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Approaches via The “Lines-and-Circles” Model of Congruence

Definitions
Definition of “Line-and-Circles” Model of Congruence

All approaches based on congruences are motivated by a “geometrical” model of congruence.  
In this model, an infinite sequence of circles are positioned at equal distances, one above the other 
(see Fig. 1).  

      Fig. 1.  “Geometrical” model of positive integers congruent mod 5.

For the modulus m, each circle is divided equally into m segments as shown (here, m = 5).  
Vertical lines pass through the start of each segment.  All integers congruent to a given minimum 
residue r mod m lie on the same vertical line, with r at the start of the line.

We refer to the circles as levels mod m (or merely levels when m is understood), and number 
them 0, 1, 2, ... beginning with the lowest one.  The level numbers are the quotients of all numbers 
on that level when divided by m.  Thus, in our example, 14 ÷ 5 yields the quotient 2 and the 
remainder 4, so 14 is on level 2 and line 4.  We sometimes refer to level 0 as the base level mod m 
(or merely the base level when m is understood).  

Two facts lie at the basis of all our Approaches via the “lines-and-circles” model of congru-
ence: 

(1) that, for each modulus m, each positive integer u has a “location” relative to that modulus.  
This location is given by the ordered pair [level, line], which can be regarded as the “address” of u 
mod m.  Thus, in our previous example, the address of 14 mod 5 is given by [2, 4].  We will be 

.

.

0
1

23
4

5
6

78

9

11
1213

14 10

.

0

1

2

2



concerned with ordered triples <ak, bk, ck>, where a, b, c, k are positive integers. In particular, we 
will be concerned with <xp, yp, zp>, where xp + yp = zp is an assumed minimum counterexample, 
and with all <xk, yk, zk>, where k  1.  At times, for reasons that will become clear, we will also be 
concerned with ordered pairs, <xk + yk, zk>.  

(2) that, for a given u, as the modulus m increases, the location of u descends in the lines-and-
circles model for each modulus. There exists a minimum m such that u < m.  We say that u 
touches down at m.  Clearly, u < m´  for all m´ > m.  Informally, we say “once down, always 
down.”

Definition of “Appropriate Modulus”
Fermat’s Little Theorem states that if p is prime, then a  ap mod p.  No restriction is placed 

on a — that is, it is not required that (a, p) = 1.  On the other hand, Euler’s generalization of Fer-
mat’s Little Theorem states that only under the conditions that (a, m) = 1 is it the case that a  
a(m) + 1 mod m when m is composite.  (The function m is Euler’s totient function; its value is 
the number of positive integers less than m and relatively prime to m. If q is a prime, then q  = 
q – 1.)   Throughout this section, therefore, when m is composite we will assume that this restric-
tion is placed on any a, b, c — including x, y, z — that are involved in congruences mod m, and we 
will usually specify this by referring to m as an appropriate modulus.

Definition of “Congruent Ordered Triples”
Let <ak, bk, ck>, <a´ k´, b´ k´, c´ k´> be ordered triples, where a, b, c, a´, b´, c´, k, k´ are positive 

integers.  Then if, for an appropriate modulus m,  ak  a´ k´, bk  b´ k´, and ck  c´ k´mod m, we say 
that the ordered triples are congruent mod m and that <ak, bk, ck> is congruent to 
<a´ k´, b´ k´, c´ k´> mod m.  We will omit mod m when m is understood.  For a triple <ak, bk, ck> 
there are two possibilities: ak + bk   ck  mod m, or ak + bk  not   ck  mod m.  In the first case, we 
say that the triple is a congruent triple, and in the second case we say that the triple is a non-con-
gruent triple.  It is important to understand that a finite or infinite set of congruent ordered triples 
(first sense) may contain ordered triples whose elements are congruent or non-congruent in the 
second sense.  

Definition of a Triple Being “Below” or “Lower Than” Than Another Triple
Given two congruent triples, if each element of the first is less than the corresponding element 

of the second, we say that the first triple is below, or  lower than, the second.

Definition of “U(k, a, b, c)”
Let k, a, b, c be positive integers.  Then U(k, a, b, c) = ak + bk – ck.  If xp + yp – zp is a mini-

mum counterexample, we often abbrieviate U(k, x, y, z) to Uk .

Brief Description of Approach Type I
Details on other Approaches are given in “Appendix A — Other Supporting Material for 

Approaches Based on the “Lines-and-Circles” Model of Congruence” on page 5.
In this Approach, we try to show that the triples <xp, yp, zp> and  <ak, bk, ck> give rise to a 

contradiction. We attempt to do this via two implementations:

First Implementation: show that the contradiction arises between <ak, bk, ck> that are con-
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gruences but are not equalities, and <ak, bk, ck> that are congruences and are equalities.
Second Implementation: show that the contradiction arises from the level at which the coun-

terexample touches down.

First Implementation
In the following, q is a prime modulus.  

The Set of All Triples Below the Counterexample Triple That Are Congruences
Let S denote the set of all triples below the counterexample triple.
Let f(d/e) denote the largest integer less than or equal to d/e.  (Thus f is the “floor” function. It 

is the quotient of d divided by e.) 
Then |S|, the number of triples below the counterexample triple, =  f(xp/q)f(yp/q)f(zp/q).

The Set of All Triples Below the Counterexample Triple That Are Congruences and Equali-
ties

Let u + v = w.  Then, for the modulus q, (u + hq) + (v + iq) = (w + jq) iff h + i = j.  
Let T denote the set of all triples below the counterexample triple such that the triple is an 

equality.
Let s(n) denote the number of 2-element partitions of n, with 0 not an element. Thus, for 

example, s(5) = 4  because 1 + 4 = 2 + 3 = 3 + 2 = 4 + 1 = 5.
Then |T|, the number of triples below the counterexample triple that are equalities, is given by:

|T| = s(zp – q) + s(zp – 2q) + ... + s(zp – tq), where tq is the largest muliple of q such that zp – tq 
is positive.

The Set of All p-exponent Triples Below the Counterexample Triple 
We define a  p-exponent triple to be a triple <ap, bp, cp>.
Let W = the set of all p-exponent triples below the counterexample triple.  
Then |W|, the number of p-exponent triples below the counterexample triple, is given by:

|W| = f(x/q)f(y/q)f(z/q).  

If we can arrive at a contradiction among these facts, we have a proof of FLT.

Second Implementation
Let q be a prime modulus.  By “Lemma 60.0:” on page 12, we know that if the triple <ap, bp, 

cp> is congruent to the triple <xp, yp, zp>, then ap + bp – cp = U(p, a, b, c) is a multiple of q.
It is easily shown that in fact U(p, a, b, c) is a multiple of 6q.  It follows that none of ap, bp, cp 

is less than the modulus q — which is a strange fact, although, of course, it does not allow us to 
say that ap, bp, cp never touch down (in our informal language, they are always “pushed up”), 
because for each prime modulus q, there can always be a new bottom triple.<ap, bp, cp>.  That 
impossibility would give us a proof of FLT.  But if we can arrive at another contradiction via the 
strange fact, we would have a proof of FLT.  For example, since, by Bertrand’s Postulate (see Part 
(1) of this paper) there is always a prime between the prime q and 6q, a pushing-up argument 
might be fashioned.
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Appendix A — Other Supporting Material for Approaches Based on the 
“Lines-and-Circles” Model of Congruence

Original Motivation for Approaches via The “Lines-and-Circles” Model of Congruence
Two ideas originally motivated our approaches to a proof of FLT via the “Lines-and-Circles” 

model of congruence.  The first was the following:

Assume a counterexample xp + yp = zp exists.  Without loss of generality we can assume that 
(x, y) = (y, z) = (x, z) = 1.  By Lemma 0.0 in Part (1) of this paper, we know that x + y > z. There-
fore x + y not z mod p.  

But then, by Fermat’s Little Theorem, xp + yp not zp mod p, which, since (informally) “non-
congruence implies non-equality”, implies xp + yp  zp .  This contradiction gives us a proof of 
FLT.

