrong proof in mind. The following proof, proposed first by Lamé was thought to 
be correct, until Liouville pointed out the flaw, and by Kummer which latter became and [sic] 
expert in the field. It is based on the incorrect assumption that prime decomposition is unique in 
all domains.

“The incorrect proof goes something like this:
“We only need to consider prime exponents (this is true). So consider xp + yp = zp . Let r be a 

primitive p-th root of unity (complex number).
“Then the equation is the same as:

“(x + y)(x + ry)(x + r2y)...(x + r(p - 1)y) = zp

“Now consider the ring of the form:

“a1 + a2 r + a3 r2 + ... + a(p - 1) r
(p - 1)

“where each ai is an integer.

“Now if this ring is a unique factorization ring (UFR), then it is true that each of the above fac-
tors is relatively prime. From this it can be proven that each factor is a pth power and from this 
FLT follows.

“The problem is that the above ring is not an UFR in general.
“Another argument for the belief that Fermat had no proof — and, furthermore, that he knew 

that he had no proof — is that the only place he ever mentioned the result was in that marginal 
comment in Bachet’s Diophantus. If he really thought he had a proof, he would have announced 
the result publicly, or challenged some English mathematician to prove it. It is likely that he found 
the flaw in his own proof before he had a chance to announce the result, and never bothered to 
erase the marginal comment because it never occurred to him that anyone would see it there.

“Some other famous mathematicians have speculated on this question. Andre Weil, writes:

“‘Only on one ill-fated occasion did Fermat ever mention a curve of higher genus xn + yn = zn 
, and then[sic] hardly remain any doubt that this was due to some misapprehension on his part [for 
a brief moment perhaps] [he must have deluded himself into thinking he had the principle of a 
general proof.]’

“Winfried Scharlau and Hans Opolka report:

 “‘Whether Fermat knew a proof or not has been the subject of many speculations. The truth 
seems obvious ...[Fermat's marginal note] was made at the time of his first letters concerning 
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number theory [1637]...as far as we know he never repeated his general remark, but repeatedly 
made the statement for the cases n = 3 and 4 and posed these cases as problems to his correspon-
dents [he formulated the case n = 3 in a letter to Carcavi in 1659 [All these facts indicate that Fer-
mat quickly became aware of the incompleteness of the [general] “proof” of 1637. Of course, 
there was no reason for a public retraction of his privately made conjecture.’

“However it is important to keep in mind that Fermat's ‘proof’ predates the Publish or Perish 
period of scientific research in which we are still living.”

                                       — Dept. of Mathematics, University of North Carolina at Charlotte,
                                            (http://www.math.uncc.edu/flt.php) Jan. 31, 2004 (brackets (except
                                           in “[sic]”s) and quotation marks as in the original as they appeared
                                           on our computer screen)

A Very Cautious Speculation That Perhaps Fermat Did Prove His Theorem
Despite the above skepticism, we believe that some of the approaches to a proof of FLT that 

are set forth in this paper might have been within reach of Fermat.  But we hasten to state clearly 
and unequivocally that we make no claims of a proof in this paper, or anywhere else in our writ-
ings.

All the attempts that we are aware of to prove FLT prior to Wiles’ proof in the mid-1990s have 
been centered on expanding the range of exponents n for which FLT is true.  As we state in “Why 
Should We Hold Out Any Hope That a “Simple” Proof Exists?” on page 6:

“We can call this strategy the ‘Horizontal Approach’, because for each n the goal is to prove 
that FLT is true for all x, y, z, here imagined as constituting a “horizontal” set relative to the ‘verti-
cal’ direction of progressively increasing n.

“But there is another approach, one that we call the ‘Vertical Approach’.  Here, we assume 
that x, y, z are elements of a counterexample to FLT, then we attempt to find the n such that xn + yn 
= zn  proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., proceeding in the ‘vertical’ direction of 
progressively increasing n relative to the fixed x, y, z.  If we can show that we can never ‘get to’ 
such an n for any x, y, z, then we will have a proof of FLT.”  Vertical Approaches are described in 
Part (4) of this paper, on occampress.com.

When Did Fermat Make the Note in the Margin?
Mathematicians who are normally cautious to a fault about making statements even with all 

the material before them that they need in order to prove the validity of their statements, seem to 
become gifted with apodictic insight when discussing the history of Fermat’s efforts to prove his 
theorem, even though much evidence is missing and almost certainly will never be found. 

Nevertheless, contrary to the standard view, it seems entirely possible that Fermat got the idea 
of his theorem in 1637 while reading Bachet’s translation of Diophantus, made no note in the mar-
gin at that time but instead set out to prove the theorem as described in the above-cited letters.  
Then, late in life — after 1659 — possibly while re-reading Bachet, he suddenly thought of his 
proof, and made a note of its discovery in the nearest place to hand, namely, the margin of the 
book.
5



Is There a “Simple” Proof of Fermat’s Last Theorem? Part (1)
Why Should We Hold Out Any Hope That a “Simple” Proof Exists?
We are well aware that the vast majority of mathematicians believe that no simple proof of 

FLT exists.  The reasoning is that, if a simple proof exists, it would have been discovered before 
Wiles’ proof.   So the reader is perfectly justified in asking,  “Why bother spending even five min-
utes more on the question of a ‘simple’ proof?”  We think there are several reasons:

Most of the research on FLT over the more than three centuries prior to Wiles’ proof cen-
tered on expanding the size of the exponent n for which FLT is true.  We call this strategy the 
“Horizontal Approach”, because for each n the goal is to prove that FLT is true for all x, y, z, here 
imagined as constituting a “horizontal” set relative to the “vertical” direction of progressively 
increasing n.

But there is another approach, one that we call the “Vertical Approach”.  Here, we assume that 
x, y, z are elements of a counterexample to FLT, then we attempt to find the n such that xn + yn = zn  
proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., proceeding in the “vertical” direction of pro-
gressively increasing n relative to the fixed x, y, z.  If we can show that we can never “get to” such 
an n for any x, y, z, or that the assumption that for some n, xn + yn = zn  leads to a contradiction, 
then we will have a proof of FLT.  More details are given under ““Vertical” Approaches” on 
page 10.

 The computer has pushed the deductive horizon far beyond that of even the best mathemati-
cians of the past, where by “deductive horizon” we mean the limit of mathematicians’ ability to 
carry out long deductions.  For example, we believe that in the near future, it will be possible to 
input to a computer program all the theorems and lemmas and rules of deduction that scholars 
have reason to believe that Fermat had at his disposal at the time he made the famous note in the 
margin of his copy of Diophantus, and to ask the program to find a proof of FLT.  For a further 
discussion, see “Can We Find Out If Fermat Was Right After All?” on page 59.

 New conceptual machinery is constantly appearing that might make a simple proof possible. 
We are thinking specifically of computation theory.  An attempt to use some of this machinery is 
given in the section ““Computational” Approaches” on page 59.

 We don’t know all the approaches that have been tried in the past, since the mathematics 
community records only the (published) successes, however partial, that were achieved in the  
long years of attempting to prove the Theorem.  Furthermore, from the beginning of the 19th cen-
tury, if not earlier, the professionalization of mathematics tended to result in the relegation of the 
work of amateurs to the crackpot category.  (And yet Fermat, Pascal, Descartes, Leibniz and many 
other leading mathematicians (as well as many physicists) of the 17th century were amateurs!)

We were told by several professional mathematicians prior to Wiles’ proof, that whenever an 
envelope arrived containing a manuscript with “Fermat’s Last Theorem” in the title, and the man-
uscript was by an author who was not a tenured professor, the manuscript went unread straight 
into the wastebasket.  Such a practice was, we now know, justified in the past regarding claims of 
solutions to the three classic unsolved problems of the Greeks — squaring the circle, doubling the 
cube, and trisecting the angle, each to be done using only straightedge and compass — because, as 
was proved in the 19th century, solutions to these problems, under the constraint of using only 
straightedge and compass, do not exist.  But FLT is different, in that we now know that it is true.  
No doubt all, or very nearly all, of the manuscripts that mathematicians received from amateurs 
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were, in fact, flawed, if not outright crackpot, works.  Furthermore, overworked professional 
mathematicians have a perfect right to spend their time on the material they think it worth spend-
ing their time on.  Nevertheless, it is possible, however unlikely, that one of the amateurs’ manu-
scripts, even if it contained errors, also contained the germ of an idea that might have led to a 
“simple” proof of  FLT.  We will never know.   In any case, if a record of amateurs’ attempts had 
been maintained by the mathematics community — if only for the derisive amusement of profes-
sional mathematicians — this might have saved many amateurs from endlessly repeating some of 
the doomed efforts of their predecessors.

We must say that we are not ashamed to admit that for us, the study of amateurs’ efforts to 
solve very difficult problems has a certain psychological interest.  Fundamentally, it seems to us, 
the study is no different from the study of primitive tribes’ attempts to explain the universe.  In 
any case, we believe in the possibility of “brilliant failures”.  

But we fully recognize that no professional mathematician considers such a study to be worth 
even mentioning.  

 “Wiles’ proof used some mathematics that depends on the Axiom of Choice.  But there is a 
theorem that any theorem of number theory that uses the Axiom of Choice has a proof that 
doesn’t.  So, somewhere, there is a simpler, or at least less high-powered, proof of Fermat.” — 
email from Michael O’Neill.

 Finally, it is possible (however unlikely) that certain approaches to a possible solution were 
discarded time and again, even by amateurs, on the grounds that if a proof were that simple some-
one would have already published it.  

How to Read This Paper
We are well aware that most readers will not want to read all of this paper.  We therefore rec-

ommend the following: read the first nine pages, and then choose from the referenced sections 
under “Most Promising Approaches to a Simple Proof of FLT, in Our Opinion: Previous List” on 
page 11, and/or use the titles and subtitles on the left of the screen to find the topics of most inter-
est. 

The reader should keep in mind that this paper is a work-in-progress.  Thus it presents not 
merely results, but also conjectures, discussions of approaches and of obstacles presented by vari-
ous approaches.  The paper is divided into four parts.  

Part (1) overview of our approaches;
Part (2) statements and proofs of all lemmas;
Part (3) failed attempts to prove FLT using some of the ideas in the paper;
Part (4) details on the approach based on the “lines-and-circles” model of congruence and in 

particular, on the important function U(k, a, b, c) = ak + bk – ck.

All parts are in the Fermat’s Last Theorem section of our web site, www.occampress.com.

 Proofs of lemmas have not been optimized, though virtually all of them have been checked 
and deemed correct  by qualified readers. We have made a serious attempt to write in an accepted 
style, but the organization of the four parts of the paper certainly does not always follow that of a 
7
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published paper.   Lemma numbering is not always consecutive because we want to preserve the 
numbering in earlier versions of the paper, even though new lemmas have been added.

References to definitions, lemmas, and proofs are usually given with section title, part of the 
paper, and usually the page number.  The .pdf file format provides a list of titles and sub-titles on 
the left-hand side of the text, which should make it relatively easy for the reader to navigate 
through each part of the paper. 

Why Is It So Difficult to Prove FLT?
Our question should read in full, “Why is it so difficult to prove FLT at the elementary level 

represented by the approaches in this paper?”  We believe there are two main reasons:

Two Main Reasons
We (meaning, here,  the author of this paper) simply do not know all the results in the FLT 

literature that might enable us to make progress in approaches to a proof at the elementary level.

(2) “Local” approaches do not seem to work.  An example of what we mean by a “local” 
approach is a proof by contradiction in which we consider only the assumed counterexample  xp + 
yp = zp, and do not consider, for example, the pairs {xp – k + yp – k , zp – k },  The approaches refer-
enced under “Most Promising Approaches to a Simple Proof of FLT, in Our Opinion: Previous 
List” on page 11 are all “global”.

We believe that one valuable outcome of research into the possibility of a proof of FLT by ele-
mentary means, would be the determining, in far more detail than we have done here and in the 
next section, one or more guidelines for avoiding the fruitless labors that we are sure have con-
sumed so much time among researchers who have attempted to prove FLT using elementary 
means.  (Virtually all of these researchers have been amateurs, it is safe to assume.) Such guide-
lines , we would hope, could be applied to other very difficult problems.  Perhaps the research will 
reveal that there can be no general guidelines, other than trivial ones, for avoiding fruitless labors.  
That result in itself would constitute progress.

A related valuable outcome of this research might be insights into ways of recognizing what I 
will call “prickly” problems.  The term does not merely refer to problems that are very difficult, 
but rather to problems having the property that solutions are “isolated”; very few roads lead to 
solutions, and yet solutions exist.  Among the questions we can ask is, “What are the characteris-
tics of a formal grammar (for example, one representing the domain of the problem) such that cer-
tain strings produced by the grammar are extremely hard to find — or in other words, such that 
very few sequences of productions in the grammar terminate in the strings.  How exactly would 
that be possible?”

The Danger of “Null” Approaches
A “Null” Approach is one that, although it contains the constituents xp, yp and zp of an 

assumed counterexample, would yield the same results if xp, yp and zp were replaced by any posi-
tive integers u, v, w, such that u + v = w.  Perhaps the simplest example of a Null Approach is that 
of trying to derive a contradiction by multiplying the polynomial (x + y – z) and the polynomial 
(xp– 1 + yp– 1 + zp– 1) and then deleting xp, yp and – zp  from the resulting terms (see “Approaches 
of Multiplying Integer Polynomials” on page 37). We find, on examining what remains after the 
8
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deletion, that all we have proved is that xp+ yp – zp = 0.  A similar danger lurks in approaches 
based on the fact that, if xp+ yp = zp then xp+ yp  zp mod m.  Since this fact is true for all moduli 
m, it is certainly true for each m that is an appropriate modulus, that is, for each m such that (x, m) 
= (y, m) = (z, m) = 1. The latter congruence in turn gives rise to an infinity of congruences by basic 
rules governing congruences.  But it is true for all a, b, c that if a + b = c then a + b c mod m for 
any modulus m, and it is equally true that the latter congruence gives rise to an infinity of congru-
ences.

Examples of approaches that would yield the same inconclusive results if the odd prime  
exponent p were replaced by any positive real k in the appropriate range, are described under  
(“Approaches Using the Calculus” on page 52.

At present, we believe that a good way to avoid Null Approaches is to concentrate, not merely 
on the assumed counterexample, but on expressions that lie “near” to the assumed counterexam-
ple, for example, to investigate what would have to be the case in order for xp + yp – zp = 0, given 
that xp–1 + yp–1 – zp–1  0.  This approach is developed in “Approach Via Fixed-Set” in Part (4) of 
this paper, on occampress.com.  Another good way to avoid Null Approaches is always to see 
what would happen to the Approach if there were no counterexample.

The Problem of Too-Little Information
As the reader will see in going through this paper, attempts at proofs of FLT are again and 

again blocked by our simply having too little information about the elements x, y, z and p of an 
assumed counterexample, and about terms derived from these elements.  In particular, this prob-
lem usually thwarts all proof attempts that rely on inequalities. At least some of the information 
may exist in the literature, but we are at present unaware of it.

Brief Summary of Approaches Described in This Paper
The approaches to a proof of FLT that are described in this paper are as follows:

 “Vertical” Approaches 
    (see brief introduction under ““Vertical” Approaches” on page 10)

    The  following Approaches are, in our opinion, the most promising.