As the reader has no doubt seen immediately, there are at least two errors in this argument.
First, it is possible that one of x, y, z contains a factor p, whereas Fermat’s Little Theorem 

requires that (x, p) = (y, p) = (z, p) = 1.  However, it is possible that this obstacle could be over-
come.  (See “The Trivial Extension of Fermat’s Little Theorem”.)

Second, there are only two ways for x + y > z to imply that x + y not z mod p.  One is for x + 
y and z to be less than p.  But this is impossible, since, by part (a) of Lemma 1.0, we know that p < 
x.  The only other way is if w, in x + y = z + w, contains no factor p.  But by Lemma 0.2, we know 
that w does contain a factor p. 

The second idea that motivated our approaches via the “Lines-and-Circles” model of congru-
ence came directly from a promising strategy for proving the 3x + 1 Conjecture (see, for example, 
the paper “Are We Near a Solution to the 3x + 1 Problem?”  on the web site www.occam-
press.com).  This strategy is called, informally, the “pushing-away” strategy.  Roughly it works as 
follows: show that if a counterexample to the Conjecture exists, then it must be an element of the 
first i-level tuple of an i-level tuple-set, where i  2.  Then show that, although for each i there 
exists an infinity of tuples in the tuple-set that contain such a counterexample, none of these tuples 
ever manages to become a first i-level tuple.  The candidate tuples are always “pushed away” 
from the first tuple position.  It is then easy to show that there are no counterexample tuples, 
hence no counterexamples.

We had hoped to use a similar argument in the case of FLT.  The argument can be simply 
described as follows.  Suppose we are searching for a certain positive integer u.  Suppose we have 
a series of calculations that progressively yield the least significant digit of u, then the least signif-
icant two digits of u, then the least significant three digits of u, etc.  Suppose, furthermore, that 
each calculation tells us the minimum size of u.  

Now suppose the calculation tells us that the smallest of all positive integers that have the cor-
rect least significant digit of u is greater than 10.. Suppose this calculation then tells us that the 
smallest of all positive integers that have the correct two least significant digits of u is greater than 
100.    And the smallest having the correct three least significant digits is greater than 1000, etc. It 
is clear that this number does not exist. 

In the case of FLT, we are not looking for a single number, but for an ordered pair of numbers, 
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<xp + yp, zp>, where xp + yp = zp.  We let moduli increase from 2.  For each modulus m, where (x, 
m) = (y, m) = (z, m) = 1, we consider the set of all <uj + vj, wj>, such that uj, vj, wj are each less 
than m, and such that (u, m) = (v, m) = (w, m) = 1.  Then by Fermat’s Little Theorem, for each <uj 
+ vj, wj> there are two possibilities.  For all i  0:

(1) uj + i(m) +  vj + i(m) wj + i(m)  mod m, or
(2)uj + i(m) +  vj + i(m) not j + i(m)  mod m.  

If (1) holds, then we try to show that for all i,  uj + i(m) +  vj + i(m)  and
wj + i(m) cannot both be less than the next m, namely, m´ such that (x, m´) = (y, m´) = (z, m´) = 1.  
If we can show that this holds for all successive m´, then we have our “pushing away” phenome-
non (in this case perhaps better called “pushing up” phenomenon).

If (2) holds, then no triple <uj + i(m) +  vj + i(m) , wj + i(m> can represent a counterexample, 
by the rule expressed informally as “non-congruence implies inequality”.

We must keep in mind that, by definition of congruence, if (1) holds, then it also holds for all 
a, b, c congruent to u, v, w respectively mod m.  And similarly for (2)

Summary of Approaches
C-sets give us a formal structure for several fundamental approaches to a proof of FLT.  Each 

aims at a proof by contradiction.  These approaches are:

Approaches Type I through VI

(Type I) Show that if xp + yp = zp , then a contradiction arises involving ap + bp, cp, where a  
x, b  y, c  z, and  a  x, b  y, c  z mod m.

(Type II) Show that if xp + yp = zp then a contradiction arises involving xr + yr,  zr , where  2 < 
r < p.

(Type III) Show that if xp + yp = zp , then <xp + yp, zp > is an element of a non-congruent C-set.  
(This is impossible because (informally) non-congruence implies inequality.)

(Type IV) Show that by considering all multiples of all powers of positive integers u, v, w, we 
are led to a contradiction.

(Type V) Show that a contradiction arises from the set of congruences and non-congruences 
resulting from all C-set elements <xp + yp, zp >.

(Type VI) Show that the assumption of a counterexample implies a contradiction in the Uk, 
where xk + yk – zk = Uk,, and k p.

The “Pushing-Up” Approach
Assume a counterexample xp + yp = zp exists.  Then show that the counterexample never 

“touches down”, that is, show that there is no modulus m such that xp + yp, and  zp are each less 
than m.  This would imply that the counterexample does not exist.

For details, see “Original Motivation for Approaches via The “Lines-and-Circles” Model of 
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Congruence” in Part (4) of this paper.

Supporting Material for Approaches I - VI
The Relationship Between Congruence, Non-Congruence, Equality, and Inequality

The following basic facts relating congruence, non-congruence, equality, and inequality will 
be utilized throughout this paper.  The proof of each is straightforward and follows directly from 
the definition of congruence.  We supply the proof only for the lesser-known fact (2).

(1)
If a + b = c, then for all m, a + b  c mod m.
Informally: “Equality implies congruence”.

(2) If a + b  c, then 
(a) for an infinite number of moduli m,  a + b not  c mod m;
(b) for a finite number of moduli, it is possible that a + b is not  c mod m or a + b   c mod m.
Informally: “Inequality implies non-congruence for most m; not necessarily for all.”

Proof of (a):
a + b  c implies |c – (a + b)| = r  > 0.  Then for all moduli m > r, there does not exist a k such 

that a + b + km = c, hence, by definition of congruence, a + b not  c mod m. 

Proof of (b):
If r is as defined in “Proof of (a)”, and r is a multiple of the modulus m, then  a + b  c mod m 

by definition of congruence; otherwise a + b not  c mod m.

Example:
If m is a modulus, and a + b and c are each less than m, then  a + b not  c mod m. (Proof:  

|c – (a + b)| < m.. )  This case will be important throughout our development of vertical 
approaches via the lines-and-circles model of congruence.

(3)
If a + b  c mod m, then 
(a) if a + b, c are each less than m,  then a + b = c;
(b) if one of a + b, c > m, then a + b  c.
Informally: “Congruence implies equality for sufficiently large modulus.”

(4)
If a + b not  c mod m, then a + b  c.
Informally: “Non-congruence implies inequality.”

Fermat’s Little Theorem
Most of our vertical approaches that are based on congruences utilize Fermat’s Little Theorem 

and its generalization. The Theorem states: If q is a prime then aq a mod q. Euler’s  generaliza-
tion states: if (a, m) = 1 then a(m) + 1  a mod m, where m is prime or composite, and is Euler’s 
totient function1. For a prime q, q) = q – 1. 
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Fermat’s Little Theorem implies aq a mod q,  aq + 1  a2 mod q, aq + 2  a3 mod q, ..., 
a2q 2  aq  1 mod q, etc.  In other words, Fermat’s Little Theorem implies that for 1  j  q – 1, 
aj aj + k(q  1) mod q, where k Thus, for example, if q = 5, then 31  35 mod 5;  32  36 mod 
5, etc.  And similarly for Euler’s generalization.

Another Fundamental Result We Will Use
In modular arithmetic, all numbers congruent to a given number (all numbers on the same ver-

tical line as a given number in our lines-and-circles model of congruence) are equivalent.  If (a, 
m) = (b, m) = 1, and a  b mod m, then whatever is true modular-arithmetically of a is true modu-
lar-arithmetically of b.  In particular, if (a, m) = (b, m) = 1, then if ar  b  mod m, where r  1, and 
a c mod m, then cr  b mod m.  In particular, we have:

(1.91) (c) 
If  (a,m) = (b,m) = (c,m) = 1, and if 
 a  amod m, and b  bmod m, and c  cmod m, then
if ar + br cr mod m, r 1, 
then ar + br cr mod m and
ar  armod m and br  brmod m and cr  cr mod m.
(See  “(1.91) (c)” on page 6 of Part (2) of this paper, on the web site occampress.com.)
 
If in the above  “ar + br cr” is replaced by  “ar + br not cr” and if  “ar + br cr” is 
replaced by ar + br not cr then the resulting statement is also true.

Two Ways to Implement a Method of Infinite Descent
We assume that the reader has read the section, “Fermat’s ‘Method of Infinite Descent’” in 

Part (1).  One way of implementing a Method of Infinite Descent is by using “Fermat’s Little The-
orem” on page 7.  Suppose that q is a prime such that (x, q) = (y, q) = (z, q) = 1, and suppose that p 
 j mod (q – 1), where 1  j  q – 1 and where p > j. In other words, suppose p = 
j + k(q – 1), where k > 0. (The question whether such a q exists is discussed below in the section 
“Moduli” on page 9.)  Then by Fermat’s Little Theorem:

xp + yp  zp mod q (non-congruence would imply inequality) and also 
xp – (q – 1) + yp – (q – 1)   zp – (q – 1) mod q and
xp – 2(q – 1) + yp – 2(q – 1)   zp – 2(q – 1) mod q and
...
xj+ yj  zj mod q, where 1  j  q – 1.

Now if we can show that the last case in the sequence is such that xj+ yjandzj are each less 
than q, then we have a contradiction and hence a proof of FLT, because if xj+ yjzj then we have 
a contradiction, since that inequality implies non-congruence.  On the other hand if xj+ yjzj then 
we also have a contradiction, namely, a counterexample whose exponent is smaller than the one in 
our assumed minimum counterexample x p + yp  zp . Either contradiction gives us a proof of FLT. 
Is there a way that both contradictions could be avoided?  Yes. Both contradictions could be 
avoided if, in a sequence of moduli q1, q2, q3, ..., qk, ...,  where qk is the first modulus such that xp 

1. (m) = the number of positive integers less than m that are relatively prime to m.
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+ yp and zp are each less than qk , at least one of xj+ yjzj, is greater than qj, where1  j < k. 
Another way of implementing a Method of Infinite Descent is by using “(1.91) (c)” on page 8.  

Here, it is the value of numbers congruent to x, y, z that are reduced, whereas in the first way it 
was the size of exponents congruent to p. Assume that xp + yp  zp mod q (non-congruence would 
imply inequality).  Then for all ab,csuch that ax, and by, andcz and such that at least 
one “” is “<“, we have, by (1.91)(c) that apbp cp mod q. 

Now if we can show that there exists ab , csuch that  apbp and cp are each less than q, 
and such that at least one of ab , cx, y, z respectively, then we have a contradiction, because 
if  apbp  cp  then we have a contradiction, since inequality implies non-congruence.  On the 
other hand if apbp  cp then we also have a contradiction, namely, a smaller counterxample 
(via at least one of ab , cthan our assumed minimum counterexample x p + yp  zp . Either 
contradiction gives us a proof of FLT. Both contradictions could be avoided if a similar condition 
prevailed as was described in the previous paragraph.  This c.ondition would hold if q was such 
that x + y, z were each less than q.  In this case there would be no ab,cexcept x, y, z.

Both ways of implementing a Method of Infinite Descent require, among other things, that a 
sufficiently small q exists. 

Moduli
In general, we use q to denote a prime modulus, and m to denote a composite modulus whose 

factors are not specified. 

Finding a Prime Less Than x + y or z
The Vertical Approaches via the “Lines-and-Circles” Model of Congruence will make fre-

quent use of a sequence of moduli, q1, q2, q3, ..., qk, ..., where q is a prime such that (x, q) = (y, q) 
= (z, q) = 1. As the reader will see, it is important that q be such that at least one of x + y, z be 
greater than q. For a long time we believed that, because it was possible that the factors of x, y, z 
together could exhaust the first r primes, r  1, the existence of such a q was in doubt. Eventually, 
we were able to prove that such a q exists (see “Lemma 30.0: Statement and Proof” on page 18 of 
Part (2) of this paper, on the web site occampress.com). For a time we thought that there was no 
reason to believe that a q exists that is less than y, or less than x.  The reason we gave was as fol-
lows. It is possible that y is the product of all primes less than or equal to x and relatively prime to 
x.  Furthermore, z might be the product of all the primes less than or equal to y and relatively 
prime to y.  So the best we can hope for is that q < z.

But this reasoning was faulty.  Let x = 2 • 3 • 5 = 30, let y = 7 • 11 = 77, and let z = 89.  (Our 
example thus conforms to the requirement of Lemma 1.0 in Part (1) that x < y < z and that x + y be 
greater than z.) Then the smallest prime q such that (x, q) = (y, q) = (z, q) = 1 is 13, and 13 is less 
than x. 

The reader might immediately ask about the case x = 2, y = 3, and z = 5. Actually, this case and 
the next one are irrelevant since by 1990, prior to Wiles’ proof, it was known that the exponent p 
in a counterexample must be larger than 125,000, and since p < x < y < z, there is no need to con-
sider small numbers.  Furthermore, Lemma 1.0 disallows this case because x + y = z instead of the 
required x + y > z. The reader might then cite any case in which x = 2, arguing that there can be no 
prime q that is less than 2.  But the case of x = 2 can be dismissed because, by Lemma 1.0, we 
know that p < x < y < z, and p = 1 is not a valid exponent in a countereexample.  So there may be 
grounds for cautious optimism that we can prove that there exists a prime modulus q such that (x, 
q) = (y, q) = (z, q) = 1 and  q < x.  
9



Considering the minimum size of x, y, z, and p, it might be possible to prove that there exists a 
prime q such that q < p < x < y < z and such that (q, p) = (q, x) = (q, y) = (q, z) = 1.  This would 
immediately give us xk + yk and zk greater than qk for all k 1.  Of course, for each k there exists 
an m such that, for all n   m, xk + yk  and zk are each less than qn.   In other words, each pair 
xk + yk  and zk must “touch down” (the term is defined below) at some modulus qm. 

If we are are able to prove that such a prime q exists, then we might have a chance of proving 
FLT by one of the Approaches described .

We must point out that we can take as modulus the prime exponent p in our counterexample. 
We know that p < x < y < x + y (Lemma 1.0 in Part (1)).  Taking p as modulus is discussed above 
in “Original Motivation for Approaches via The “Lines-and-Circles” Model of Congruence” on 
page 5 and  in “Appendix C — Probably the Most Popular Very Simple Approach” on page 76.

We must also point out that it is not necessary for xk + yk and zk, where k p, to each be less 
than a modulus m in order for it to follow that xk + yk not   zk  mod m.  For if xk + yk  zk (as is 
indeed the case if k p) then xk + yk  Uk = zk , where Uk  is not 0.  Then for all moduli m such that 
Uk  is not a multiple of m, it is the case that xk + yk not   zk  mod m.  

Trade-offs in the Size of Moduli
It is important that we keep in mind a fundamental trade-off in the size of moduli.  It is this: 

the larger the modulus, the fewer the number of a, b, c congruent to x, y, z and less than x, y, z.  
These a, b, c are the basis of several Approaches to a proof of FLT.  Of course, the counterexam-
ple touches down at a sufficiently large modulus, and remains down for all larger moduli.  But the 
larger the modulus m, the greater the chance for an a, b, c such that, for some r > 2, ar + br and cr, 
are each less than the modulus.  In that case, since ar + br cannot equal cr, ar + br not  cr mod m.  
If ar   xp,  br  yp, and cr  zp mod m, then we have a contradiction and a proof of FLT.

On the other hand, a small modulus m increases the chances that m < p < x < y < z, which is of 
advantage in several Approaches.