      “Approach Using Basic Algebra” on page 31 of this Part (less than one page).
      “Approach Using ‘Neighborhood‘ of Assumed Counterexample” on page 32 of this 
            Part (less than one page).
      “Four-Dimensional Cartesian Grid Approach” on page 35 of this Part (less than a page).
      ‘’Approach Using Pythagorean Theorem” on page 33 of this Part (less than one page)
      “Approach Using Inner Products” on page 32 of this Part (less than two pages);

       Other Approaches are:

 Vertical Approach Based on the Function U(k, a, b, c) = ak + bk – ck  

 (see “Third Promising Approach to a Simple Proof of FLT”, in Appendix A of Part (4) 
             of this paper, on occampress.com)
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 Vertical Approaches Based on Binomial Theorem
   (see “First Approach Via the Binomial Theorem” on page 19,
         “Second Approach Via the Binomial Theorem” on page 20)

Approach Involving Comparing Counterexamples and Non-Counterexamples
 (see “Approach Involving Comparing Counterexamples and Non-Counterexamples” on 

page 34)

 Vertical Approaches Based on Congruences
    (see “Vertical Approaches Based on Congruences” on page 21)

 Vertical Approaches by Induction on Inequalities
   (see “Vertical Approaches by Induction on Inequalities” on page 26)

 Vertical Approach Using the Calculus
    (see  “Approaches Using the Calculus” on page 52)

      Vertical Approach Comparing Counterexamples and Non-Counterexamples 
         (the Fixed-Set) 
         (see “Approach Involving Comparing Counterexamples and Non-Counterexamples” on 

page 34)

     Approach Via Factors of x, y, z
    (see “Approach via Factors of x, y, z” on page 54)
  
Approach Using x = z – h, y = z –  k
   (see “Approach Using x = z - h, y = z - k” on page 56)

 Approaches Involving Multiplying Polynomials
 (see “Approach of Multiplying Fractional Polynomials” on page 35.
         “Approaches of Multiplying Integer Polynomials” on page 37)

 “Computational” Approaches
 (see ““Computational” Approaches” on page 59)

n-Dimensional Geometric Approaches
  (see “n-Dimensional Geometric Approaches” on page 62)

“Vertical” Approaches
The “Vertical” approaches are motivated by the question, “If a counterexample existed, how 

would we ‘get there’?”  The meaning of this question will become clearer if we consider briefly 
the strategy that was pursued throughout most of the history of attempts to prove FLT, namely, the 
strategy of progressively expanding the set of exponents n for which FLT was true. (The fact that 
FLT was true for each of these n meant that it was true for all multiples of these n, since if  xn + yn 
 zn for all x, y, z, then certainly (uk)n + (vk)n wk)n, for all u, v, w, k  1  Thus, Fermat claimed, 
10
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in a letter to Carcavi, that he had proved the Theorem for the case n = 4; but he did not give full 
details1.  Euler gave an incomplete proof for the case n = 3 in the early 18th century; Gauss gave 
a complete proof in the early 19th.  Then, also in the early 19th century, Dirichlet and Legendre 
proved it for n = 5 and Dirichlet in 1832 proved it for n = 14.  Lamé proved it for n = 7 in 1839.  
Kummer then proved that the Theorem was true for all “regular” prime exponents, a class of 
primes he defined. Among the primes less than 100, only 37, 59, and 67 are not regular. The set of 
n for which the Theorem was true continued to be expanded in succeeding years until, by the 
1980s, it consisted of all odd primes less than 125,000.  By 1993, the Theorem was known to be 
true for all n up to 4,000,000.  

We will call this strategy of expanding the size of n for which FLT is valid, the “Horizontal 
Approach”, because for each n the goal is to prove that FLT is true for all x, y, z, here imagined as 
constituting a “horizontal” set relative to the “vertical” direction of progressively increasing n.

But there is another approach, one that we call the “Vertical Approach”.  Here, we assume that 
x, y, z are elements of a counterexample to FLT, then we attempt to find the n such that xn + yn = zn  
proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., proceeding in the “vertical” direction of pro-
gressively increasing n relative to the fixed x, y, z.  If we can show that we can never “get to” such 
an n for any x, y, z, then we will have a proof of FLT.  Another way of regarding the Vertical 
Approach is to say that it asks what sequence of calculations would terminate in the counterexam-
ple, assuming x, y, z were known to be elements of a counterexample, and assuming the calcula-
tions were the sequence of comparisons of xn + yn  with zn for n = 3, then n = 4, then n = 5, etc.  
This is, in fact, the form in which the Vertical Approach first occurred to us when we became 
interested in FLT.  We were at the time working as a programmer, and thus immediately thought 
about the task of trying to find a counterexample using the computer. 

The skeptical reader should keep in mind that if the initial inequalities, followed by the equal-
ity that is the assumed counterexample, were unrelated to each other, then the Vertical Approach 
would have little to recommend it.  But the inequalities, and the subsequent assumed equality, are 
not unrelated: For one thing, they all involve the same three numbers, x, y, z;  for another the num-
bers are all raised to the same power in each inequality or in the equality; and for another they are 
related as described under “ ‘Consequences’ of a Counterexample” in Part (4) of  this paper, on 
the web site www.occampress.com.  

Most Promising Approaches to a Simple Proof of FLT, in Our Opinion: 
Previous List

The following is a list of the approaches that at present we deem most promising. The most 
promising is listed first, the next-most-promising second, etc.

“Approach Using Pythagorean Theorem” on page 33;      
“Approach Using Basic Algebra” on page 31 of this Part (less than one page).
“Approach Using “Neighbor” of Assumed Counterexample” on page 32
“Approach Using Inner Products” on page 32;
 “Four-Dimensional Cartesian Grid Approach” on page 35 of this file;
“First Approach Via the Binomial Theorem” on page 19 of this file;
“Third Promising Approach to a Simple Proof of FLT”, in Appendix A of Part (4) of this 

1. Kline, Morris, Mathematical Thought from Ancient to Modern Times, Oxford University Press, N.Y., 
1972, p. 276.
11
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paper, on occampress.com;
“Approach by a Certain Class of Program” on page 60 of this file;
 “Third Approach of Multiplying Integer Polynomials” on page 39 of this file;  
 “First Implementation of Approach” on page 42 of this file (namely, of the Approach of Add-

ing Inequalities);
Part (E) of  “Approach Type IV: Considering All Multiples of All Powers of a, b, c” in Part (4) 

of this paper, on occampress.com.

We will offer shared authorship to the first person who helps us make any one of the above 
approaches, or any other approach in this paper, yield a publishable paper.  Note: before submit-
ting improvements to the above approaches, the prospective co-author must query the author as to 
the status of the offer.  We will not offer shared authorship without this preliminary query.

Initial Assumptions, Definitions, and Properties of Numbers Involved

We are trying to prove Fermat’s Last Theorem (FLT), which states that:

 For all n greater than 2, there do not exist x, y, z such that xn + yn = zn,
where x, y, z, n, are positive integers.

We will usually attempt a proof by contradiction.  That is, we will assume there exist positive 
integers x, y, z such that for some n  greater than 2, 

(1)   xn + yn = zn.  

Without loss of generality,  we assume that x, y, z are relatively prime in pairs, i.e., that 

(1.5)   (x, y) = (y, z) = (x, z) = 1.

(2.0)   Clearly, exactly one of x, y, z must be even.

(3.0) x < y < z;

(4.0) x, y, z must be very large numbers1.

(5.0) By 1993, prior to Wiles’s proof, FLT was known to be true for all exponents up to  
4,000,000.

(1.85) Without loss of generality, it suffices to prove FLT for 4 and for every odd prime p  3.  
(See “(1.85): Statement and Proof”  in Part (2) of this paper, on the web site occampress.com.)

1.  Ribenboim, Paolo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, N.Y., 1979, p. 226.
12
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Definition of “Minimum Counterexample”
Assuming that there exists x, y, z, n such that xn + yn = zn, then, without loss of of generality, 

we let n = p, the smallest such odd prime (see “(1.85): Statement and Proof” in Part (2) of this 
paper, on the web site occampress.com..)  We will often write p instead of n when referring to an 
assumed counterexample. 

 If there is more than one triple <x, y, z> such that x, y, z are elements of a counterexample1 
with exponent p, then we choose the <x, y, z> having the minimum z.  If there is more than one 
such triple, then we choose the <x, y, z> having the minimum y. Clearly, there can only be one 
such triple.  We call that triple, and exponent p, the “minimum counterxample”.  From now on in 
this paper, unless stated otherwise, the term “counterexample” will always mean “minimum coun-
terexample”.

“Lemma 4.0.5” on page 16 shows that, for given x, y, z, there can be at most one prime p such 
that xp + yp= zp. 

Lemma 0.0
If xp + yp   zp, then x + y > z.

Proof see  “Lemma 0.0: Statement and Proof” in Part (2) of this paper on the web site occam-
press.com.

Students of the phenomenon of mathematical intuition might be interested to know that from 
the moment the author realized this simple fact, he was convinced this would be part of a “simple” 
proof of FLT if he was able to discover one.  The author has no explanation for his conviction, nor 
does he claim that his conviction will be vindicated. 

There are some tempting, very simple possible proofs based on Lemma 0.0.  Unfortunately, 
these are wrong.  Here is an example:

If x, y, z are constituents of a counterexample to FLT, then Lemma 0.0 implies that x + y – z = 
d, where d is an integer. However, d must contain a factor p (parts (a) and (b) of “Lemma 0.2: 
Statement and Proof” in Part (2) of this paper on occampress.com).  We then have x + y  z mod p, 
hence, by Fermat’s Little Theorem, xp + yp  zp mod p  Thus we do not have a contradiction by 
which to prove that xp + yp  zp.   

(If p were larger than x + y and of z, then x + y not  z mod p, because there would be no mul-
tiple of p such that x + y + d (which contains a factor p) = z.  In that case, by Fermat’s Little Theo-
rem, we would have xp + yp not  zp mod p hence a contradiction to our assumption that a 
counterexample exists.

However it was proved in the 19th century2 that x > p.)  

Remark
By the contrapositive of Lemma 0.0,  if x + y  z, then x, y, z cannot be elements of a counter-

1. At least as of the late 1970s, little was known about the set of all <x, y, z> such that x, y, z are elements of 
a counterexample with minimum exponent p.  See, e.g., Ribenboim, Paolo, 13 Lectures on Fermat’s Last 
Theorem, Springer-Verlag, N.Y., p. 232. 
2. Ribenboim, Paolo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, N.Y., 1979, p. 226
13
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example.

Lemma 0.2
If xp + yp   zp, then 

(a) x + y – z = Kdef, where K 1, d  1, e, f   1;
(b) Kdef contains the factors 2 and p;
(c) d is a factor of x;
     e is a factor of y;
     f is a factor of z;
    (d, e, f) = 1;
(d) if xk + yk –  zk   0 mod k, where k is a prime, 3  k < p, then def contains a factor k.
(e) p < 1/30(x).  Thus, prior to Wiles’ proof of FLT, the smallest x in a counterexample was
           at least 3,750,000.
(f) x + y z mod p.

Proof: see “Lemma 0.2: Statement and Proof”  in Part (2) of this paper, on the web site occam-
press.com.

Lemma 0.3
If k is an odd prime, then (x + y  – z)k  xk + yk – zk mod k.

Proof: see “Lemma 0.3: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

Lemma 0.5. 
If x2 +  y2 = z2, then x, y, z cannot be elements of a counterexample.

Proof: see “Lemma 0.5: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

Lemma 0.6
If FLT is true for the exponent n, then it is true for all multiples of n.

Proof: see  “Lemma 0.6: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com

Lemma 1.0. 
(a) p < x < y < z. 
(b) z < x + y < 2y < 2z.  

Proof: see  “Lemma 1.0: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.
14
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Lemma 1.5.
Let x, y, z, p be elements of  the minimum counterexample. Then for all k, 1  k   p, k real and not 
merely integral:

(a) xk + yk  zk , i.e.,  xk + yk –  zk > 0; 1

(b) xk + yk –  zk < xk;
(c) xk + yk increases monotonically with increasing k;
(d) zk increases monotonically with increasing k;
(e) (xk + yk)/zk  >  (xk +1+ yk +1)/zk+1.
(f) Let  f (k)= xk + yk –  zk .  Then the slope of f, namely, xk(ln x) +  yk(ln y) –  zk (ln z), is posi-

tive for all k, where 1  k  p – 1, k real and not merely integral.  Thus xk + yk –  zk  < xk +1 +  yk+1 

–  zk +1 for integral k, 1  k  p  – 2.
(g) xk + yk –  zk  Kdef k – 1, where here k is integral and Kdef  is as defined in “Lemma 

0.2” on page 14.  Hence, in particular, since the maximum of the function xk + yk –  zk  occurs at p  
– 1   k p, it has value Kdef + p – 2.

(h) xk < yk < zk < xk + yk < 2yk < 2zk

(i)  Let f(k) be as defined in Part (f). Then  f(k + 1) < f(k) for all k > p.
(j)  If k  k´, then f(k)  f(k´).

Proof: see  “Lemma 1.5: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

Lemma 1.95. 
Let x, y, z, be elements of the minimum counterexample xp + yp  zp to FLT. Then for all k > p,  xk 
+ yk  zk .

Proof: see  “Lemma 1.95: Statement and Proof” in Part (2) of this paper, on the web site 
occampress.com.

Lemma 1.972

Let x, y, z, be elements of a counterexample x(p = n+1) + y(p = n+1)  z(p = n+1) to FLT, where p = n + 
1 is the smallest such exponent. Then 

1. Part (a) shows that x2 + y2 and  z2 cannot form a Pythagorean triple.  That is, it cannot be the case that x2 + y2 
= z2 .

2. A young mathematician has written us that Lemma 1.97 “bears a major resemblance to what is known as the 
ABC Conjecture, ... a long unsolved problem in additive number theory... The ABC Conjecture almost proves FLT in 
the sense that if ABC is true, then for all n sufficiently large, xn + yn = zn has no integer solutions.  See for instance 
mathworld.wolfram.com/abcconjecture.html.”

x
k

y
k

+

z
k

----------------
k 
lim 0=
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Proof: see  “Lemma 1.97: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com .

Lemma 2.0
z < 2y.

Proof: see  “Lemma 2.0: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

Lemma 2.5
z < x2.

Proof: Proved by Perisastri in 1969. — Ribenboim, op. cit., p. 226.

Constraints on the Prime p in a Counterexample

Lemma 4.0. 
Assume a counterexample xp+ yp  zp exists. Then p cannot be a member of a certain infinite set 
of primes.

Proof: see    “Lemma 4.0: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

A young mathematician stated and proved the following, stronger version of Lemma 4.0. (The 
proof given here is a slightly edited version of the original.  Any errors are entirely our responsi-
bility.)

Lemma 4.0.5  
Assume a counterexample xp+ yp  zp exists. Then p can be at most one prime.

Proof: see   “Lemma 4.0.5: Statement and Proof” in Part (2) of this paper, on the web site occam-
press.com.

Remark on Lemmas 4.0 and 4.0.5.  It is important not to misunderstand what these lemmas 
establish.  Suppose that someone announced (before 1990), “I have three numbers, x, y, z, that are 
elements of a counterexample to FLT!”  We know now that the person would have been mistaken, 
but let us consider several possible responses to the announcement.  

(1) A person knowing only that a counterexample would have to involve a prime exponent, 
but knowing none of the results establishing exponents for which FLT had been proved true, 
might have responded, “How interesting!  The exponent can be any positive prime!  Or perhaps 
there are several prime exponents for each of which x, y, z are the elements of a counterexample.” 

(2) A person who knew the results concerning exponents might have instead responded, “How 
16
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interesting!  The exponent can be any prime greater than 125,000.  Or perhaps there are several 
prime exponents in this range, for each of which x, y, z are the elements of a counterexample.”  

(3) A person who knew what the person in (2) knew, plus Lemma 4.0.5, might have 
responded, “How interesting!  The exponent must be one and only one prime greater then 
125,000.”