C-set — Definition
We want to capture, for each modulus m such that (x, m) = (y, m) = (z, m) = 1, certain ordered 

pairs <ar + br, cr>, where (a, m) = (b, m) = (c, m)  = 1.  We do this with C-sets.  These exploit both 
Fermat’s Little Theorem and (1.91)(c), which are described above under “Fermat’s Little Theo-
rem” on page 7 and “(1.91) (c)” on page 8.  For a modulus m  2, we define a C-set Cu, v, w, j, m 
mod m as follows:

Cu, v, w, j, m  = {<ur + vr, wr> | r j mod (m), uj,vj, wj are each less than m, and m is an appro-
priate modulus}.

We say that Cu, v, w, j, m  is congruent iff uj + vj  wj (mod m). Otherwise Cu, v, w, j, m is non-con-
gruent.

By definition of congruence, each Cu, v, w, j, m also contains all <ar + br, cr> such that a, b, c are 
congruent to u, v, w respectively mod m.

When it is not necessary to specify a particular u, v, w, j, m, we will speak of a C-set.
Each ordered pair <ur + vr, wr> in a C-set we call an element of the C-set.  The ordered pair 

<uj+ vj, wj> we call the base element of the C-set. If a counterexample xp + yp = zp exists, we call 
the element <xp + yp, zp> the counterexample element. It is immediately clear that the counterex-
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ample element must be an element of a congruent C-set. If we can show, for some modulus m, 
that this is not the case, then we will have a proof of FLT, because the (necessarily congruent) ele-
ment <xp + yp, zp> is then an element of a non-congruent C-set, a contradiction.

It is clear that for each modulus m, the counterexample element <xp + yp, zp> must lie in some 
C-set mod m.

C-sets are similar to towers in previous versions of this paper.

Conditions for Existence of a Counterexample
We assume a counterexample xp + yp = zp exists, and we consider the sequence of moduli m = 

2, 3, 4, ...  As m increases, each <cp + dp, ep> will be an element of a C-set mod m such that (x, m) 
= (y, m) = (z, m) = 1.   Here, c, d, e are each less than or equal to x, y, z respectively, and at least 
one of c, d, e is less than x, y, z respectively. 

For each m such that cp + dp and ep  are each less than m, the C-set having <cp + dp, ep> as 
base element is necessarily non-congruent because cp + dp ep . Yet it must be the case that the 
element <xp + yp, zp> is never in a non-coungruent C-set.  So it must be that for all elements 
<cp + dp, ep> that are base elements of C-sets containing <xp + yp, zp>, cp + dp and ep  cannot each 
be less than m, and, furthermore, it must be the case that <cp + dp  ep>, since the element <xp + 
yp, zp> must always be in a congruent C-set and, furthermore the element <xp + yp, zp> must 
always equal an element <ur + vr, wr> in a congruent C-set, and, furthermore, at some m,  the ele-
ment <xp + yp, zp> must touch down.

If we can prove that no counterexample can meet all these conditions, then we have a proof of 
FLT.

There Are “Lots” of Non-Congruent C-sets
If a counterexample xp + yp = zp exists, then for all k such that k  p, xk + yk  zk .  Thus for all 

such k, xk + yk zk  + rk, where rk  0. Each rk  is the product of a finite number of prime factors.  
Therefore xk + yk is not  zk mod m for all m (an infinite number) such that rk is not a multiple of 
m, regardless whether <xk + yk, zk > is the base element of a C-set or not.  Furthermore, for all 
moduli m such that xk + yk and zk  are both less than m, xk + yk is not  zk mod m (because xk + yk  
zk ).
       Thus, we would have a proof of FLT if we could show that a modulus m exists such that:

rk is not a multiple of m;
xk  xp, yk  yp, zk  zp mod m;
(x, m) = (y, m) = (z, m) = 1.

Furthermore, for all a, b, c, k, where k  p and at least one of a, b, c is not equal to x, y, z 
respectively, it is likewise the case that ak + bk ck, and so the remarks in the previous paragraphs 
apply to these a, b, c, k as well.

So there are “lots” of non-congruent C-sets.  We will have a proof of FLT if we can show that 
one of them contains the counterexample element <xp + yp, zp>, because that would be a contra-
diction.

“Consequences” of a Counterexample
Readers who first contemplate the infinite sequence of cases,
11



 x1+ y1  z1 ,
x2+ y2  z2 ,
x3+ y3  z3 ,
x4+ y4  z4 ,
...
xp–1+ yp–1 zp–1 ,
 x p+ yp zp ,
xp+1+ yp+1 zp+1 ,
...

sometimes react by saying, in so many words, “You have an infinite set of inequalities and exactly 
one equality if a counterexample exists.  A counterexample is clearly a needle in a haystack!  It is 
hopeless to try to prove (with the elementary machinery that you are using) that a counterexample 
exists or does not exist!”

In effect, these readers argue that the existence of a counterexample has no “consequences”. 
The counterexample either exists or it doesn’t.  Everything else — all the other relationships 
between an + bn andcn, where a, b, c are positive integers, and n   1  — remain the same regard-
less.

But that is simply not true, because if (x, q) = (y, q) = (z, q) = 1, and q is the smallest such 
prime, and  xp+ yp zp, and if the counterexample element <xp+ yp, zp> touches down at qk (as it 
must, for some k  1), then for all  k + j, j  1, xp +  yp  zp mod qk+ j. The reason is that if xp +  yp, 
zp are each less than qk+ j, as must be the case (“once down, always down” (see “Definitions” on 
page 2)), then since xp +  yp  zp, xp +  yp  zp mod qk+ j.  It follows that for all moduli qk + j, <xp+ 
yp, zp> is the base element of a congruent C-set mod qk+ j .   By definition of C-set this means that 
the C-set contains an infinity of congruent elements <ar + br, cr>.  None of these elements would 
be congruent if the counterexample did not exist.  So the existence of the counterexample defi-
nitely has “consequences”.   

In fact, we can say more:

Lemma 60.0:

Assume a counterexample xp + yp = zp exists.  For all k  1,  let Uk  =  xk + yk – zk.  Then 
(a) for each prime q, the Uk  are partitioned into q – 1 sets, each set a proper subset of a resi-

due class mod q.  The Uk  in exactly one of these sets, namely, the set containing Up, are all multi-
ples of q — that is, (Uk, q) = q . 

(b) for each prime q, there is exactly one residue class mod q that contains no Uk.

(c) for each composite modulus qj, where q is a prime,  j  1 and (x, q) = (y, q) = (z, q) = 1,  
the Uk  are partitioned into qj – 1(q – 1) sets, each set a proper subset of a residue class mod qj. 
The Uk  in exactly one of these sets, namely, the set containing Up, are all multiples of qj — that is, 
(Uk, q

j) = qj .

(d) for each prime q, there are exactly q – qj – 1(q – 1) residue classes mod qj that contain no 
Uk..
12



(For proof, see “Lemma 60.0: Statement and Proof” in Part (2) of this paper, on the web site 
www.occampress.com.)

If xp +  yp  zp then for all integers n,  nxp +  nyp nzp , and thus for all j, k  such that nxp +  nyp 

and nzp are each less than qk+ j, the element <nxp +  nyp , nzp> is the base element of a C-set mod 
qk+ j .   By definition of C-set this means that the C-set contains an infinity of congruent elements 
<ar + br, cr>.  None of these elements would be congruent if the counterexample did not exist.  So 
the existence of the counterexample has more “consequences”.   

Furthermore, since ar + br  cr mod qk+j imples (by definition of congruence) that there exists 
a U such that ar + br + Uqk+j = zr, it follows that for each i, where 3  i   p, there exists a U such 
that ar + br + Uqk+j–iqi = cr, which in turn implies that ar + br  cr mod qi.  This in turn implies 
that for each modulus qi, where 3  i   p, there exists at least one congruent C-set mod qi, 
namely, the one containing the element <ar + br, cr>.  

Finally,  if a counterexample exists, then  for each j, k, l  such that j + k = l and such that each 
of xp – jm, yp – km, and zp – lm  is positive, we have (xp – jm) + (yp  – km) = (zp  – lm).  Each of 
these equalities occurs “below” the counterexample in the sense that each term in parentheses is 
less than the corresponding term in the counterexample.  These equalities would not exist if the 
counterexample did not exist.

At the very least, these consequences of a counterexample should be investigated to see if they 
yield a proof of FLT.

An Approach Via Congruence of Exponents
Let Uk = xk + yk – zk, where k  1 but k  p. Then it is easy to show that, if a counterexample 

exists, then for each prime q, there exists a finite number of countable infinities of Uk  such that 
each Uk  does not contain the factor q, and exactly one infinity of Uk  such that each Uk  does con-
tain the factor q.  Furthermore, the countable infinities are disjoint.  (The proof follows from the 
definition of C-set mod q, and from the definition of congruence.)  

Let q be a prime and assume that k is the largest exponent such that xk + yk, zk are each less 
than q.  Then each xj + yj, and zj, where j k, is likewise less than q.  Because xj + yj, and zj and 
because xj + yj, and zj, where j k, is likewise less than q, we know that xj + yj not  zj mod q. 
Hence <x j + yj, zj> is the base element of a non-congruent C-set.

If there exist m, n  such that p + m(q – 1) = j + n(q – 1) = u for some  j k, then we have a 
proof of FLT, because this will imply that xu + yu  zu mod q (via the C-set containing the counter-
example) and also xu + yu not  zu mod q (via a non-congruent C-set), a contradiction.  The reader 
should keep in mind that this argument is valid for any prime q, and that the contradiction only 
has to exist for one such prime.  It may be that a contradiction can be forced by considering the 
sequence of increasing moduli each of which is a prime.  In this sequence, there will be a least 
prime such that the counterxample is a base element.  The counterexample will remain a base ele-
ment for all larger primes.  In addition, as the size of the primes increases, the number of base ele-
ments <x j + yj, zj>, where j > p, will also increase.  Perhaps this fact can force a contradiction.

We repeat: the existence of a counterexample has “consequences”.  Which raises the possibil-
ity of the following proof of FLT.  If our assumed counterexample touches down at qk , then all 
base elements of all C-sets in all moduli qh, 1  h   k, are the same regardless whether or not a 
counterexample exists.  That is, we cannot seriously imagine a professional mathematician say-
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ing, prior to Wiles’ proof, things like, “Well, of course we know that 175 + 65   195, but if coun-
terexamples are proved to exist, then this might change, i.e., the difference 195 – (175 + 65) might 
change.”  Nor can we expect that the location of each element <ar + br, cr> in the various C-sets 
in all moduli qh, 1  h   k to change.  And yet the presence of these elements determines the con-
gruence of C-sets whose base elements we have just said cannot change.  Do we have the basis for 
a proof of FLT by contradiction?  A topic that is closely related to that of the consequences of a 
counterexample will be found under part (E) of “Approach Type IV: Considering All Multiples of 
All Powers of a, b, c” on page 23 .

Approach Type I:  Show that if xp + yp = zp , then a contradiction arises involving ap + bp, cp, 
...

Preliminary Discussion
Elementary Fact About Equality and Congruence

Assume a + b = c. Then for each modulus m, and for each triple j, k, l such that j + k = l, there 
exists d, e, f such that d + e = f, namely, d = a + jm; e = b + km, and f = c + lm. (Proof: (a + jm) + 
(b + km) = (a + b) + (j + k)m = c + lm, which implies d + e = f.)

For example: Let a, b, c = 24, 9, 33, respectively.  Then a + b = c because 24 + 9 = 33.  Con-
sider the modulus 7.  Then (24 – 2*7) + (9 – 1*7) = (33 – 3*7), or, 10 +  2 = 12 (d = 10, e = 2, f = 
12;  j = 2, k = 1, l = 3).

First Implementation
Let M denote a finite sequence of increasing appropriate moduli such that the assumed mini-

mum counterexample xp + yp = zp touches down at the last modulus in the sequence.  For each of 
the moduli mi in the sequence, let Si denote the set {<ap + bp, cp> | ap + bp and cp are each less 
than mi}. We now ask if there exist mi and <ap + bp, cp> in Si such that ap  xp, bp  yp, and cp   
zp mod mi.  If the answer is no, we must ask how that answer is possible, and if the answer implies 
a contradiction. See next paragraph.  If the answer is yes, then we have a proof of FLT, for ap + bp 

cannot equal cp because in that case we would have a counterexample smaller than the minimum 
counterexample.  So it must be that ap + bp  cp which, since ap + bp and cp are each less than mi  
means that ap + bp not  cp mod mi , which implies that xp + yp not   zp mod mi, which is false, 
since xp + yp = zp and therefore it must be that xp + yp    zp mod mi.  This contradiction gives us a 
proof of FLT.

If the answer to the question raised in the above paragraph is no, then the following is the 
case: let m1, m2, ..., mi, ..., mn.   be a sequence of  appropriate moduli such that the counterexam-
ple touches down at mn.  Then for each moduli mi in the sequence except mn, ap + bp – cp is a mul-
tiple of mi, where ap  xp, bp  yp, and cp   zp mod mi, and a  x, b  y, and c  z (but not a = x, b 
= y and c = z) The proof follows from a simple generalization of “Lemma 60.0:” on page 12.  

We now ask if that is possible, given that the counterexample is an equality.  If it isn’t possi-
ble, then we have a proof of FLT.  We observe that if d, e, f  are each less than a modulus m, then 
the only possibility for a multiple of m is that d + e – f  = m.   Otherwise — for example, if d = 6, 
e = 6, f = 1, then d, e, and f are each less than the modulus 7, and d + e – f  = 6 + 6 – 1 = 11, which 
is not a multiple of 7.  So it appears that we can say that 

If a counterexample xp + yp = zp exists,
Then for each appropriate modulus mi  in each sequence of appropriate moduli described in 

the previous paragraph,
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If ap  xp, bp  yp, and cp   zp mod mi, and a  x, b  y, and c  z (but not a = x, b = y and c = z) 
Then either ap + bp – cp = mi, or else neither ap, bp or cp is less than mi.

If we can show this is false in just one case, then we have a proof of FLT.

Second Implementation
Let xp + yp = zp be an assumed minimum counterexample. Let m be an appropriate modulus.  
We will attempt to exploit the set of equalities that is established by any equality, as we 

described above.  The equality in our case is the counterterexample.  In particular, we will attempt 
to arrive at a contradiction between the existence of these equalities, and certain congruences that 
are also established by the counterexample — congruences each of which must be an inequality. 

We begin by pointing out that, for any modulus m, there is only a finite set of positive integers 
that are less than xp and congruent to xp mod m; and similarly for yp and zp.

The Set of Equalities
 In accordance with what we said above, for each j, k, l  such that j + k = l and such that each 

of xp – jm, yp – km, and zp – lm  is positive, we have (xp – jm) + (yp  – km) = (zp  – lm).  Each of 
these equalities occurs “below” the counterexample in the sense that each term in parentheses is 
less than the corresponding term in the counterexample.  These equalities would not exist if the 
counterexample did not exist.

First Set of Congruences
The first set of congruences, each of which represents an inequality, is the set {xn + yn zn 

mod m | n = p – j • (m) ,  j  1, and n is positive}.  That these are congruences follows from Fer-
mat’s Little Theorem (see “Fermat’s Last Theorem” in Part (4) of this paper, on the web site 
www.occampress.com).  That each congruence is an inequality follows from “Definition of ‘Min-
imum Counterexample’” in Part (1) “Definition of “Minimum Counterexample”” on page 15 of 
this Part. Each of these congruences occurs “below” the counterexample in the sense that each 
term in parentheses is less than the corresponding term in the counterexample. 

Second Set of Congruences 
The second set of  congruences each of which represents an inequality is the set {ap + bp cp 

mod m | a, b, c are less than x, y, z respectively and a  x, b  y, and c  z mod m}.  That these are 
congruences follows from (1.91)(c) under “Another Fundamental Result We Will Use” in Part (4) 
of this paper, on the web site www.occampress.com. That each congruence is an inequality fol-
lows from “Definition of “Minimum Counterexample”” on page 15 of this Part. Each of these 
congruences occurs “below” the counterexample in the sense that each term in parentheses is less 
than the corresponding term in the counterexample.  \.