(4) Finally, a person who knew what the person in (3) knew, plus Lemma 4.0, might have 
responded, “How interesting!  The exponent must be one and only one prime greater than 125,000 
that is not excluded by Lemma 4.0.”

Bertrand’s Postulate
This postulate states that if z is a positive integer, then there exists a prime q such that z < q <

2z. The proof can be found in most elementary number theory textbooks.

The “Smaller Prime” Lemma
If 

where n  2,  is a product of powers of successive primes pi, then there exists a prime pj such that 
pj < u and (pj, u) = 1.

Proof:
The product of any two successive primes  is greater than  and therefore, by

 “Bertrand’s Postulate” on page 17 there is a prime pj between  and .  And similarly for 
other successive primes in u. 

Remark 1
Obviously, if u is merely a product of powers of primes, not necessarily successive primes, 

our Lemma holds, because then a prime that is not included in the product is the prime pj. 

Remark 2
Observe that this Lemma does not show that if p, x, y, z are elements of a counterexample to 

FLT, and hence that p < x < y < z (“Lemma 1.0.” on page 14), there exists a prime q such that (x, 
q) = (y, q) = (z, q) = 1 (such a prime is called a prime appropriate modulus in Part (4) of this paper, 
on occampress.com), and such that q < p.  The reason is that since p < x it is possible that all 
primes p are factors of x, y, and z.  

An Elementary Question and Its Answer
Before we proceed, we should ask a question which it is hard to believe was not asked, and 

answered, at the very latest in the 19th century, as soon as the notion of a field of numbers had 
been formalized.  (Informally, a field is a set of numbers that behaves “like” the rationals under 

u p1
e1p2

e2pn
en=

pi
eipi 1+

ei 1+ 2pi
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addition, subtraction, multiplication, and division, except that the field may or may not have the 
property of unique factorization into primes.)  The only reason we ask the question here is that we 
have not come across it in the FLT literature we have examined thus far. The question is simply 
this:

Does there exist a field F in which a non-trivial factorization of the form (homogeneous poly-
nomial) P = xp + yp – zp exists, and if so, what are all such fields, and what are the factorizations 
in each such field?

The importance of the question lies simply in this: (1) if a counterexample exists, then P = 0; 
(2) if a factorization exists, then at least one of the factors of P must = 0.   From the latter fact, it 
might be possible to derive a contradiction. For example, if all factors of P are of the form (x + 
r(f(y, z))), where r is an irrational number, e.g., a complex root of 1, and f(y, z) is a rational expres-
sion in y, z, then we would have a proof of FLT, because this would imply that x = –r(f(y, z))) is an 
irrational number, contrary to the requirements of FLT.

But as a mathematician has pointed out to us, there does not exist a non-trivial factorization of 
P over the fields we are interested in (i.e., number fields of characteristic 0).  Furthermore, noth-
ing about the existence or non-existence of counterexamples can be inferred from this fact.

Fermat’s “Method of Infinite Descent”
“Fermat invented the method of infinite descent and it was an invention of which he was 

extremely proud.  In a long letter written toward the end of his life he summarized his discoveries 
in number theory and he stated very definitely that all his proofs used this method. Briefly put, the 
method proves that certain properties or relations are impossible for whole numbers by proving 
that if they hold for any numbers they would hold for some smaller numbers; then, by the same 
argument, they would hold for some numbers that were smaller still, and so forth ad infinitum, 
which is impossible because a sequence of positive whole numbers cannot decrease indefinitely.” 
— Edwards, Harold M., Fermat’s Last Theorem, Springer-Verlag, N.Y., 1977, p. 8.

The Vertical Approach described above under “Brief Summary of Approaches Described in 
This Paper” on page 9 can be run in the “downward” direction as well as the upward, and in that 
case it becomes similar to Fermat’s method of infinite descent.  This downward-direction 
approach is discussed briefly under “Approaches via The “Lines-and-Circles” Model of Congru-
ence” on page 21,  and then in more detail in “Approaches via The ‘Lines-and-Circles’ Model of 
Congruence in Part (4) of this paper, on the web site www.occampress.com. The section “Two 
Ways to Implement a Method of Infinite Descent” in Part (4) shows how two elementary lemmas 
can be used to implement this technique.  In light of Fermat’s statement that all his proofs used the 
method of infinite descent, which then must be taken to include his claimed proof of FLT, it seems 
appropriate that we thoroughly explore any approach that is similar to his method.

Case I and Case II of FLT
In the literature, Case I of FLT is defined as that in which the exponent p in an assumed coun-

terexample does not divide x, y, or z.  Case II is defined as that in which p divides exactly one of x, 
y, or z.  

At the time of this writing, we have not attempted to deal with these Cases.
18
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First Approach Via the Binomial Theorem
1. Let x, y, z, p be constituents of the minimal counterexample.  Now let us find the difference 

between (xp + yp – zp) and ((x – 1)p + (y – 1)p – (z – 1)p).  That is, let us find

(1)
(xp + yp – zp)  – ((x – 1)p + (y – 1)p – (z – 1)p).

2. For v = x or y or z, let 

U(v, p) = E(v – 1)p – vp, where E denotes the binomial expansion of (v – 1)p ,  (Clearly the 
binomial expansion, E(v – 1)p, of (v –  1)p = (v –  1)p.)  Thus we have  vp + U(v, p) = E(v – 1)p, 
and:

xp + U(x, p) = E(x – 1)p;
yp + U(y, p) = E(y – 1)p;
zp + U(z, p) = E(z – 1)p.

Then (1) becomes

(2)
(xp + yp – zp)  – ((xp + U(x, p))  + (yp + U(y, p))  – (zp + U(z,p)))

3. But since  (xp + yp – zp) = 0, and since –xp – yp + zp is simply the negative of (xp + yp – zp) 
which = 0, we get, from (2)

(3)
– U(x, p) –U(y, p) + U(z,p).

4. Now assume instead that x, y, z, p are not the constituents of a counterexample, in other 
words assume that a counterexample does not exist.

But the value of the difference in (1), as expressed by (3), is exactly the same, because now xp 

in (xp + yp – zp) and – xp in the right-hand part of (2), cancel, and similarly for yp and  – yp , and zp 
and – zp. 

5. So we must conclude that there is no difference between the value of (xp + yp – zp) if it is a 
counterexample and if it is not.

This contradiction arose from our assuming that a counterexample exists.  Therefore, if our 
reasoning is  correct, a counterexample does not exist, and we have a proof of FLT.  

(Another version of this strategy can be found in “Approach Using Inner Products” on 
page 32.)
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Remark
This Approach is similar to several in Part (4) of this paper, on occampress.com, but those 

approaches are based on the Fixed-Set, that is, expressions ak + bk – ck that have the same value 
whether counterexamples exist or not. Thus, since prior to Wiles’ proof of FLT, it was known that 
FLT was true for all primes less than 125,000, for any positive integers a, b, c, and any k < 
125,000, ak + bk – ck  had the same value whether counterexamples existed or not.  

Second Approach Via the Binomial Theorem
We know that, if a counterexample xp + yp = zp exists, then x + y > z (“Lemma 0.0” on 

page 13) and, in fact, that x + y = z + 30pK, where  (Lemma 0.2 Statement and Proof”, Part 
(2) of this paper, on occampress.com).  Therefore it follows that:

(0)
(x + y)p = (z + 30pK)p.

By the binomial theorem, we have

(1)
xp + A + yp = zp + 30p2KR, 
where R 

By assumption that xp + yp = zp is a minimum counterexample, this yields

(2)
A  =  xyU =  30p2KR.

Assume that p does not divide x or y. Then p divides U.  Unfortunately, it is possible that U 
contains one or more additional factors p, and so we cannot claim a contradiction resulting from a 
different number of factors p in the left- and right-hand sides.  

We must now consider the case that p does in fact divide one of x or y.  (It cannot therefore 
divide z).  Then by the binomial theorem, we have, from (0),

(3)

In order to make the first term on the right-hand side equal the first term on the left-hand side, 
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it must be that
(4)

However, as the reader can easily verify, this value of 30pK will not make the second term on 
the right-hand side equal the second term on the left-hand side, and similarly for the third, 
fourth,... etc. terms.  Furthermore, it is not necessary that the left-hand side of (2) equal the right-
hand side on a term-by-term basis.  We observe in passing that (4) implies that 30pK < y.

In passing, we also observe that x is a factor of A in (1).  On the right-hand side, we know that 
x  p (because p < x  by “Lemma 1.0.” on page 14) and that x cannot divide z (because by assump-
tion (x, y) = (y, z) = (x, z) = 1 ((1.5 under “Initial Assumptions, Definitions, and Properties of 
Numbers Involved” on page 12). Furthermore, x cannot equal 30pK because since x + y = z + 
30pK (Lemma 0.2 Statement and Proof”, Part (2) of this paper, on occampress.com) that would 
imply x + y = z + x, or y = z, which is impossible.  So x must be a factor of the right-hand side of 
(1) for another reason, namely, that the terms on the right-hand side just happen to add up to an 
integer that has x as a factor. 

Similarly for y.  

Vertical Approaches Based on Congruences
Approaches via The “Lines-and-Circles” Model of Congruence

We begin with an overview of all these approaches.  Our goal is to convey, as clearly as possi-
ble, underlying ideas.  Details are given in Part (4) of this paper, on the web site www.occam-
press.com.

Definition of “Line-and-Circles” Model of Congruence
All approaches based on congruences are motivated by a “geometrical” model of congruence.  

In this model, an infinite sequence of circles are positioned at equal distances, one above the other 
(see Fig. 1).  

30pK
x

p 1–
y

z
p 1–

--------------=
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      Fig. 1.  “Geometrical” model of positive integers congruent mod 5.

For the modulus m, each circle is divided equally into m segments as shown (here, m = 5).  
Vertical lines pass through the start of each segment.  All integers congruent to a given minimum 
residue r mod m lie on the same vertical line, with r at the start of the line.

We refer to the circles as levels mod m (or merely levels when m is understood), and number 
them 0, 1, 2, ... beginning with the lowest one.  The level numbers are the quotients of all numbers 
on that level when divided by m.  Thus, in our example, 14 ÷ 5 yields the quotient 2 and the 
remainder 4, so 14 is on level 2 and line 4.  We sometimes refer to level 0 as the base level mod m 
(or merely the base level when m is understood).  

Two facts lie at the basis of all our Approaches via the “lines-and-circles” model of congru-
ence: 

(1) that, for each modulus m, each positive integer u has a “location” relative to that modulus.  
This location is given by the ordered pair <level, line> which can be regarded as the “address” of 
u mod m.  Thus, in our previous example, the address of 14 mod 5 is given by <2, 4>.  We will be 
concerned with ordered triples <ak, bk, ck>, where a, b, c, k are positive integers. In particular, we 
will be concerned with <xp, yp, zp>, where xp + yp = zp is an assumed minimum counterexample, 
and with all <xk, yk, zk>, where k  1 and k  p.  At times, for reasons that will become clear, we 
will also be concerned with ordered pairs, <xk + yk, zk>.  

(2) that, for a given u, as the modulus m increases, the location of u descends in the lines-and-
circles model for each modulus. There exists a minimum m such that u < m.  We say that u 
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touches down at m.  Clearly, u < m´  for all m´ > m.  Informally, we say “once down, always 
down.”

Summary of Approaches via the “Lines-and-Circles” Model of Congruence
We here try merely to suggest the underlying idea for each Approach.  Details can be found in 

the indicated sections of Part (4) of this paper, on the web site www.occampress.com.

Approaches Type I through VI
(Type I) Show that if xp + yp = zp , then a contradiction arises involving ap + bp, cp, where a  

x, b  y, c  z, and  a  x, b  y, c  z mod m.
For details, see sections containing “Type I” in Part (4) of this paper.

(Type II) Show that if xp + yp = zp then a contradiction arises involving xr + yr,  zr , where  2 < 
r < p.

For details, see sections containing “Type II” in Part (4) of this paper.

(Type III) Show that if xp + yp = zp , then <xp + yp, zp > is an element of a non-congruent C-set.  
(This is impossible because (informally) non-congruence implies inequality.)

For details, see sections containing “Type III” in Part (4) of this paper.

(Type IV) Show that by considering all multiples of all powers of positive integers u, v, w, we 
are led to a contradiction.

For details, see sections containing “Type IV” in Part (4) of this paper.

(Type V) Show that a contradiction arises from the set of congruences and non-congruences 
resulting from all C-set elements <xp + yp, zp >.

For details, see sections containing “Type V” in Part (4) of this paper.

(Type VI) Show that the assumption of a counterexample implies a contradiction in the Uk, 
where xk + yk – zk = Uk,, and k p.

For details, see sections  in Part (4) of this paper.

The “Pushing-Up” Approach
Assume a counterexample, xp + yp = zp , exists.  Then show that the counterexample never 

“touches down”, that is, show that there is no modulus m such that xp + yp, and  zp are each less 
than m.  This would imply that the counterexample does not exist.

For details, see “Original Motivation for Approaches via The “Lines-and-Circles” Model of 
Congruence” in Part (4) of this paper.

Another Approach
The following was motivated by an unpublished paper by, and subsequent discussions with, 

Richard Van Elburg,  These discussions ended in January, 2013.

If there is one Approach that has been favored by amateurs over the years beyond those that 
attempt to use the Pythagorean Theorem it is probably the following:  express two of x, y, z in 
terms of the third, then substitute into the FLT equation
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xp + yp = zp                                                                                                                         (1)

and try to derive a contradiction.  Thus, for example, we might let x = z – h, and y = z – k.  This 
Approach invites the use of at least two elementary facts that most amateurs are probably familiar 
with, namely, Fermat’s Little Theorem and the binomial theorem.  It is reasonable to assume that 
Fermat knew of both when he attempted to prove FLT.

As far as we know, a report on an exhaustive investigation of  such an Approach has never 
been published. 

 We begin by pointing out that there is always the null substitution, in which we work directly 
from (1).  For each pair of definitions — for example, x = z – h, and y = z – k.— there are three 
more possible substitutions into (1): the substitution of only one definition into (1) (two possibili-
ties), and the substitution of both definitions simultaneously into (1) (one possibility). 

In this Appendix, we will investigate only the null substitution.

Since by the assumed properties of a counterexample, (x, y) = (y, z) = (x, z) = 1, we know that 
p divides at most one of x, y, z.  If p does not divide x, y, or z, we have, by Fermat’s Little Theo-
rem,

xp  x mod p, yp  y mod p, and zp  z mod p,                                                                  (2)

which, by definition of congruence, implies

xp  x + ip, yp  y + jp, and zp z + kp, where i, j, k are positive integers.

Equation (1) then implies

x + ip + y + jp z + kp, or

x + y + (i + j – k)p z.                                                                                                       (3)

Since i, j, k are each positive, and since, by “Lemma 0.0” on page 13, x + y > z, equation (3) 
can only hold if i + j < k.   We have already established (3) in part (a) of “Lemma 0.2” on page 14.  

In terms of the lines-and-circles model of congruence (see “Approaches via The ‘Lines-and-
Circles’ Model of Congruence” in Part (4) of this paper, on the web site www.occampress.com)  
we have established the following:

Regardless whether p divides none or one of x, y, z:

x and xp lie on the same line mod p, 
y and yp lie on the same line mod p, 
z and zp lie on the same line mod p, and
x + y and z lie on the same line mod p.