If we can find a contradiction in the set of equalities and the two sets of congruences that rep-
resent inequalities, then we will have a proof of FLT.  We can begin by letting m be an appropriate 
modulus, and then finding expressions (relative to m) for:

the number of elements in the set S of ordered triples <u, v, w> such that u < xp, v < yp, and 
w < zp and u  xp, v  yp,  and u  zp mod m;

the number of elements in the subset Se of S  consisting of ordered triples representing 
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equalities, including the equalities resulting from the counterexample as described above;
the  number of elements in the subset Si of  S consisting of ordered triples representing 

inequalities;
the number of elements in the subset of Si,c of Si  consisting of ordered triples representing 

inequalities that are congruences mod m;
the  number of elements in the subset Si,n of Si  consisting of ordered triples representing 

inqualities that are not congruences mod m.

Two Major Obstacles in the Type I - Type III Approaches Using the Lines-and-Circles Mod-
els of Congruence

In the past we discovered what seemed to be two major obstacles to a successful proof of FLT 
using the Type I through Type III Approaches (see “” on page 11).  Following is a brief descrip-
tion of each obstacle. 

First Obstacle
We must assume that Lemma 30.0 (see “Lemma 30.0: Statement and Proof” on page 18 of 

Part (2) of this paper, on the web site occampress.com) describes a worst-case that our 
Approaches must deal with, unless results existing prior to 1990 show that the factors of x, y, z in 
a counterexample need not be all primes  z.  We are not aware of any such results.  So we must 
assume that q is a prime such that x, y are each less than q, and z > q.  [Note!  This is not necessar-
ily true!  See “Moduli” on page 9. The reader is encouraged to read that section before reading the 
rest of this section.]  

Now part (a) of  “Lemma 1.0.” on page 11 states that p < x.  Therefore for each set of C-sets 
mod q such that the exponents in the base elements run from 1 through (q), there exists one C-
set whose base element is <up + vp, wp>.  The reason is that p < x < q implies p < (q) = q – 1.  In 
other words, for each u, v, w such that u, v, w, < q and (u, q) = (v, q) = (w, q) = 1, there exists a base 
element of a C-set in which the exponent of u, v, w is p.

In some cases, for the base element <up + vp, wp>,  it will be the case that up = xp, vp = yp, 
since x, y, < q.  But zp cannot be the second term of a base element since z > q and hence cannot 
equal w in a base element, by definition.

So if z > q (it can easily be shown that q < z < 2q), then z   w mod q, where w < q and we have 
xp +  yp  wp mod q (by “(1.91) (c)” on page 6 of Part (2) of this paper, on the web site occam-
press.com).  Since by assumption xp +  yp  zp, we also have xp +  yp  zp mod q. But this does not 
do us any good. And because x, y < q, and z > q  we cannot use either Fermat’s Little Theorem or 
(1.91)(c) to arrive at a contradiction as our modulus increases to q2, q3, ...  

Second Obstacle
The second obstacle is also related to the fact that p < x.  This fact means that if the modulus q 

is greater than x, then <xp + yp, zp> is always the base element of each C-set mod qk, where k 1, 
in which it is an element.  The reason is that since, as is well-known, (qk) = (q – 1)qk – 1, it fol-
lows that  p – (qk) is negative.  Thus, if n = p  – j((qk)), where j  1,  there cannot be an element 
<xn + yn, zn> in a C-set mod qk .  Thus our hope of proving that <xp + yp, zp> is an element of a 
non-congruent C-set, and from this contradiction obtaining a proof of FLT, appears to be in vain.
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First Attempt to Overcome the First Obstacle in the Type I - Type III Approaches
At the modulus q2, z <  q2 and so <x + y, z> is the base element of a C-set.  In the set of C-sets 

mod q2 such that the base elements are <xj + yj, zj>, where 1  j  (q2), there exists one C-set 
whose base element is <xp + yp, zp>, since if p < x < q then p < (q2 ) = q(q – 1). 

The C-set whose base element is <xp + yp, zp> must be congruent because (informally) non-
congruence implies inequality, contradicting our assumption that xp + yp = zp.   

By definition of C-set there is an infinity of a, b, c such that ar + br  cr mod q2, where a  x, 
b y, c  z mod q2, and r p mod (q2 ). (These congruences would not exist if our assumed 
counterexample did not exist.  They are examples of the “consequences” of the existence of a 
counterexample described under ““Consequences” of a Counterexample” on page 11.)

By definition of congruence, this means that for each a, b, c, r, there exists an h such that ar + 
br + hq2 =  cr. Because there can be only one counterexample with exponent p, it follows that h   
0.

We observe in passing that there are two possible types of inequality for ar + br, cr relative to 
a modulus qk, where k  1.  The first type is that in which ar + br + h =  cr and h is not a multiple 
of qk (in other words, in which ar + br is not  cr mod qk, hence ar + br   cr ) and the second type 
is that in which h is a multiple of  qk (in other words, in which  ar + br  cr mod qk even though ar 
+ br   cr ) .

Second Attempt to Overcome the First Obstacle in the Type I - Type III Approaches
We begin our Second Attempt by recalling a fact from elementary number theory, namely, that 

if (a, m) = 1, then the sequence 1a, 2a, 3a, ..., ma, contains the set of all residue classes mod m in 
some order.  If the sequence continues —  (m + 1)a, (m+ 2)a, ..., 2m(a) — then the order of resi-
due classes repeats, etc.

Let q be the modulus defined above under “Two Major Obstacles in the Type I - Type III 
Approaches Using the Lines-and-Circles Models of Congruence” on page 16 and let k be  1.  
Then <xp + yp, zp> is an element (not necessarily the base element) of a congruent C-set mod qk.  
Now consider the sequence of elements,

(1)
<1xp +1yp,  1zp>
<2xp + 2yp,  2zp>
<3xp + 3yp,  3zp>
...
<qkxp + qkyp, qkzp>.

The multiples of xp + yp will cover all residue classes mod qk, and similarly for the multiples 
of zp. If this implied that for each C-set mod qk, there existed an n such that <nxp + nyp,  nzp> were 
an element of the C-set, then we would have a proof of FLT, because we would have shown that 
all C-sets mod qk must be congruent, contrary to the fact that, for sufficiently large k, there exist 
C-sets that are not congruent, namely, those C-sets having base element <xj + yj, zj>, where j  1,  
j  p, and xj + yj and zj are each less than qk.  In these cases, the base element <xj + yj, zj> must be 
non-congruent because xj + yj  zj, hence, since xj + yj and zj are each less than qk, xj + yj is not 
zj mod qk .  Hence the C-set is non-congruent.

Unfortunately, the first and second terms in the elements of sequence (1) cannot possibly 
cover the set of all pairs of residue classes mod qk of which there are (qk)(qk).  So we must uti-
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lize the known non-congruent C-sets .  These include the ones having base element < uj + v j, wj >, 
where 1  j  (qk), and where uj + v j is not wj mod qk.  Such a non-congruence is guaranteed to 
occur if uj + v j and wj are each less than qk and  uj + v j  wj. 

For each such non-congruence, we get a sequence of elements similar to that in (1), except 
here each element represents a non-congruence.  

Our goal now is to show that (informally) there is not sufficient “room” in the set of all C-sets 
mod qk, for the congruences in (1) to exist. The reader should keep in mind that as qk increases 
beyond the value at which the counterexample touches down, the number of base elements < xj + 
y j, zj >, where j  p, and xj + yj and zj are each less than qk,  so that x j + yj is not zj mod qk  — 
the number of these base elements increases.  For each of these base elements, there is a countable 
infinity of inequalities via our multiples by all n.  Each of these inequalities eventually touches 
down.  But there is only one countable infinity of inequalities for our base element < xp + yp, zp >.

Remark on Second Attempt
If we apply to the Second Attempt the question recommended under “The Danger of ‘Null’ 

Approaches in Part (1),  “Does this approach or strategy apply to all a, b, c such that a + b  = c?”, 
it is hard to avoid the conclusion that the answer is yes.  And so we must at least tentatively 
declare the Second Attempt unpromising.

Third Attempt to Overcome the First Obstacle in the Type I - Type III Approaches
The major obstacle in the Type I - Type III approaches is due to the fact that we must have

 (x, q) = (y, q) = (z, q) = 1 and that the prime q must be sufficiently small. It takes considerable 
effort just to prove that there exists q such that  (x, q) = (y, q) = (z, q) = 1 and z > q (see “Lemma 
30.0: Statement and Proof” on page 18 of Part (2) of this paper, on the web site occampress.com.).  
But if we allow one of x, y, z to have a factor in common with q, then at least conceptually things 
become much simpler.  For in this case, we can choose q to be as small as we like, namely, to be 
any prime greater than or equal to 2, thus assuring us that the counterexample <xp + yp,   zp> is 
very high up in the lines-and-circles model for q.  We might then be able to invoke “(1.91) (c)” on 
page 6 of Part (2) of this paper, on the web site occampress.com, and show that there exist a, b, c 
such that ap + bp  cp mod q and ap + bp and cp are each less than q, so that ap + bp  cp, contrary 
to our assumption that xp + yp = zp is the minimum counterexample.  But, of course, we must first 
show that allowing one of x, y, z to have a factor in common with q does not defeat our purpose.

Only recently did it occur to us that it may not be necessary to find a, b, c such that ap + bp and 
cp are each less than q.  The reason we have always assumed it was necessary was that if ap + bp  
cp mod q and ap + bp and cp are each less than q, then we can be sure that ap + bp = cp, thus giving 
us our contradiction.  But we must ask if it is not possible that we might be able to find an a, b, c 
such that ap + bp  cp  mod q implies ap + bp = cp without both ap + bp and cp being less than q.  

Consider the integers mod 7, and consider the case of <16 + 17, 33>.  It is true that 16+ 17 = 
33, and therefore that  16 + 17 33 mod 7.  It is also true that 16 9 mod 7, 17 10 mod 7, 33 
19 mod 7, 9 + 10 19 mod 7, and that 9 + 10 = 19, even though 9 + 10 and 19 are each greater 
than the modulus 7. 

Let us return to FLT.  We have  xp + yp  zp mod q because xp + yp  zp.  We ask if there exist 
a, b, c such that: 

at least one of a, b, c differs from x, y, z respectively, and
a  x, b  y, and c  z mod q, and 
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ap + bp  cp mod q and 
ap + bp  cp .  

That is, we ask, by definition of congruence, if there exist u, v, w not all 0 such that

(x + uq)p + (y + vq)p (z + wp)p + 0q.                                                                                  (1)

Unfortunately, one set of values for u, v, w gives us a trivial result.  Namely, if u = x, v = y, and 
w = z, then (1) is true, but it is equivalent to

xp(1 + q)p + yp (1 + q)p zp(1 + q)p + 0q,                                                                              

in other words, it is equivalent to a mere multiple of (1)

A Major Obstacle in the Type III and V Approaches Using the Lines-and-Circles Models of 
Congruence

Let us expand our definition of C-set so that for each u, v, w such that u, v, w are each less than 
the modulus m, and such that (u, m) = (v, m) = (w, m) = 1 there is a C-set for each <uk + vk, wk>, 
where 1 k  (m).  Now let u, v, w = x, y, z respectively.  Then we will have a proof of FLT if we 
can show that an m exists such that, for each k, where 1 k  (m), the C-set containing 
<xk + yk, zk> is non-congruent.  For the counterexample element <xp + yp, zp> must be in one of 
these C-sets, and since the element is congruent, we have our contradiction.

The major obstacle is that there seems no way of proving that such an m exists.  In particular, 
if <xp + yp, zp>  is always the base element of one of the C-sets in our set, then we have no contra-
diction. 

The key question is, can we find (Condition (1)) an appropriate modulus m such that p 
(m).  If so, then we must see if (Condition (2)) all the C-sets in the above set are non-congruent.  
If they are, then we have our contradiction and our proof of FLT.

We can begin our inquiry with m = 3.  We see immediately that (3) = 2.  As of the early nine-
ties, p was known to be greater than 125,000, so our first condition is easily met.  The problem is 
that m = 3 requires that neither x, y, or z have a factor of 3.  (For the time being we ignore possible 
use of the Trivial Extension to Fermat’s Little Theorem.).  We can compute the largest modulus 
mmax such that (mmax) is less than 125,000.  Then FLT is true for all x, y, z such that (x, m) = 
(y, m) = (z, m) = 1, where m mmax , and all the C-sets in the above set are non-congruent.

Approach Type III: Finding a Non-Congruence in a Congruent C-set
To review: In this Approach, we assume a counterexample exists.  For a sufficiently small 

prime q we define a succession of moduli, q, q2, q3, q4, ... , qk, ...  We represent each modulus by 
a lines-and-circles model as defined above.  We then impose upon each such model a set of “tow-
ers” of tuples <ar + br, cr> that are congruent in a sense that is made precise. These “towers” are 
called “C-sets”.  In a C-set, we have either that, for all tuples, the first element of each tuple is 
congruent to the second, or that, for all tuples, the first element of each tuple is not congruent to 
the second.  In the first case, the C-set is said to be “congruent”, in the second case “non-congru-
ent.”  

 For each modulus, one C-set (necessarily congruent) contains our assumed counterexample 
in the tuple <xp + yp, zp>.  The tuples “touch down” at the base level of sufficiently large qk, that 
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is, at the modulus qk such that ar + br and cr are each less than qk.  At the base level either ar + br 
=  cr or ar + br   cr .  We attempt to use this wealth of C-sets and the touching-down phenomenon 
to show that a counterexample tuple is an element of a non-congruent C-set, which is a contradic-
tion, and thus gives us a proof of FLT.  

First Implementation
A possible way to overcome the above-mentioned obstacles is the following. We remind the 

reader that, as of 1990, prior to Wiles’ proof, p was known to be greater than 125,000, and that if 
a number u is a product of the first m primes (as x, y, or z might be), where m > 2, there are primes 
less than u and relatively prime to u.  For example, if u = (2)(3)(5)(7)(11), then, for example, (u, 
13) = 1 and 13 < u.  We now state conditions for a simple proof of FLT.

Conditions for the Truth of FLT
If there exists a prime q such that:

(1)
q < p < x < y < z and
(x, q) = (y, q) = (z, q) = 1 (obviously (p, q) = 1) and
for some k, where 1  k < (q) = q – 1 it is the case that
k  p mod q – 1 and
xk  xp mod q,
yk  yp mod q,
zk  zp mod q, and 
(Uk, q) = 1, implying  that xk + yk not  zk mod q,
where xk + yk – Uk = zk and Uk  0because xk + yk  zk ,

then FLT is true.

Proof:
For each positive integer n (including n = p), there exists a k, 1  k  q – 1 such that n  k mod 

(q – 1) (by Fermat’s Little Theorem).  But since q < p < x < y < z, xp + yp and zp are greater than 
xk + yk and zk , respectively, for each k, where 1  k  q – 1. Since, for the k specified in the above 
conditions,  xk + yk not  zk mod q, it follows that xp + yp not  zp, a contradiction.  Thus FLT is 
proved. 

Discussion
The conditions (1) can be weakened so as not to require that (x, q) = (y, q) = (z, q) = 1.  Fur-

thermore, by Fermat’s Little Theorem, if j  h mod q – 1, then for each u, v, uj  vh mod q, and so 
we can eliminate the explicit listing of the conditions xk  xp mod q, yk  yp mod q, and zk  zp 
mod q.  Thus, without loss of generality, the conditions for the truth of FLT can be reduced to:

If there exists a prime q such that:

q < p < x < y < z and
for some k, where 1  k < (q) = q – 1 it is the case that
k  p mod q – 1 and
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(Uk, q) = 1, implying  that xk + yk not  zk mod q,
where xk + yk – Uk = zk and Uk  0because xk + yk  zk ,

then FLT is true.