Since p < x < y < z (by part (a) of “Lemma 1.0.” on page 14), we therefore can state, if “(1.91) 
(c)” in Part (2) of this paper, on the web site occampress.com, holds for the Trivial Extension of 
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Fermat’s Little Theorem, that there exist u, v, w such that:

 u < x, v < y, w < z, 
u, v, w, < p (we don’t know if u + v < p),
x  umod p, 
y  vmod p, 
z  wmod p, 
up + vp  wp mod p and
zp upmod p,
yr  vp mod p,and
zp  wp mod p

The above statements concerning u, v, w are ground we have trodden, so far without result, in 
the sections on Vertical Approaches using the lines-and-circles model of congruence.  However, 
in those sections we did not use p as the modulus.  If we could prove that u + v is not w mod p, 
we would have our proof of FLT, because that would imply that x + y is not  z mod p, a contra-
diction.  In the following paragraphs, we investigate ways of proving that u + v is not w mod p.

Statement (2) implies

x + y z mod p.                                                                                                                      (4)

By part (a) of “Lemma 1.5.” on page 15we know that x + y > z, so, by definition of congru-
ence, statement (4) implies that there exists a positive m such that

x + y  –mpz.                                                                                                                      (5)

Since, by part (a) of “Lemma 1.0.” on page 14, p < x < y < z, and by definition of congruence, 
we know there exist positive integers i, j, k such that 

                                                                                                                                                
u + ip = x,
v + jp = y,
w + kp = z,

where u, v, w are each less than p.                                                                                          (6)

Combining the statements in (6) with statement (5) we get:

u + ip + v + jp –mp = w + kp.                                                                                              (7)

There are now two possibilities:

(A) u + v > p, or
(B) u + v p.

In the case of (A), there are now two further possibilities:
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(A.1) u + v = w, or
(A.2) u + v w.

(A.1) is ruled out by the fact that c < p  ((6)).

So (A.2) holds, and this is one of the possibilities we are hoping for. 

Now let us consider (B).  There are now two further possibilities:

(B.1) u + v < w, or
(B.2) u + v = w.

If (B.1) holds, then, again, we have one of the possibilities we are hoping for.

So we come to the only remaining possibility, namely, (B.2).  We see in (7) that if  u + v = w 
then i + j – m must equal k.  If we can show that is impossible, then we have a proof of FLT.

  

 Vertical Approaches by Induction on Inequalities
“Arithmetical” Version of the Approach by Induction on Inequalities

Brief, Simple Description of the “Arithmetical” Version 
The reader will recall our “Vertical Approach” to a proof of FLT as described under “Brief 

Summary of Approaches Described in This Paper” on page 9:
“[In this Approach], we assume that x, y, z are elements of a counterexample to FLT, then we 

attempt to find the n such that xn + yn = zn  , proceeding from n = 3 to n = 4 to n = 5, etc.,  i.e., pro-
ceeding in the “vertical” direction of progressively increasing n relative to the fixed x, y, z.  If we 
can show that we can never “get to” such an n, then we will have a proof of FLT.  Another way of 
regarding the Vertical Approach is to say that it asks what sequence of calculations would termi-
nate in the counterexample, assuming x, y, z were known to be elements of a counterexample, and 
assuming the calculations were the sequence of comparisons of xn + yn  with zn for n = 3, then for 
n = 4, then for n = 5, etc.”

In this sub-section, we discover some facts about the sequence of FLT inequalities,

 x3+ y3  z3 ,
 x4+ y4  z4 ,

...

 xn+ yn  zn , and then, following the assumed equality, 
 x(p = n+1) + y(p = n+1)  z(p = n+1), the further inequalities,
 xn + 2 + yn + 2  zn + 2,
 xn + 3 + yn + 3  zn + 3,
...

We first state the following basic facts about the FLT inequalities.  The formal statement of 
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each lemma, and the proof, is given in “Appendix F — Statement and Proof of Certain Numbered 
Statements and of Lemmas” on page 73.

for all k, 1 kn1:
xk + yk > zk (part (a) of “Lemma 1.5.” on page 15);
(xk +yk)/zk > (xk +1 + yk +1)/zk + 1 (part (e) of “Lemma 1.5.” on page 15).

for all k > p = n + 1:
xk + yk < zk (“Lemma 1.95.” on page 15);
lim k , (xk +yk)/zk = 0 (“Lemma 1.97” on page 15).

One answer to the question of the maximum size of p = n+1 in a counterexample to FLT is 
given by Lemma 1.0, namely, p must be < x.

We now discuss a possible approach for proving FLT that uses ratios between the FLT 
inequalities. 

Approach Using Ratios Between FLT Inequalities
First Implementation of Approach

We begin by reminding the reader of the sequence of inequalities, followed by an inequality, 
that lies at the basis of our Vertical approach to a proof of FLT. The sequence of inequalities is:

 x+ y  z ,
x2+ y2  z2 ,
x3+ y3  z3 ,
x4+ y4  z4 ,
...
 xn+ yn  zn , where n = p  1. 

The assumed equality is:
 x(p = n+1) + y(p = n+1)  z(p = n+1).

       Part (a) of  “Lemma 1.5.” on page 15 states that for all k, 1 k pn1: xk + yk > zk

We therefore write

or

   “Lemma 1.0.” on page 14 states that p < x < y < z, so for all k, 1 k pn1, we know that 
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where u = x or y. Furthermore, as k increases each of the fractions xk/zk, yk/zk  grows smaller. In the 
counterexample case, namely, 

either both xp/zp, yp/zp = 1/2, or one of xp/zp, yp/zp must be 1/2
We now investigate the application of some known constraints on x, y, and z to the above frac-

tions. To begin with, we know1 that

So a lower bound2 (unfortunately, not an upper bound) on y/z is

What can we say about 

for large p?  Using a pocket calculator we find, for example, that 

and that, for example

1. Ribenboim, Paolo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, N.Y., 1979, p. 226
2. A reader has written us: “The lower bound you develop on y/z could be replaced with a stronger lower 
bound. Assume x < y < z.  Then since (x/z)p + (y/z)p = 1, (y/z)p  1/2, or y/z  (1/2)(1/p).  This bound is 
between 1/2 (for p = 1) and 1 (as  p   and is monotonically increasing with p.  On the other hand, the 
bound you use, y/z > (p/(p+1))p is between 1/2 (for p = 1) and 1/e (as  p  ), and is probably... monoto-
cally decreasing with p.” 

u
k

z
k

----- 1

x
p

z
p

----- y
p

z
p

-----+ 1=

y z y 1
1
p
---+ 

  

y

y 1
1
p
---+ 

 
--------------------- 1

1
1
p
---+ 

 
------------------ p

p 1+ 
-----------------= =

p
p 1+ 

----------------- 
  p

37
37 1+ 

-------------------- 
  37

0.373
28



Is There a “Simple” Proof of Fermat’s Last Theorem? Part (1)
Since x/z < y/z, it seems that no counterexample is possible for y/z near the above lower 
bound, because in these cases 

The upper bound on y/z = y/(y + 1).  But since, by “Lemma 1.0.” on page 14, p < x < y, it is 
possible that 

For example,

But even if x were as large as, say, 405, (405/504)257 is so small that a counterexample with x = 
405, y = 503, z = 504, p = 257 is impossible, as the reader can verify.

Other constraints on x, y, z can be found in Lecture XI, “Estimates”, pp. 225-243 in the above-
cited work by Ribenboim. For example, we find that z < x2 and z x > 2pp2pLet us apply the first 
of these relations to our example of y = 503, z = 504. Since 222 = 484 and 232 = 529, we see that x 
must be  23Let p = 19. Then 

But even if x were as large as, say, 105 (which, of course, it couldn’t be, given that z x > 2pp2p), 
we find that 

is so small as to make a counterexample impossible with x = 105, y = 503, z = 504, p = 19.
At the very least, we should use the computer and the above constraints, plus others, to 

develop a table of non-counterexample 4-tuples <x, y, z, p> including, of course, p > 125,00, the 
lower bound on p in a counterexample as of the early nineties. 

 Second Implementation of Approach
Part (f) of “Lemma 1.5.” on page 15 states that the function xk + yk –  zk is increasing for 1  k  
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 p – 1, k real and not merely integral. But in order for a counterexample to exist, namely, for xk + 
yk –  zk = 0, there must exist a c,  p – 1 < c   p such that for k, c  k   p, the function must be 
decreasing, or, in other words, the derivative xk (ln x) +  yk (ln y) –  zk (ln z) of the function must be 
less than  0 .  The following facts might enable us to accomplish a proof by contradiction.  Some 
thoughts on possibilities are given after the following list of facts.

(1)
x c(ln x) +  yc (ln y) –  zc (ln z) = 0, i.e., 

(k = c is the point at which the tangent to the function xk + yk –  zk = 0 is horizontal, i.e., the 
point at which the function is no longer increasing.)

(2)
Since the function xk + yk –  zk  is monotonically increasing from k = 1 to k = p – 1 (part (f) of 

“Lemma 1.5.” on page 15), the value of the function at k = p –  1 must be Kdef p –  1(“Lemma 
0.2” on page 14). 

(3)
xk(ln x) +  yk (ln y) –  zk (ln z) < 0, c  k   p,  i.e., 

(4)
xk +  yk  –  zk  > 0, c  k   p, i.e.,

(5)
ln u/ln v > u/v, u, v, > e. (See proof of “Lemma 1.5.” on page 15.)

(6)
xp +  yp  –  zp = 0.

A reader has pointed out that for x, y, z such that x < y < z and x + y > z, a continuous function 
xk + yk –  zk of k can be defined, and that this function will have the property that the function 
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increases to a certain maximum value, then decreases thereafter, crossing the k axis at some point, 
i.e., at some point has the value 0. 

To which we reply that, although this is true, in the case when x, y, z are elements of a counter-
example, descent from the maximum value to 0 occurs over a range of k that is less than 2 units. It 
took about p – 1 units for the function to reach its maximum, and then less than 2 units for it to 
return to 0. Yet neither the function nor its derivative xk (ln x) +  yk (ln y) –  zk (ln z) suggest that 
such a rapid change in the derivative occurs at some point.

Is this the basis for a proof of FLT by contradiction? 

Approach Using Basic Algebra

1. Assume a counterexample  xp + yp – zp = 0  to FLT exists.  Prior to Wiles’ proof of FLT, it 
was known that FLT is true for all k where 3  k < 4,000,000, so assume p is a prime > 4,000,000.

2. Now consider
 
(1)
x(p  – 1)( x – 1)  +  y(p  – 1)(y – 1) –  z(p  – 1)(z – 1) 

It is equal to xp – x(p – 1)  +  yp – y(p – 1) –  zp – z(p – 1),  which, given our counterexample, is 
equal to

(2)
– x(p – 1) – y(p – 1)  +   z(p – 1).

3. But comparing (2) with (1), which are equal, we must conclude that

(3)
( x – 1) = –  1;   ( y– 1) = –  1. and ( z – 1) = – 1.  

(We are aware that, in general, when dealing with integers, it is not the case that

Ag + Bh = g + h implies only that A = 1 and B = 1. Consider, e.g., that 

(5)(3) + (– 2)(4) = 7 = 3 + 4, and neither 5 nor – 2 equal 1.

But our case is different, because our entities in (1) and (2) are not integers, and because in (1) 
and (2) there are no equivalents for A and B.)

4.

And therefore  (3) implies that x = 0, y = 0, and z = 0, which, of course, is false.

So our assumption has led to a contradiction, and therefore FLT is true.
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Approach Using Inner Products

Assume a counterexample xp + yp = zp exists, where p is prime, and (x, y) = (x, z) =  (y, z) = 1, 
and p is the smallest such p.

We can write the equation as xp + yp – zp= 0, and then express it as an inner product equation 
<(xp–1, yp–1, zp–1), (x, y, –z)>  = 0.  (We can also express it as <(xp–k, yp–k, zp–k), (xk, yk, –zk)> = 0, 
where 1  k    p – 1.)

(The inner product is a function on vector spaces.  We do not know if the two terms in each of 
our inner products are elements of a vector space.  But that does not matter, since we are only 
using the inner products as forms of calculations.  We are not, for example, claiming that because 
our inner products = 0, the angle between the pair of terms is 90 which would be the case if the 
terms were elements of a vector space.)

Now FLT is true for all k, where 3  k < p.  And this is true whether or not a counterexample 
exists.  In other words, for each of these k, (xp – k)(xk) has one and only one value, whether or not 
a counterexample exists.  And similarly for (yp – k)(yk) and (zp – k)(zk).

But that means <(xp–k, yp–k, zp–k), (xk, yk, –zk)> has the same value, whether or not a counter-
example exists.  This is not possible.  We conclude that a counterexample does not exist.  If our 
reasoning is correct, we have a proof of FLT.

Approaches related to this Approach are the following:
“Approach Using “Neighbor” of Assumed Counterexample” on page 32;
“Approach Using Pythagorean Theorem” on page 33;
“Third Promising Approach to a Simple Proof of FLT”, in Appendix A of Part (4) of this 

paper, on occampress.com;
“Four-Dimensional Cartesian Grid Approach” on page 35 of this file;

Approach Using “Neighbor” of Assumed Counterexample

1.  Assume a counterexample xp + yp = zp to Fermat’s Last Theorem (FLT) exists, where (x, y) 
= (x, z) = (y, z) = 1 and p is the smallest such p.

2. Because FLT is true for all k, 3 k  (p –1),  (xk+ yk – zk )  has one and only one value for 
each of these k, regardless if a counterexample exists or not.

3.  Now the sum  (xp – 1 + yp – 1 –  zp – 1 ) +   xp – 1(x – 1) + yp – 1(y – 1)  –  zp – 1(z – 1) has one 
and only one value, regardless if a counterexample exists or not.

4. But that sum = (xp + yp – zp), which means that xp + yp –  zp  has one and only one value, 
regardless if a counterexample exists or not. But that is absurd, and therefore, a counterexample 
does not exist.
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Approach Using Pythagorean Theorem

1.  Any two straight lines of non-zero finite length can be the legs of a right triangle.

2. The Pythagorean theorem applies to all right triangles.

3. Let a, b  be any positive integers, and k a positive integer, where 3  k.  

Then  and  can be the legs of a right triangle.  Therefore, by the Pythagorean theo-
rem,

(1)

and thus

(2) 

4. Assume a counterexample xp + yp = zp to Fermat’s Last Theorem exists, where (x, y) = (x, z) 
= (y, z) = 1 and p is the smallest such prime p.  (Prior to the proof of FLT in the early 1990s, p was 
known to be greater than 4,000,000.)

5. Then we can write 

(x(p/2))2 + (y(p/2))2 = c2, i.e.,

(3)

xp + yp = c2.

6. So zp must equal c2.  We know that c2 is an integer because it is the sum of the positive inte-
gers xp and yp.  It can’t be a prime because zp is not a prime.  So it must be a composite.

There are now two possibilities: 
(1) c2 = (z(p/2))2 = (z(p/2))  (z(p/2)). But this is false because (z(p/2))2  is not a product of primes, 

as required by a composite integer.
(2) c2 = (n)(n), where n is a positive integer.  But this too is false because zp is not a square of 

an integer.

So zp does not equal c2, and our assumed counterexample to FLT is false.  Hence FLT is true.
.
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Is One of the Above Short Approaches,  Fermat’s “Lost Proof”?
Around 1637, Fermat made a note in the margin of his copy of an ancient number theory text 

by Diophantus that he was reading, in which he first stated what became known as Fermat’s Last 
Theorem (FLT) (though it was only a conjecture until it was proved by Andrew Wiles in the early 
1990s), and then concluded,  “I have found a remarkable proof of this fact, but there is not enough 
space in the margin [of the book] to write it.”

For more than 350 years, mathematicians tried unsuccessfully to figure out what Fermat’s 
proof was as they tried to find any proof of FLT.  

Is the above Approach Fermat’s proof?  One reason that the answer might be Yes is that Fer-
mat was proud of his discovery of the proof method he called “the method of infinite descent”.  
Here, a counterexample is assumed, and then one shows that there is a smaller positive integer 
that is a counterexample.  And then that there is a smaller positive integer, etc.  But this sequence 
cannot continue forever if the counterexamples are to be positive integers.  The contradiction 
yields a proof.

Now if Fermat assumed a counterexample to FLT existed (see step 1 above) and that p was the 
smallest exponent in any counterexample, then his method of infinite descent might have 
prompted him to think of the sequence, (xp – 1 + yp – 1 – zp – 1 ), (xp – 2+ yp – 2 – zp – 2), ... , (x3 + y3 
– z3 ).  He would have recognized that FLT is true for each of these exponents, and that therefore 
(this would have been the first crucial insight) each expression in the sequence has one and only 
one value, regardless if a counterexample exists or not.

If he had the second crucial insight, namely, of recognizing that the value of each element of 
the sequence (apart from the first) is the value of the previous element plus the difference in val-
ues between the two elements, he may then have arrived at one of the above Approaches.

Approach Involving Comparing Counterexamples and Non-Counterex-
amples

This Approach relies on the fact that each term uk + vk –  wk, where u, v, w, k are positive inte-
gers, and k is a exponent for which FLT has been proved true, has the property of remaining the 
same regardless if a counterexample exists or not.  For example, we cannot seriously imagine a 
professional mathematician saying, prior to Wiles’ proof of FLT, things like, “Well, of course we 
know that 173 + 63 –193  =  – 1730, but if a counterexample is proved to exist, then this might 
change — the value on the right-hand side might change.”  

We call the set of terms that remain the same regardless if a counterexample exists or not, the 
“Fixed-Set” of the problem.  Then our Approach has two implementations.  

(1)  assume a counterexample exists, then show that this implies that an element of the Fixed-
Set is changed.  Or 

(2) assume a counterexample exists, then show that a term that must be changed as a result of 
the existence of a counterexample, is unchanged.  (The latter implementation is used in our proof  
of the 3x + 1 Conjecture in the paper “A Solution to the 3x + 1 Conjecture” on occampress.com.)

We emphasize that comparing the two cases in no way implies that the two cases exist simul-
taneously, which would be absurd.

An example of implementation (1) is  “Third Promising Approach to a Simple Proof of FLT”, 
in Appendix A of Part (4) of this paper, on occampress.com (2¼ pages).
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Four-Dimensional Cartesian Grid Approach
1. Consider a four-dimensional Cartesian grid such that the point having coordinates (k, a, b, 

c) is associated with the value of ak + bk – ck, where a, b, c, k are positive integers, and k > 2. The 
grid makes it possible to speak of the values associated with immediately adjacent  points.

2. Prior to Wiles’ proof of FLT it was well-known that,  if FLT is known to be true for an 
exponent n (> 2), then there is one and only one value for each xn + yn – zn, regardless if a counter-
example to FLT exists. (It was also known that if FLT is true  for the prime exponent p, it is true 
for all exponents that are multiples of p (easy proof).)

3. Assume a counterexample xp + yp – zp = 0 exists, and assume that p is the smallest such 
exponent.

Then there is one and only one value for xp – 1 + yp – 1 – zp – 1 regardless if a counterexample to 
FLT exists.

But then there is one and only one value for xp – 1 +  yp – 1 – zp – 1with  xp – 1  replaced by  (xp – 

1 ) (x), (yp – 1  replaced by yp – 1 ) (y),  and zp – 1  replaced by (zp– 1)(z). 
But that means there is one and only one value for xp + yp – zp regardless if a counterexample 

exists, which is absurd.  This absurdity give s us a proof of FLT.

Approach of Multiplying Fractional Polynomials
If a counterexample exists, then the following are true:
(1)

and

(2)

It is natural to attempt to derive a contradiction using one (or both) of these two facts.

A potentially promising argument is the following.

1. Since for all rationals m it is the case that (m1) = m, it must be the case that

(3)
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Multiplying out the terms on the left-hand side, we get

(4)

If the right-hand side of (3) does not equal the right-hand side of (4), we have a proof of FLT. 
Setting these right-hand sides equal, we have:

(4.5)

or

(5)

The numerator on the right-hand side is

which makes the right-hand side = the left-hand side, hence no contradiction.

It might be possible to make some progress with this approach by invoking a few of our 
results,  such as x + y > z (Lemma 0.0);  (xp–1 + yp–1)/zp–1 > 1 (Lemma 1.5); p < x < y < z < 2y 
(Lemma 2.0); and the fact (easily proven) that if k > p, then (xk + yk)/zk < 1.  
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Approaches of Multiplying Integer Polynomials
First Approach of Multiplying Integer Polynomials

Before spending time on this sub-section (that is, in “First Approach...”), the reader is urged to 
read “The Danger of “Null” Approaches” on page 8.

In the course of this research we have spent a fair amount of time trying to derive a contradic-
tion from the multiplication of the following pairs of polynomials:

(x + y – z) and (xk + yk + zk);
(x + y + z) and (xk + yk – zk);
(x + y + z) and (xp– 1 + yp– 1 – zp– 1); 
(x + y – z) and (xp– 1 + yp– 1 + zp– 1); and
(x + y + z) and (xp + yp – zp),

For example, consider the product (x + y – z)(xp– 1 + yp– 1 + zp– 1).  Since (x + y – z) is positive 
(“Lemma 0.0” on page 13) and integral, the product must be a positive integer  >  (xp– 1 + yp– 1 + 
zp– 1). 

.Multiplying out the product, we get:

(x + y – z)(xp– 1 + yp– 1 + zp– 1) = 

     xp         +   xyp – 1      +     xzp – 1  +
   yxp – 1    +   yp             +     yzp – 1  +
–zxp – 1     –   zyp – 1      –     zp.

Since, by hypothesis, xp + yp –  zp  = 0, when we collect terms we get:

x(yp – 1  +  zp – 1) +    y(xp – 1 +  zp – 1 )  – z(xp – 1 +  yp – 1), or

 (y –  z)xp – 1 +  (x –  z) yp – 1  + (x + y)zp – 1.                                                                       (1)

Our original product can be written

(x + y – z)xp– 1 +  (x + y – z)yp– 1 +  (x + y – z)zp– 1                                                                              (2)

If (1) , then we have a proof of FLT.  Unfortunately, it easy to show that (1) = (2), given 
our assumption of a counterexample.

Second Approach of Multiplying Integer Polynomials
1. Consider the product h = (xk + yk – zk)(xj + yj – zj), where k, j  1, and k + j = p, the prime 

exponent in our assumed counterexample.

We know that 0 < (xk + yk – zk) < xk and 0 < (xj + yj – zj) < xj by part (b) of  “Lemma 1.5.” on 
page 15.  Thus 0 < h < xp.  By part (g) of “Lemma 1.5.” on page 15, we also know that h Kdef  
+ k – 1)(Kdef + j – 1).
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.

If we can prove that h  0 or h  xp, then this contradiction will give us a proof of FLT.  
Observe that the first of these conditions on h is merely sufficient for a contradiction, since we 
have a contradiction if we can prove that h has a value that is less than Kdef + k – 1)(Kdef + j – 
1). 

2.  Multiplying out the product, we get, for h:

(1)
h =
xkxj + xkyj – xkzj +
ykxj + ykyj – ykzj +
–zkxj – zkyj + zkzj.  

3. By the conditions on k, j, we have xkxj = xp, ykyj = yp, and zkzj = zp.  By assumption of a 
counterexample, we see that the sum of the three diagonal elements in (1) is 2zp. 

4. Gathering the positive terms in (1), we have:

(2)
2zp + xkyj + ykxj.

Gathering the negative terms in (1), we have:

(3)
– (xkzj  + ykzj + zkxj + zkyj) = – ((xk + yk) zj +(xj + yj) zk).

5. Let k = p – 1, j = 1.  Then (2), the expression for the positive terms, becomes

(3)
2zp + xp – 1y1 + yp – 1x1 = 2zp + xy(xp – 2 + yp – 2).

By part (a) of “Lemma 1.5.” on page 15, we know that xp – 2 + yp – 2 = zp – 2  + Kdef +  (p – 
3).   Since it is easily shown1 that xy = z + z(y – 1)  –  y2 + Kdefy we can write, from (3)

(4)
2zp + xp – 1y1 + yp – 1x1 = 2zp +  (z + z(y – 1)  –  y2 + Kdefy)(zp – 2  + Kdef +  (p – 3)):

1. Simply set x + y = z + Kdef (by part (a) of “Lemma 1.5.” on page 15),  yielding x = z – y + Kdef.  Then 
multiply through by y, and set zy = z + z(y – 1).  
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where “( u)” denotes a quantity greater than or equal to the positive integer u.

6. We now expand the expression for the negative terms, (3), with k = p – 1,  j = 1 as for the 
positive terms.  We get

(6)
– (xkzj  + ykzj + zkxj + zkyj) = – ((xp – 1 + yp – 1) z1 +(x1 + y1) zp – 1).

By part (a) of “Lemma 1.5.” on page 15, we know that xp – 1 + yp – 1 = zp – 1 + Kdef +  (p – 2).  
So 

(7)
((xp – 1 + yp – 1) z1 =  zp  + z(Kdef + >(p – 2)).  

Similarly, we know that x1 + y1 = z1 + Kdef.  So

(8)
(x1 + y1) zp – 1 = zp + zp – 1(Kdef).

7. We see immediately that 2zp in the positive terms (4) and 2zp in the negative terms ((7) and 
(8)) cancel.  That leaves 12 terms on the right-hand side of (4).  But there are too many uncertain-
ties in the values of some of these terms for us to draw any conclusions about the size of the posi-
tive vs. the negative terms in (1).

Third Approach of Multiplying Integer Polynomials
1. It is easy to show that, if a counterexample xp + yp   zp exists, then

(1)
(x + y + z)(xp – 1 + yp – 1 – zp – 1) = ((y + z)xp – 1 + (x + z)yp – 1 – (x + y)zp – 1). 

2. It follows from a basic property of the ring of polynomials that the right-hand side of (1) 
must be divisible by (x + y + z).  If we can show that this is not the case, then that gives us a proof 
of FLT.  But note: since three variables are involved,  we must use what is called a “Gröbner 
basis” to determine divisibility — the standard single-variable long-division procedure is not 
applicable here.

Approach of Comparing Successive Inequalities
First Implementation of Approach

This Implemenation is being revised.
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Second Implementation of Approach
1. By part (b) of “Lemma 1.5.” on page 15, we know that 

(1)
xp–1 + yp–1 – zp–1  <  xp–1. 

2. Now for all positive integers u and for all positive integers k > 1, 

uk = uk–1 + uk–1 (u – 1).

Therefore we can write, from (1),

(2)
xp + yp–1 – zp–1 xp–1+ xp–1(x – 1).

And furthermore,

(3)
xp + yp – zp–1  xp–1+ xp–1(x – 1) + yp–1(y – 1).

And finally, 

(4)
xp + yp – zp xp– 1+ x p–1(x – 1) + yp–1(y – 1) – zp–1(z – 1), or,

by our assumption of the existence of a counterexample,

(5)
0 xp– 1+ x p–1(x – 1) + yp–1(y – 1) – zp–1(z – 1).  

3. By “Lemma 1.0.” on page 14, x < y < z.  Let y = x + b, and z = x + c.  Then it follows that:

y – 1  = x + b – 1 = x – 1 + b, b > 0;
z – 1 = x + c – 1 = x – 1 + c,  0 < b < c,

and we can therefore write, from statement (5),

0 xp– 1+ x p–1(x – 1) + yp–1(x – 1 + b) – zp–1(x – 1 + c), or,

0 xp– 1+ x p–1(x – 1) + yp–1(x – 1) +  yp–1b – zp–1(x – 1) – zp–1c, or

(6)
0 xp– 1+ (x – 1)(x p–1 + yp–1 – zp–1) +  yp–1b  – zp–1c.
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4. By step 1, we can write, from (6):

(7)
0 xp– 1+ (x – 1)(< x p–1) +  yp–1b  – zp–1c, where “< u” denotes a number less than u.

 Our goal now is to prove that the right-hand side of (7) is 0, thus giving us a contradiction 
that  implies the truth of FLT.  

5. Let us replace, unfavorably for our goal,  “(x – 1)(< x p–1)” with “(x – 1)(x p–1)”.  Then (7) 
becomes 

(8)
 0 (x)xp– 1 +  yp–1b  – zp–1c.

Now, again unfavorably for our goal, let us replace “yp–1c” with “zp–1c”.  Then (8) becomes

 0 (x)xp– 1 +  zp–1((y – x)  – (z - x)), or

(9) 
 0 (x)xp– 1 –  zp–1(z – y).  

6. One way to determine if the right-hand side of (9) is 0 or negative is by considering the ratio

(10)

7.  Since, by part (a) of “Lemma 1.5.” on page 15 x + y > z, it follows that z –  y < x.  In fact, it 
is known1 that z –  y can be as small as 1.  If we can prove that  

(11)

1. Ribenboim, Paulo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, N.Y., 1970, p. 64.
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is 1, then we will have a proof of FLT.  A possible approach might be to prove that each of the   
p – 1 terms

is 1 (recall that x < y < z) because then their product, which equals (11), will likewise by 1. 
The reader should keep in mind that, as of 1990, p was known to be > 125,000

Approach of Adding Inequalities
First Implementation of Approach

Suppose x, y, z are elements of a minimal counterexample xp + yp = zp.  By part (a) of “Lemma 
1.5.” on page 15, we know that, for all k, 1  k  p – 1, xk + yk > zk, or, in other words, xk + yk – zk 
> 0.  We ask for the value of:

(1)  
S = (x1+ y1– z1 ) + (x2 + y2 – z2) +  (x3 + y3 – z3) + ... + (xp  + yp –  zp ).

By an elementary fact of algebra, we know that the value of  (1) is given by:
(2)

We ask if the assumption of a counterexample results in a value of (2) that is different from 
that in (1).  in particular, we point out that 

(3)
S = (x1+ y1– z1 ) + (x2 + y2 – z2) +  (x3 + y3 – z3) + ... + (xp–1  + yp–1 –  zp–1 )

has the same value regardless if the assumed counterexample exists or not (because the exponent 
in the assumed counterexample is the smallest counterexample exponent). 

Second Implementation of Approach
We now consider another implementation of the Approach of Adding Inequalities.  Unfortu-

nately, this implementation will not lead to a contradiction.  It will lead only to the conclusion that 
the existence or non-existence of a counterexample has no effect on the value of (1), below.   We 
begin by considering
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We can write the sum of the first three terms as
(1)

Since, by “Lemma 1.0.” on page 14, p < x < y < z, we know that:

(x – 1)(y – 1) < (x – 1)(z – 1) < (y – 1)(z – 1).  We can therefore “subtract out” (x – 1)(y – 1) 
terms from the total number of (xp – 1) terms in the numerator of (1), and similarly for the (yp – 1) 
and (zp – 1) terms. By our assumption of a counterexample, the subtracted out terms taken 
together will become zero.  Specifically, we have:

(2)
 (xp – 1)(y – 1)(z – 1) =      (xp – 1)((y – 1)(z – 1) – (x – 1)(y – 1)) + (xp – 1)( (x – 1)(y – 1);
 (yp – 1)(x – 1)(z – 1) =      (yp – 1)((x – 1)(z – 1) – (x – 1)(y – 1)) + (yp – 1)( (x – 1)(y – 1);
– (zp – 1)(x – 1)(y – 1) = – (zp – 1)((x – 1)(y – 1) – (x – 1)(y – 1)) – (zp – 1)( (x – 1)(y – 1)).
The sum of the rightmost terms in the three lines of (2) is
xp (x – 1)(y – 1) – (x – 1)(y – 1) + 
yp(x – 1)(y – 1) –  (x – 1)(y – 1) –  
zp(x – 1)(y – 1) + (x – 1)(y – 1).  
By our assumption of a counterexample
xp (x – 1)(y – 1) + 
yp(x – 1)(y – 1) –  
zp(x – 1)(y – 1) = 
(xp + yp–  zp)(x – 1)(y – 1) = 0 ꞏ (x – 1)(y – 1) = 0.  

So the sum of the rightmost terms in the three lines of (2) = – (x – 1)(y – 1).  
The sum of the leftmost terms on the right-hand side of (2) is

 (xp – 1)(y – 1)(z – x) + 
 (yp – 1)(x – 1)(z – y).

Thus we have, for the value of (1),
(3)
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(4)

(5)

Now (z – x) = (z – 1)  – (x – 1), and (z – y) = (z – 1)  – (y – 1), and so (5) equals
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which is exactly where we started.  Our only conclusion can be that the existence or non-existence 
of a counterexample has no effect on the value of (1), which, to us at least, seems strange and wor-
thy of further investigation.  

Third Implementation of Approach
In this implementation, we proceed conceptually and informally,  merely discussing an argu-

ment that could lead to a contradiction.

1. We begin by asking the reader to imagine a person who had never heard of FLT and who 
had never read this paper.  The person is asked to describe a sequence of p fractions ak/bk, 1  k  
p, p a large prime, having the properties:

(a) for each k < p – 1, ak+1 > ak and bk+1 > bk ;
(b) ap/bp = 1.

The person might respond with the following sequence or one like it:
(1)

2. Suppose, now, that the person is told that the sequence must have the additional property 
that, for all k < p:

(c) ak must be > bk, 

The person might then modify his or her sequence (1) to
(2)

3. Finally, suppose that the person is told that the sequence must have the further property that, 
(d) for all k < p, 

x
p

1– 
x 1– 

------------------- y
p

1– 
y 1– 

------------------- z
p
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z 1–

------------------–+

1
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--- 2

2
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3
---  p

p
---   
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1
--- 3

2
--- 4

3
---  p

p 1–
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(3)

The person would rightly point out that his or her sequence in (2) already satisfies this prop-
erty.

4.  We observe that no fraction in (2) is equal to 1, although the limit of the value of the frac-
tions as k approaches infinity is certainly 1. 

5. By this time, the reader has probably understood that:

ak  corresponds to xk + yk;
bk  corresponds to zk;
property (a) corresponds to the fact that 

xk + 1 + yk + 1 is always greater than xk + yk, and 
zk + 1 is always greater than zk;

property (b) corresponds to our assumption that a counterexample exists;
property (c) corresponds to part (a) of “Lemma 1.5.” on page 15;
property (d) corresponds to part (e) of “Lemma 1.5.” on page 15.

6. In the series (2), we have, for all k < p, ak+1 – ak = 1, and bk+1 – bk = 1.  In other words, the 
difference between successive ak is constant, and similarly for the difference between successive 
bk.  We ask now what these differences are in the case of our assumption of a counterexample to  
FLT.

Clearly, for all positive integers u, k, uk+1 – uk = uk(u – 1), and clearly this difference grows 
with increasing k, given fixed u.  So, unlike the series (2), in the corresponding series for FLT, the 
difference between successive xk + yk increases with increasing k, and similarly for the difference 
between successive zk.

But this fact in itself does not necessarily have an impact on the difference xk + yk – zk, as the 
reader can easily see from the following modification of the series (2), in which the difference 
between successive ak increases by 1, and similarly for the difference between successive bk.

(4)

7. The reader should at this point recognize that the difference xk + yk – zk is of crucial impor-

ak

bk
-----

ak 1+

bk 1+
------------

2
1
--- 4

3
--- 7

6
--- 11

10
------  p

p 1–
------------    
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tance for our approach.  We draw the reader’s attention to the fact that, by part (g) of “Lemma 
1.5.” on page 15, xk + yk –  zk  Kdef k – 1), so that (xk + yk)/zk = (zk   Kdef k – 1))/zk, 
for 1  k  p – 1.  Here,  (“ u”) denotes a quantity u.  

Approach by Induction on Inequalities
We begin by considering the following sequence S of inequalities, culminating in the assumed 

counterexample to the Theorem. 

The Sequence S
The sequence S is:

{x3 + y3  z3,

x4 + y4  z4,

x5 + y5  z5,

.

.

.

xp-1 + yp-1  zp-1,

xp + yp= zp}

We can also express this sequence as a sequence of inner products:
{<x, y, z> <x2, y2, z2> = (x3 + y3 z3)  0,

<x, y, z> <x3  , y3 , z3 > = (x4+ y4 z4 )  0,

<x, y, z> <x4, y4,  z4 > = (x5 + y5 z5 )  0,

.

.

.

<x, y, z> <xp-2, yp-2, zp - 2  > = (xp-1 + yp-1 zp-1 )  0,

<x, y, z> <xp-1, yp-1, zp-1 > = (xp + yp zp )  0}

The Basic Question
We now ask the Basic Question:  Is the sequence S possible?  In other words, could such a 

sequence of inequalities terminate in the indicated equality?  Could we “get to” the indicated 
equality via the sequence of inequalities?  We urge the reader to keep in mind that we are not 
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merely attempting to approach FLT from the point of view of forms (homogeneous polynomials) 
of degree k, 1  k  p.  A vast literature already exists on that approach.  We are attempting to 
approach FLT from the point of view of the sequence of forms represented by S.

We now attempt to answer the Basic Question in the negative, considering first the sequence S 
from a factoring point of view, then considering the inner product representation of S.

The Sequence S Considered From a Factoring Point of View
Our assumption of a counterexample as the last item in the above list implies, by elementary 

algebra, that the sequence can be written:

{x3   ( z3 - y3= (z - y)(z2+ z1y +  y2)),

  x4  ( z4 - y4 = (z - y)(z3 + z2y + zy2+ y3)), 

  x5 ( z5 - y5 = (z - y)(z4 + z3y + z2y2 +  zy3+ y4)), 

...

  xp-1  ( zp-1 - yp-1 = (z - y)(zp-2 + zp-3y +  ... + zyp-3 + yp-2)),

  xp =  ( zp - yp = (z - y)(zp-1 + zp-2y +  ... + zyp-2 + yp-1)) }

Similar sequences exist with yk, zk on the left-hand side, 3    k    p.

We now prove two very elementary lemmas.  Let:

(6)  Bn, (z - y) = (zn-1 + zn-2y  + ... + zyn-2 + yn-1).
       Bn, (z - x) = (zn-1 + zn-2x  + ... + zxn-2 + xn-1).
       Bn, (x + y)  = (xn-1 -  xn-2y + ... + yn-1), n  3.

Lemma 20.0 
If one of the following pairs, 

      (7)  ((z - y),  Br, (z - y));
(8)  ((z - x),  Br, (z - x));
(9)  ((x + y), Br, (x + y)), r a prime  3. 

has a factor in common, then that factor must be r.

Proof for the pair in (7): 

1. Assume the pair in (7) have the prime q as a common factor.

2. Then z - y = kq implies
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 (10)   z - y 0 mod q, 

and Br, (z - y) = mq implies

 (11)  (Br, (z - y) = (zr-1 + zr-2y  + ... + zyr-2 + yr-1))  0 mod q.

3. (10) implies z y mod q,  so substituting y for z in (11) gives

(12)  ryr-1  0 mod q.

4.If y  0 mod q, then, by (10),  z  0 mod q, contrary to (1.5).  Therefore r must be 0 mod q.  
Since r is a prime, r must = q. 

We leave it to the reader to verify that the proofs for (8) and (9) in the Lemma are similar.  

We now prove one more elementary lemma.  I am indebted to Ivor Lloyd for bringing this 
lemma to my attention.

Lemma 28.0.
(a) (z – y) divides xp, (z – x) divides yp, and (x + y) divides zp;
(b) (z – y), (z – x), and (x + y))  are co-prime in pairs.  That is, ((z – y), (z – x)) = ((z – y), (x + y)) 
=  ((z– x), (x + y)) = 1.

Proof of Lemma 28.0 (a):
The reader can easily confirm that (z – y) divides (zp – yp), (z – x) divides (zp – xp) and (x + y) 

divides (xp + yp), since p is a prime greater than 2 (hence odd).  But, on the assumption that a 
counterexample exists, zp – yp = xp, zp – xp = yp, and xp + yp = zp.  Therefore Part (a) is true.

Proof of Lemma 28.0 (b):
 Since x, y, z are co-prime in pairs (by (1.5)), the result follows from Part (a). 

Observations

Keeping the Basic Question always before us, we now make the following observations.

(A) Since x, y, z are by hypothesis fixed, then so is the prime factorization of (z - y), (z - x), (x 
+ y).

(B) Therefore, if a counterexample exists, (z - y) contains some of the prime factors of xk, (z - 
x) contains some of the prime factors of yk, and (x + y) contains some of the prime factors of zk, 
for all k  2

 (C) The process of constructing Bn, (z - y) = (zn-1 + zn-2y  + ... + zyn-2 + yn-1) from Bn-1, (z - y) 
=(zn-2 + zn-3y  + ... + zyn-3 + yn-2) is very simple: multiply through Bn-1, (z - y) by z and add yn.  And 
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similarly for Bn, (z - x), and Bn, (x + y).  
If a counterexample exists, this process must yield Bp, (z - y), which must contain all the prime 

factors of x not in (z - y), and similarly for Bp, (z - x), y, and Bp, (x + y), z.

We remark in passing that:
Bn, (z - y) can also be written (z(...(z(z(z + y) + y2) + y3)...+  yn-1), and similarly for Bn, (z - x), and 

Bn, (x + y).  
Furthermore, Bn, (z - y) can also be written1 (x - 1y)(x - 2y)...(x - n-1y), where 1, 2, ..., n

1 are the roots of  p(z) = zn-1 + zn-2  + ... + z + 1 in the splitting field of p(z). And similarly for Bn, 

(z - x), and Bn, (x + y).

Question 2. Recognizing that Bn, (z - y), Bn, (z - x) and Bn, (x + y) are binary forms of degree (n - 
1), are there any results in the literature up to 1990, that enable us to prove that the process cannot 
yield such Bp, (z - y), Bp, (z - x), and Bp, (x + y)?

(D) There exists a prime r such that for all  r> r, ((z - y), Br, (z - y)) = ((z - x), Br, (z - x)) = ((x 
+ y), Br, (x+y)) = 1.  Otherwise, by Lemma 20.0, x, y, z would each contain an infinite number of 
prime factors, an impossibility.

(E) By Lemma 20.0, if a counterexample exists, then we have the following possibilities:

(E.1) The exponent p does not divide either (z - y) or Bp, (z-y);
(E.2) The exponent p divides only (z - y) but not  Bp, (z - y) ;
(E.3) The exponent p does not divide (z -y) but divides Bp, (z - y) ;
(E.4) The exponent p divides both (z - y) and Bp, (z - y) .

And similarly for ((z - x), Br, (z - x)), and ((x + y), Br, (x + y)).

In other words, all prime factors of (z - y) except for, possibly, p, and all prime factors of 
Bp, (z - y)  except for, possibly, p, are not only disjoint but are also pth powers.  (If  either or both 
terms (z - y) and Bp, (z - y) contain the prime p, then the combined power of p must = pp.) The cor-
responding statement holds for (z - x) and (x + y).  So if we were to embark on a “search” for 
counterexamples, x, y, z, we could immediately eliminate all those such that (z - y), (z - x), and (x 
+ y) failed to have prime factors conforming to these requirements.  

Question 3: do any relevant results exist in the pre-1990 literature?

(F) Consider the sets  

G = { ..., 1/x3, 1/x2, 1/x, 1, x, x2, x3, ... }

and 

1. Borevich, Z. I., and Shafarevich, I. R., Number Theory, Academic Press, N.Y., 1966, p. 78.
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G.., 1/(B3, (z - y)), 1/(B2, (z - y)), 1, (z - y)B2, (z - y),  (z - y)B3, (z - y), ...}

We ask: are G and G infinite cyclic groups over the rationals, with:
 x, B2, (z - y) respectively as generators; 
1 as the identity element in both cases;
multiplication/division by x the group operation of G; 
multiplication/division of Bn,(z - y) by z and addition of yn the group operation of G.

If so, then they are isomorphic groups, by a well-known result.  We now state a conjecture 
which, if true, implies the truth of FLT.

 
Conjecture 1.01:  There do not exist groups G, G over the rationals having the following proper-
ties:

G, G are infinite cyclic groups having generators g, g  where g  g ;
All elements of G, Gthat are greater than the identity, 1, are positive integers;
For some exponent p and for no smaller exponent, gp = mg p, where m is a fixed positive inte-

ger (it is equal to (z - y) in our case);
For an infinite set of k > p, gk  mg k.

(G) If we could prove that Bp, (z - y) cannot be a pth power, then we will have proved FLT for 
cases (E.1), (E.2), and (E.3) above.  We observe that, if m = z + y, then:

Now, by Pascal’s triangle, we can see that Bp, (z - y) cannot be equal to mp - 1.  Suppose we con-
sider the set T = {mn = (a + b)n | ma, b, a + b = m, n  1}, where (a + b)n is expanded as 
above in accordance with the binomial theorem, and suppose we imagine the elements of T as 
being organized in two lists, one by increasing m and then by increasing n, the other, say, lexico-
graphically, by (a + b).  Then using these lists, we could find all possible occurrences of Bn, (z - y), 
including, specifically, Bp, (z - y). 

Question 4:  Can this strategy2 enable us to prove that Bp, (z - y) can never be a pth power? 
Note: there exists an infinity of binary forms of degree n  1 which are, in fact, powers.  For, if 

a = b = n,  n  3,  then the binary form of degree n - 1,  an-1+ an-2b + ... + abn-2+ bn-1= n nn - 1 =
nn. But this possibility is ruled out by the constraints on x, y, z, and n.  Are there any other possi-
bilities?

1. I am indebted to J. D. Gilbey for correcting the statement of an earlier, more general version of this con-
jecture, and for then quickly disproving it. Gilbey did not see the current conjecture before this paper was 
placed on the web site.
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Approaches Using the Calculus
First Vertical Approach Using the Calculus

1. The continuous function f(k) = xk + yk – zk, 1  k  p, (see Figure 3) has the properties that 
f(k) increases monotonically from an initial positive number to a maximum at f(k´), where p – 1  
k´ < p, then decreases monotonically to 0 at k = p (“Lemma 1.5.” on page 15, and “On the Maxi-
mum of the Function f(k)” on page 53. 

Fig. 3  Graph of the function f(k)
The maximum is greater than or equal to Kdef + p – 2, where K = 2pU, U  1each of d, e, f  

is greater than 1 (“Lemma 1.5.” on page 15), and p  125,000, by results established prior to 
Wiles’ proof of FLT in the early nineties.

We remark in passing that the set of points f(k) for integral k (including integral k > p) are the 
constituents of the congruence sets of elements U(k, x, y, z) = xk + yk – zk, these sets being defined 
in the section “Discussion of the 4th Condition for the Truth of FLT’ in Part (4) of this paper, on 
occampress.com.

2. Now for all k  1,

 (xk + yk – zk) – (xk–1 + yk–1 – zk–1 )                                                                                      

= (xk – xk–1) + (yk –  yk–1)  – (zk – zk–1 )

= xk–1(x – 1) + yk–1(y – 1)  – zk–1 (z – 1).                          .                                                   (1)

Let k = p.  Then (1) becomes

2. This strategy can be considered an application of the idea of  “What = Where”: What something is (e.g., 
its value) is a function of where it is in some structure — some database, as programmers might say.  The 
most elementary example of the strategy is probably a binary tree.  If we are asked to store the non-negative 
binary integers,  then we can do so using a binary tree, in which, say, the digit 0 corresponds to descending 
the right-hand branch from a node, and the digit 1 corresponds to descending the left-hand branch from a 
node.  Then the sequence of binary digits representing the integer is the address where the integer can be 
found in the tree:  What =Where.

f(k)

kp – 1 p
A C

B


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 (xp + yp – zp) – (xp–1 + yp–1 – zp–1 )

= xp–1(x – 1) + yp–1(y – 1)  – zp–1 (z – 1),

or, by assumption that xp + yp – zp = 0, 
   
0 – (xp–1 + yp–1 – zp–1 ) = xp–1(x – 1) + yp–1(y – 1)  – zp–1 (z – 1)                                          (2)

Equation (2) seems a little surprising, for the following reason:

By “Lemma 1.5.” on page 15, xp–1 + yp–1 – zp–1 is a large positive number.  Therefore
 – (xp–1 + yp–1 – zp–1 ) is a large negative number.

We know that p < x < y < z (by part (a) of “Lemma 1.0.” on page 14); and that prior to Wiles’ 
proof,  p was known to be greater than 125,000.  Therefore (x – 1) is very close to x, (y – 1) is very 
close to y, and (z  –  1) is very close to z, so that xp–1(x – 1) + yp–1(y – 1)  – zp–1 (z – 1) seems close 
to (xk + yk – zk), where k is slightly less than p (see Fig. 3).  Therefore,  by “Lemma 1.5.” on 
page 15, it seems that xp–1(x – 1) + yp–1(y – 1)  – zp–1 (z – 1) must be positive.  And yet, by equa-
tion (2), it is in fact a large negative number. 

With an eye on Fig. 3, we might be inclined to ask what power of x, (x – 1) is, and similarly for 
(y – 1) and (z – 1).  We could then write xp–1(x – 1) + yp–1(y – 1)  – zp–1 (z – 1) = xk´ + yk´´ – zk´´´, 
and then, since k´, k´´ and k´´´ are each less than p, we might be able to make an argument that
 xk´ + yk´´ – zk´´´ is positive.  Unfortunately, this will not work because it is impossible that k´= k´´ 
= k´´´. In fact, we have k´ < k´´ < k´´´.   The reason can be seen by comparing log10 (10 – 1)  
.954, whereas loge (e – 1) = ln (e – 1)  (2.718 – 1)  0.541. We conclude that if u < v, and uh = 
(u – 1), and vi = (v – 1), then h < i.   Thus it seems plausible that xp–1(x – 1) + yp–1(y – 1)  –
 zp–1 (z – 1) is a negative number.

  
On the Maximum of the Function f(k)

By an elementary fact of the calculus, the derivative with respect to k of the function f(k) = xk 
+ yk – zk  is f´´(k) = xk(ln x) +  yk(ln y) –  zk(ln z).  Since f(k) is continuous and smooth, and reaches 
a maximum at k  (p  – 1) (“Lemma 1.5.” on page 15), then descends monotonically to 0 at k = p 
(see “Lemma 1.5.” on page 15), it follows that there is a k psuch that f´´(k) = xk(ln x) +  yk(ln y) 
–  zk(ln z) = 0.  By definition of logarithm, this implies that

(1)

Since, by assumption, x, y, and z have no factors in common, that is, (x, y) = (y, z) = (x, z) = 1, 
we see that if k is an integer, in particular, if k = p – 1, the denominator cannot evenly divide the 
numerator, and thus (1) is contradicted.   So we have proved that the maximum of f(k) occurs at 

x
xk

y
yk

z
zk

------------- 1=
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some k where p – 1 < k < p.

Second Vertical Approach Using the Calculus
1. As we stated in the previous sub-section, the derivative of f(k), f´´(k), is xk(ln x) +  yk(ln y) –

 zk(ln z).    See Fig. 3: by the mean value theorem, it is clear that there exists a k´´, where p – 1 < 
k´´ < p,  such that

(1)
 f´´(k´´) = xk´´(ln x) +  yk´´(ln y) – zk´´(ln z) = (xp–1 + yp–1 – zp–1)/1, where the right-hand side of the 
equation is tan 

2. Now the right-hand side of (1) is clearly an integer.  If we can show that the left-hand side is 
not an integer, then we will have a proof of FLT.   

Since the natural logarithm of an integer is irrational, we know that ln x, ln y and ln z are each 
irrational.  Clearly k´´ lies between p – 1 and k, so xk´´, yk´´, and zk´´ are not integers. Clearly the 
sum of no two of the three terms on the left-hand side = 0. Since, by definition, no irrational num-
ber has an infinitely repeating cycle in the digits of its decimal expansion, and an integer, on the 
other hand, being rational, does have such an infinitely repeating cycle, and furthermore, that 
cycle consists solely of 0s, it is tempting to be optimistic that the left-hand side of (2) is irrational, 
or at least not an integer.  

However, we saw in the previous sub-section that f´´(k) = xk(ln x) +  yk(ln y) –  zk(ln z) = 0.  
That is, a left-hand side, which we might have been tempted to say was irrational, turns out to be 
equal to an integer, namely, 0.  In fact, let a, b, c be any positive integers such that ab = c.  Then 
ab/c = 1.  Taking the natural logarithm of each side of this last equation, we get ln(ab/c) = ln(1), or 
ln(a) + ln(b)  – ln(c) = 0.  So even though each of the three terms on the left-hand side are irratio-
nal, the right-hand side is an integer.

Furthermore, since f´´(k) is continuous, and has a derivative, it is clear that f´´(k) ranges con-
tinuously from f´´(k) = 0 to a large negative value at f´´(p).  Therefore, during this transition, f´´(k) 
necessarily passes through a large number of integer values. 

We tentatively conclude that this Approach is without promise.

Approach via Factors of x, y, z
1. If a counterexample x p + yp= zp exists, then 
(a) xp = zp – yp;
(b) yp= zp – x p;
(c) zp = x p + yp .

By an elementary fact of algebra, (a), (b), (c) imply

(a) x p = zp – yp = (z – y)(zp –1 + zp –2y  + zp –3y2 + ... + yp –1 );
(b) y p = zp – xp = (z – x)(zp –1 + zp –2x  + zp –3x2 + ... + xp –1 );
(c) z p = xp + yp = (x + y)(xp –1 – xp –2y  + xp –3y2 – ... + yp –1 );
respectively.
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(a), (b), (c) imply

(a) x and (z – y) have a factor  1 in common, i.e., (x, z – y) = d, where d  1;1

(b) y and (z – x) have a factor greater than 1 in common, i.e., (y, z – x) = e, where e > 1;
(c) z and (x + y) have a factor greater than 1 in common, i.e., (z, x + y) = f, where f > 1;
respectively.

From (a), (b), and (c) it follows that

(a) x and (z – y) are both multiples of d, or, 
x  0 mod d,
z – y  0 mod d,
hence x   z – y mod d;

(b) y and (z – x) are both multiples of e, or, 
y  0 mod e,
z – x  0 mod e,
hence y   z – x mod e;

(c) z and (x + y) are both multiples of f, or, 
z  0 mod f,
x + y  0 mod f,
hence z   x + y mod f;
respectively.

From (a), (b), and (c) it follows that
(a) x + y – z  0 mod d,
(b) x + y – z  0 mod e,
(c) x + y – z  0 mod f,
respectively.

Therefore we can conclude that x + y – z  is a multiple of the least common multiple of d, e, f 
([d, e, f]).  Since, by statement (1.5) under “Initial Assumptions, Definitions, and Properties of 
Numbers Involved” on page 12, (x, y) = (y, z) = (x, z) = 1, we know that (d, e, f) must = 1, because 
otherwise, two of x, y, z must have a factor in common. 

 But then, by a fundamental fact of elementary number theory, [d, e, f] must equal def. Thus x 
+ y – z = Kdef, where K  1.

Is there a basis for a proof of FLT in these facts?   

1. Since it is possible that z – y = 1 (Ribenboim, Paulo, 13 Lectures on Fermat’s Last Theorem, Springer-Verlag, N.Y., 
1970, p. 64).
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Approach Using x = z - h, y = z - k
Preliminaries

Assume a minimum counterexample exists, and let x = z – h, y = z – k.  Then

1. (z – h)p +  (z – k)p = zp.

2. By the binomial theorem, this equation implies

zp – A + zp – B = zp, or –zp = –A – B.

3. By the binomial theorem, since p is an odd prime, 
(1)

Adding –A and –B and gathering terms, we have

(1) 

4.  We now assert that h + k < z.

Proof:
By step 1, we have x = z – h, y = z – k. By “Lemma 0.0” on page 13, we know that x + y > z.  

Therefore  z – h + z – k. > z, or h + k < z.  

5. Next, we assert that hi + ki < zi , where 1 i  p

Proof:
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From step 4 we have h + k < z.  Therefore (h + k)i <  zi, from which it surely follows, by the 
binomial theorem, that hi + ki < zi . 

6. And next, we assert that xi + yi > zi, where 1 i  p.

Proof: See “Lemma 1.5, Statement and Proof”, in Part (2) of this paper, on occampress.com.

First Implementation of Approach
1. We write, from (0) in the “Preliminaries” sub-section, –A = –A´ – hp and –B = –B´ – kp.  In 

other words, –A´ is all of –A except for the last term, and similarly for –B´.  

Thus we can write the first equation in step 2 of the “Preliminaries” sub-section,  as

(1)
zp – A´ – hp + zp – B´ – kp = zp

2. Now since by definition at the start of “Preliminaries”, x = z – h and y = z – k, we have h = z 
– x and k = z – y.  Substituting into (1) in this sub-section we have

zp – A´ – (z – x)p + zp – B´ – (z – k)p = zp

By the binomial theorem, this implies

zp – A´ – zp + C´ + xp + zp – B´ – zp +D´ + yp = zp

3. Recalling that, by assumption of a counterexample, xp + yp = zp, and cancelling zp’s, we 
have

– A´+ C´  – B´+ D´  = 0, or

(2)
C´ +  D´  = A´ + B´.

4. But, by step 3 in the “Preliminaries” sub-section,

and
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5. By step 6 in the “Preliminaries” sub-section, xi+ yi > zi, and by step 5 in the same sub- sec-
tion, hi + ki < zi, and so each positive  term in C´ +  D´ is greater than the corresponding positive 
term in A´ + B´. But each negative term in C´ +  D´ is less than (more negative than) the corre-
sponding negative term in A´ + B´. If we can show that these facts make (2) false, then we will 
have a proof of FLT.  However, that will require showing that the greater positive terms in C´ +  
D´ are not somehow “cancelled” by the greater native terms in C´ +  D´.  

Second Implementation of Approach
By the equation in step 2 of the sub-section “Preliminaries”, in order to avoid a contradiction, 

we must have –zp = –A – B.  We attempt to show that the right-hand side of (1), in step 3 of “Pre-
liminaries”, is greater than zp.  If we can show this, then we have a proof of FLT.

Our attempt will be aided if it is true that, for all i, 2 i  p, 
(1)

If (1), here, is true, then we might be able to reason (informally) as follows. The first term in 
(1) in the sub-section “Preliminaries”  is negative. However,  (1) in that sub-section must equal, 
not merely zero, but –zp. The second term in (1) in the sub-section “Preliminaries” is positive, but 
if (1) above in this sub-section is true, it is not sufficiently positive to be greater than or equal to 
the first term.  The third term in (1) in the sub-section “Preliminaries” is negative and so only 
increases the net negative value so far.  The fourth term is positive but is not sufficiently positive 
to be greater than or equal to the net negative value so far.  Etc.  

Since p < x < y < z (by part (a) of “Lemma 1.0.” on page 14), so that p < z, and since it appears 
that (hi + ki) falls rapidly below zi as i increases, there is reason to believe that (1) in this sub-sec-
tion is true. 

 As far as the rate at which (hi + ki) falls is concerned, assume, as a worst case, and contrary to 
fact, that h + k = z (actually, h + k < z).  Then hi + ki = zi – Ui, where Ui is the sum of all the terms 
of the binomial expansion of (h + k)i except for the first and the last that is, except for hi + ki .  
Then we are trying to show that 
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for all relevant i, or
(2)

Now, the sequence of binomial coefficients in Pascal’s triangle is symmetrical, increasing only for 
the first (p – 1)/2 coefficients, and so these initial coefficients are the only ones we need be con-
cerned with.  The first term on the right-hand side of the inequality in (2) is less than p times the 
first term on the left-hand side.  The question is, Is the second term on the right sufficiently more 
negative than the second term on the left that it can overcome the increase in the positive value of 
the first term on the right, in addition to being more negative than the second term on the left?  If 
the answer is yes, then we have our desired result.  This question is in part the question, Do the 
non-z factors in the second term on the right, overcome the loss of one z factor in the second term 
on the right? 

“Computational” Approaches
By a “computational approach” to a proof of FLT, we mean one that either utilizes the com-

puter directly, or else one that is based on programming or computer science concepts.  Following 
are three such approaches.

 In the first approach we convert the question of the truth of FLT to a question about the cor-
rectness of a program.  In the second approach, we compare, step by step, the computation of xp + 
yp vs. the computation of zp and attempt to show that the computations cannot produce the same 
value.  The third approach is based on an idea from algorithmic information theory.  

Can We Find Out If Fermat Was Right After All?
We believe that the day is not far off when it will be possible to supply a computer program 

with what scholars believe was Fermat’s mathematical knowledge at any specified time in his 
career, and then give the computer a proof of FLT as a goal and ask it to return all possible 
attempts at a proof of length 1 step, then all possible attempts at a proof of length 2 steps, etc.  Ide-
ally, the program would be interactive, so that the researcher could make suggestions as to how to 
go about finding such a proof.  Of course, an immediate question is, What constitutes a “step” in 
this context? As every student of mathematics knows, a complicated proof — i.e., one that 
requires many steps —  is often broken down into a “simpler” proof in which steps are grouped 
into supersteps.  Or, putting it another way (see William Curtis’ How to Improve Your Math 
Grades on the web site www.occampress.com), it is possible to approach a proof in a top-down 
fashion, in which, at the top-most level, there are only a few steps, each being the equivalent of a 
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lemma or theorem.  If all the lemmas or theorems are valid, then the proof is valid.  The proof of 
each lemma or theorem is then proved, recursively, in the same fashion.

In the case of FLT, the user might set up sequences of statements, each sequence constituting 
the top level of a possible proof, e.g., a proof by induction, then see if the program can find a 
proof of each statement.

Approach by a Certain Class of Program
In our paper, “Occam’s Razor and Program Proof by Test” (www.occampress.com), a Class of 

algorithms is defined having the property that whether or not the algorithms compute the same 
function can be decided in a known finite number of tests.  In brief, the Class is defined as follows  
(p. 17): 

Let p be a program in the Class, and let p consist of x instructions, x  1, under some appropri-
ate Turing machine formalism. Then 

each instruction is executed at least once in the computation of all strings of length x + 1, and
each instruction is executed at least once in the computation of all strings of length x + 2, and
each instruction is executed at least once in the computation of all strings of length x + 3, and
...

It might be possible to prove the Theorem as follows.  Create a program p1(x, y, z, n) that com-
putes xn +   yn   –  zn.  If the result is not 0, then the program returns a 1, otherwise it returns a 0.  
Create another program p2(x, y, z, n) that returns 1 for all inputs x, y, z, n.  Now if these programs 
are in the Desired Class, it should be possible, in a finite number of tests, to determine if the pro-
grams p1 and p2 both compute the same function, namely, the function which returns 1 for all 
inputs x, y, z, n.  If the programs both compute this function, then we have a proof of Fermat’s Last 
Theorem.

Approach by “The Extra +”

Description of Approach
A programmer looking at the two sides of the FLT inequality xn +  yn  zn might see that the 

two sides can be computed by the same program, call it P.  In other words, for each triple <x, y, n> 
a copy of the program P returns the value x n +  yn , and for the triple <z, 0, n> a copy of the pro-
gram P returns the value of zn + 0n  ( =  zn).   Furthermore, the programmer would see that we can 
run the computation of the left-hand and right-hand sides “in unison”, with incrementation (by 1) 
being the basic computational operation.  (Exponentiation is repeated multiplication, multiplica-
tion is repeated addition, and addition is repeated incrementation-by-1 as implemented by a sub-
program called, say, incr.)  By “in unison” we mean that each execution of incr during the course 
of computing the left-hand side, takes place at the same time as each execution of incr on the 
right-hand side.  

We implement P as a Turing machine.  We denote the copy of P that computes the left-hand 
side of the inequality as PL, and the copy that computes the right-hand side as PR.  Without loss of 
generality, we require that P, hence both copies, have a single input tape, a single work tape, and a 
single output tape.  At the start of its computation, PL’s input tape contains x, y, n; PR’s input tape 
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contains z, 0, n.   
A counter CL is present in PL, and a counter CR is present in PR.  Both are set to 0 when PL 

and PR start computing.  CL counts the number of successive invocations of incr that occur when 
PL performs its computation.  Similarly, CR counts the the number of successive invocations of 
incr that occur when PR performs its computation. 

When PL has completed the computation of xn and yn, it copies xn to the output tape, and then 
proceeds to, in repeated succession, decrement yn on the work tape and to increment the contents 
of the output tape  (xn + ...) until yn is 0, whereupon PL halts.  Similarly, when PR has completed 
the computation of zn and 0n (nothing to compute in the latter case, of course), it copies zn  to its 
output tape, and then proceeds to decrement 0n on the work tape. But there is nothing to decre-
ment, and so PR halts.

Assume, now, that FLT is false, or, in other words, that for some x, y, z, n = p as described 
above under “Initial Assumptions, Definitions, and Properties of Numbers Involved” on page 12, 
xp + yp = zp.  Then after PR has computed zp + 0p, the counter CR will show zp incrementations.  
But after PL has completed execution of xp and yp, the counter CL will likewise show (by hypoth-
esis) a total of zp incrementations.  But PL has not finished executing!  It must add xp and yp (this 
is the “extra +” in the title of this sub-section), and this will cause CL to show a total count greater 
than zp by the time PR completes computation of xp + yp.  Thus, contrary to hypothesis, and in 
conformity with fact (ever since Wiles’ proof of FLT) xp + yp  zp.

Discussion of Approach
It has been argued1 that the above Approach must include an explanation why the Approach 

doesn’t prove that there are no positive integers x, y, z such that x + y = z, or x2 + y2 = z2, which, of 
course, is contrary to fact.

The explanation is that, by Lemmas 0.0 and 0.5, there are no such x, y, z that can be a counter-
example to FLT, and the Approach is based on the assumption that x, y, z are elements of such a 
counterexample!  In other words, if the Approach is applied to <x, y, 1>, and <z, 0, 1>, or to <x, y, 
2>, and <z, 0, 2>, the counters are guaranteed to contain different counts at the end of each com-
putation.

In passing, we must remind the reader that, for a proof-by-contradiction of the proposition r, 
all we need to do is to assume not-r, and from that assumption, arrive at a contradiction. The prop-
osition r is then proved (if, with most mathematicians, we accept the validity of proof-by-contra-
diction).  We are not required to explain why the argument used in the proof does not work in 
another context (for example, the context in which x, y, z are not elements of a counterexample).  
Of course, readers may attempt to find a flaw in the argument by applying it to other contexts.  
That is perfectly legitimate.  But then they must come back to the original argument and show 
where it is faulty. 

However, we must confess that the argument presented in “Description of Approach” on 
page 60 has failed to convince readers.  Some do not accept what we say at the start of this sub-
section regarding the cases for the exponents 1 and 2.  But no reader, so far, has pointed to the first 
sentence in “Description” that he or she believes is wrong. At the very least, then, we feel we 
should try to justify our intuition, which began with the question, Why is it that no program that 
computes ak + bk, can ever compute a ck that has the same value, for any a, b, c, and for k > 2?  

1. by Monsur Hossain
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Naively, our answer was “that extra +” that is needed to make ak + bk = ck.  On the right-hand 
side, all that the program needs to do is compute ccc...c (k c’s). On the left-hand side it needs to 
compute aaa...a (k a’s), then it needs to compute bbb...b (k b’s), then add the two results together.  
No wonder (we felt) the two sides can never be equal!

We tried to make our intuition concrete by reducing the computation of each side to incremen-
tations by 1, which can be done if we represent the program that computes both sides as a Turing 
machine, and by requiring the computation of each side to proceed in unison.

At present, our first question to readers who reject our argument is, How would you tally the 
number of incrementations that occur during the computation of each side if not in the way we 
have described?  So far, we have not received an answer.

.Before leaving this Approach, we should also consider a possible application of the “Vertical 
Approach” (see “Brief Summary of Approaches Described in This Paper” on page 9) to the use of 
programs in a possible proof of FLT.  That is, we should inquire into the behavior of a program 
that successively computed, for x, y, z of a counterexample,

x3 + y3, and z3, and found them to be unequal,
x4 + y4, and z4, and found them to be unequal,
...
xp1 + yp1, and zp1, and found them be unequal,
xp + yp, and zp, and found them to be equal.

Approach by Algorithmic Information Theory
A fundamental concept in algorithmic information theory is that of the minimal length pro-

gram to compute a given number n (or a given function f), i.e., the program (or programs) whose 
length l in number of symbols, l 1is the minimum for all programs that compute the number n 
(or the function f).

If we can show that the minimum length of a program that computes xp + yp  must always be 
different from the minimal length of a program that computes zp, we will have a proof of FLT.

Superficially, such a proof seems obtainable, since we can derive from the above program P a 
shorter program Pto compute zp by simply removing the second while loop from P. But there is 
nothing in the minimal length property that requires that a given number or function be computed 
“nicely”, e.g., the way a competent programmer would write a program to compute the number or 
function.  Any sequence of machine-executable instructions that yields the desired number, no 
matter how bizarre the sequence, is by definition a program that computes the number or function.  
So, further investigation is required to see if this Approach holds any promise. 

n-Dimensional Geometric Approaches
We begin by asking the question, “Is there a Pythagorean theorem in dimensions greater than 

2?”
Our answer is a qualified yes.  Here is our reasoning:

1.  Any two straight lines of non-zero finite length can be the legs of a right triangle.
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2. The Pythagorean theorem applies to all right triangles.

3. Let a, b  be any positive integers, and k a positive integer, where 3  k.  

Then  and  can be the legs of a right triangle.  Therefore, by the Pythagorean theo-
rem,

(1)

Let c = , where d is a real number, not necessarily an integer, or even a rational.  Clearly, 
d = .  So, from (1) we have 

(2)

and thus

(3) 

The above argument is recent.  The preceding reasoning was as follows:

We ask, “Is there a ‘Pythagorean theorem’ in three dimensions, and if not, why not?”  We 
observe that there is most certainly a “Pythagorean theorem” in one dimension: on the real line, 
simply mark three different points a, b, c.  Then the distance ab + the distance bc = the distance 
ac.

As we know, there is a Pythagorean theorem in two dimensions: in the plane, form a right tri-
angle with vertices a, b, c, where ac is the hypotenuse.  Then the (area of the) square on the side 
ab + the (area of the) square on the side bc = the (area of the) square on the side ac.

Now let us see if there is a “3-dimensional right triangle” to which a 3-dimensional Pythago-
rean theorem might apply.  Fig. 4 shows what we will call a “3-dimensional right triangle”.
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Fig. 4 A “3-dimensional right triangle”

We ask if it can be the case that, for such a “right triangle”, the (volume of the) cube on one 
side +  (the volume of the) cube on another side = (the volume of the) cube on the “hypotenuse 
side”?  The reader can easily convince him- or herself that the answer is always no: all three of the 
(planar) sides of the “3-dimensional right triangle” cannot be squares, hence cannot be faces of  
cubes. It would be nice if this fact implied that there do not exist x, y, z such that x3 + y3 = z3, but 
unfortunately it does not.  The reason is this:

We have established that:

If x and y are the legs of a right-triangle and z is the hypotenuse (implying that x2 + y2 = z2) 
then x3 + y3 z3.

The contrapositive of this statement is:

If x3 + y3 z3, then it is not the case that (x and y are the legs of a right-triangle and z is the 
hypotenuse … )

In other words, a counterexample is still possible as long as x, y, z are not the sides and hypot-
enuse of a right-triangle. 

Thus, we are not encouraged to wonder if n-dimenstional right triangles also do not exist, 
where n > 3, and, if they do not, to wonder if that implies the truth of FLT.

Of course, we do not need right triangles to prove that, at least in the case of the integers, there 
exist a, b, c such that a2 + b2 = c2.  For it is well-known that if r, s are any integers, and if a = r2 – 
s2, b = 2rs, and c = r2 + s2, then a2 + b2 = c2. So we can wonder if there are geometrical arguments 
not involving “triangles” to show why, for no x, y, z  is it the case that x3+ y3 = z3.  

An obvious place to begin is to assume that we have a countable infinity of n-by-n cubic 
boxes, where n  1.  In addition, we have a countable infinity of unit cubes.  Each box contains 
exactly n3 of these cubes.  Assume that there exists a box with side x, another box with side y, and 
a third box with side z, and that the number of cubes in the x box, plus the number of cubes in the 
y box = the number of cubes in the z box.  

Next, assume there is a duplicate box with side z, but that it is empty.  We are now going to 
attempt to fill it with the cubes from the x and y boxes.  We will do this one layer at a time, a layer 
being one unit-cube thick and measuring z by z cubes — thus, containing z2 unit cubes.  

We ask how many layers we will get from the x box.  The answer is
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where rx < z2.
Similarly, the number of layers we will get from the y box will be 

where ry < z2.
Then, in order for our assumption that x3+ y3 = z3 to be true, it must be the case that 

The term in parentheses equals z.  Since x < y < z,  x3/z2 < x and y3/z2 < y.  Unfortunately, we 
seem to have run up against a problem of too little information to proceed further.

x
3

z
2

----- qx

rx

z
2

----+=

y
3

z
2

----- qy

ry

z
2

----+=

x
3

z
2

----- y
3

z
2

-----+
 
 
 

z
2

z
3

=
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Appendix A — Lemma 3.0

The proof of this lemma is now in Part (2) of this paper on the web site occampress.com.
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                                              Appendix B 

 Contents of this Appendix have been moved to “First Vertical Approach Using the Calculus” 
on page 52.
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Appendix C
Contents of this Appendix have been moved to “Another Approach” on page 23 in the section 

“Vertical Approaches Based on Congruences” on page 21.
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 Appendix D — Proof of Lemma 6.0

The proof of this Lemma is now in Part (2) of this paper, on the web site occampress.com.
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Appendix E — Summary of Results Used in Strategies

Assumptions
We assume there exist x, y, z such that, for some prime p, xp + yp = zp.  If FLT is true for p, 

then it is true for all multiples of p (“Lemma 0.6” on page 14). 
We assume that p is the minimum such p.
Without loss of generality we assume that (x, y) = (y, z) = (x, z) = 1.  In this case, trivially, 

exactly one of x, y, z is even.

Table of Results

Table 1: Summary of Results Used in Strategies

Result Reference 

x + y > z. Part (a) of “Lemma 1.5.” 
on page 15

If x2 +  y2 = z2, then x, y, z cannot be elements of a coun-
terexample.

Part (a) of “Lemma 1.5.” 
on page 15

For all k, 1  k  (p –1), xk + yk  zk . Part (a) of “Lemma 1.5.” 
on page 15

For all k, 1 kp Part (e) of “Lemma 1.5.” 
on page 15

For all k > p,  xk + yk  zk . “Lemma 1.95.” on page 15

p < x < y < z. “Lemma 1.0.” on page 14

p > 125,000 (as of 1990). Ribenboim, Paulo, 13 Lec-
tures on Fermat’s Last The-
orem, Springer-Verlag, 
N.Y., 1970, p. 199.

z < 2y. “Lemma 2.0” on page 16

z < x2. “Lemma 2.5” on page 16

y, z, have at least two prime factors. Ribenboim, Paulo, 13 Lec-
tures on Fermat’s Last The-
orem, Springer-Verlag, 
N.Y., 1970, p. 64.

x
k

y
k

+

z
k

---------------- x
k 1+

y
k 1+

+

z
k 1+

------------------------------
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If x is prime, then z – y = 1. ibid., p. 64

For given x, y, z such that xp + yp = zp, p can be at most 
one prime.

“Lemma 4.0.5” on page 16

For p such that, for some x, y, z, xp + yp = zp, it is possible 
that there exists x’, y’, z’ such that x’ p + y’ p = z’ p. (In 
this case, we can define a “minimum” counterexample as 
follows: choose  x’, y’, z’ having minimum x’.  If there is 
more than one such x’, y’, z’ , choose the one having min-
imum  y’.  (It is not possible for there to be more than one  
z’ in that case.))

Ribenboim, Paulo, 13 Lec-
tures on Fermat’s Last The-
orem, Springer-Verlag, 
N.Y., 1970, p. 232.

If (x, m) = (y, m) = (z, m) = 1 and
x  umod m, and y  vmod m, and z  wmod m, then
if xr + yr zr mod m, r 1, 
then ur + vr wr mod m.

(1.91(c)) in Part (2) of this 
paper, on the web site 
www.occampress.com

There exists a prime q such that at least one of x, y, z > q. “Appendix D — Proof of 
Lemma 6.0” in Part (2) of 
this paper, on the web site 
occampress.com.

Let p be an odd prime, and let t be a positive integer. 
Then there exists an infinity of odd primes q such that 
 (p, q – 1) = (t, q – 1) = 1.

“Lemma 3.0: Statement 
and Proof” in Part (2) of 
this paper on occam-
press.com

((z - y), (z - x), (x + y)) = 1, i.e., the three terms do not 
have a factor in common.

“” on page 49

“Lemma 1.97” on page 15

Table 1: Summary of Results Used in Strategies

Result Reference 

x
k

y
k

+

z
k

----------------
k 
lim 0=
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Let: Bn, (z - y) = (zn-1 + zn-2y  + ... + zyn-2 + yn-1).
       Bn, (z - x) = (zn-1 + zn-2x  + ... + zxn-2 + xn-1).
       Bn, (x + y)  = (xn-1 -  xn-2y + ... + yn-1), n  3.
Then if one of the following pairs, 

      (7)  ((z - y),  Br, (z - y));
(8)  ((z - x),  Br, (z - x));
(9)  ((x + y), Br, (x + y)), r a prime  3, 

has a factor in common, then that factor must be r.

“Lemma 20.0” on page 48

Table 1: Summary of Results Used in Strategies

Result Reference 
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Appendix F — Statement and Proof of Certain Numbered Statements 
and of Lemmas

This Appendix is now in Part (2) of this paper, on the web site occampress.com.
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