(2) We know, by  “Lemma 1.5.” on page 11, that for each k, where 1  k < p,  xk + yk – zk  = Uk  
< xk.  For each k, Uk is fixed, since x, y, z are fixed — that is, Uk  is not a function of the modulus 
qk.  If we can show that there exists just one q such that the conditions in the above antecedent are 
fulfilled, we will have a proof of FLT.  One way of showing this is to show that the number of 
primes in Uk  is less than the number of eligible q.  Another way is via the “The “Smaller Prime” 
Lemma” on page 14.  

A Simple Implementation of the Vertical Approach Based on Congruences
Let q be a prime such that:

q < p < x < y < z and
for all k, where 1  k < (q) = q – 1 it is the case that
(Uk, q) = 1, where xk + yk = zk + Uk  (Uk  0because xk + yk  zk),
implying that xk + yk not  zk mod q.

Then FLT is true.

The proof is the same as that given under “Conditions for the Truth of FLT” on page 20.  
Since q < p, it is clear that xp, yp and zp are each greater than xq – 1, yq – 1, and zq – 1.   “Fermat’s 
Little Theorem” on page 7 allows x, y, and z to have a factor q, although, since (x, y) = (y, z) =
(x, z) = 1, only at most one of x, y, z will have that factor.  We conjecture that “The “Smaller 
Prime” Lemma” on page 14 will enable us to prove the existence of the desired prime q.  We 
remind the reader that, as of 1990, prior to Wiles’ proof of FLT, the prime p was known to be 
greater than 125,00.  Furthermore, by part (g) of “Lemma 1.5.” on page 11, each Uk is a multiple 
of p,  which is in our favor, since by “The “Smaller Prime” Lemma” on page 14, this increases the 
number of primes less than,  and relatively prime to Uk .

An Even Simpler Implementation of the Vertical Approach Based on Congruences
Let Uk be defined as in the previous sub-section.  Let  q be the smallest prime such that (U1, q) 

= (U2, q) = ... = (Uq –1, q) = 1.  Such a prime exists, because there are only a finite number of 
primes in all these Uk.

But then, if p > q  – 1, it follows, by what we established under “C-set — Definition” on 
page 10, that xp + yp not  zp mod q, which is not possible if xp + yp = zp.  Hence we would have a 
prove of FLT.

We can weaken considerably our constraints on the Uk  and still achieve our goal.  For, if there 
exists a prime q such that (1)  p > q  – 1, and (2) (Uk, q) = 1, where 

xk  xp mod q,
yk  yp mod q, and
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zk  zp mod q,

then it follows, by what we established under “C-set — Definition” on page 10), that xp + yp not  
zp mod q, which is not possible if xp + yp = zp.  Hence we would have a prove of FLT.

We can describe a procedure for searching for the impossibility.
1. Compute U1, U2, U3, ..., Uq – 1, where q is the largest prime < p.  We have now computed 

U1, U2, U3, ..., Uq´ – 1, for each prime q´ < p.

2. Beginning with q´ = 2, find the k such that 

xk  xp mod q,
yk  yp mod q, and
zk  zp mod q.

By “Fermat’s Little Theorem” on page 7, we know that such a k must exist. If (Uk, q´) = 1, 
then we have a proof of FLT.  If (Uk, q´)  1,, then repeat step 2 for the next q´ in the sequence.  Of 
course, if we do not find a Uk  such that (Uk, q´) = 1, then our strategy has failed.

The insightful reader will point out that the chances of our strategy succeeding are reduced if 
each Uk  is a single, different prime less than q.  Although “Lemma 0.2” on page 10 shows that for 
each k, Uk > 2•3•5•p we cannot regard this as encouragement that our strategy might succeed.  For 
Fermat’s Little Theorem and the definition of congruence imply that for each prime q´, the crucial 
Uk  must be a multiple of q´, thus depriving us of the needed contradiction.

We continue now with the discussion we were engaged in prior to the details of these two sim-
ple Approaches:

(3) If, in attempting to prove that (Uk, q) = 1, we assume the contrary, then we have

xk + yk – zk  xp + yp – zp mod q,

which, by definition of congruence implies there exists a term qR such that 

(2)
xk + yk – zk –qR =xp + yp – zp. 

R must be positive because, by “Lemma 1.5.” on page 11, xk + yk – zk is positive, whereas the 
right-hand side of equation (2)= 0.  We know that Uk  must be positive for the same reason, so 
equation (2) becomes

Uk –qR = 0.  

If we factor the largest power of q out of each term, yielding

qhM –qjN = 0
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we see immediately that h must equal j in order to avoid a contradiction. This seems rather fortu-
itous, since Uk = q

hM is fixed, and not a function of any modulus.  So we have at least some 
encouragement for trying to find a q´ having no factors in common with Uk.  A strategy that is 
based on considerations of the prime factors of each Uk is given under “Approach Type VI: Show 
that the Assumption of a Counterexample Implies a Contradiction in the U_k” on page 27..

Second Implementation
The vast majority of our attempts at a proof of FLT using vertical approaches based on con-

gruences rely on the application of Fermat’s Little Theorem to the exponents in ordered pairs <ur 
+ vr, wr>.   However, we can also apply “(1.91) (c)” on page 8, namely, we can hold the exponent 
p fixed and investigate ordered pairs <ap + bp, cp> which are congruent, as defined for C-sets, to 
the counterexample ordered pair <xp + yp, zp>.  

In order to fix ideas, we begin by considering any positive integers d, e, f, such that d + e = f.  
This equality is not affected by the modulus m in which the numbers are represented.  If  at least 
one of the pair d + e and f  is greater than m, then there will be h + i and j,  each of the pair less 
than m, such that d  h, e  i, and  f  j mod m and such that h + i = j.  For example, consider the 
equality 25 + 15 = 40. We find that  25 3, 15 , and 40  mod 11, that each of 3 + 4 and 7 are 
less than 11, and that indeed 3 + 4 = 7.

Now consider the counterexample equality xp + yp = zp and an appropriate modulus m such 
that at least one of the pair xp + yp and zp is greater than m.  Then there will be r + s and t , each 
less than m, such that  xp  r,  yp  s, and zp  t mod m and such that r + s = t.    What cannot be the 
case is that r = ap, s = bp, and t = cp, for positive integers a, b, c, because that would imply two 
counterexamples with the same exponent p, which is not allowed by “Lemma 4.0.5” on page 13.

But “(1.91) (c)” on page 8 guarantees us that for each a   x, b   y, and c   z mod m, includ-
ing those a, b, c such that a + b and c are each less than m, it is the case that ap + bp  cp mod m.  
So to avoid a contradiction, at least one of ap + bp , cp must be greater than m, and this must 
always be the case for all appropriate moduli m such that at least one of the pair xp + yp and zp is 
greater than m.  If we can show that this is impossible, then we will have a proof of FLT.  We point 
out two things: (1) that for each a, b, c, there exists an infinity of moduli m such that ap + bp and 
cp are each less than m, and (2) that by Fermat’s Little Theorem, if ap + bp  cp mod m, then a + b 
 c mod m.

Approach Type IV: Considering All Multiples of All Powers of a, b, c

The motivation for this Approach is the sub-section ““Consequences” of a Counterexample” 
on page 11.  In brief, and informally, we ask: if the existence of a counterexample, xp + yp = zp, 
implies the existence of an infinity of equalities, nxp + nyp = nzp, where n is a positive integer, is it 
possible that there is not enough “room” for all these equalities which, if no counterexample 
existed, would be inequalities?

We list a set of facts, inviting the reader to apply his or her creativity to possibly coming up 
with a proof of FLT from them.  The letters (A), (B), (C), etc. are merely for the purpose of refer-
ence, and are not intended to imply that the facts they designate are steps in a logical argument.

(A) Assume that a, b, c are positive integers and that  a + b = c.  Without loss of generality, we 
can write a = nf, b = ng, c = nh, where n is a positive integer.  There are now two possibilities: (I) 
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n = 1, and (II) n > 1.  Case (I) can be broken down into two further cases: (I.1): f, g, h are powers 
of the same exponent; (I.2): f, g, h are powers of different exponents.

(B) Similarly, assume that a, b and c are positive integers and that  a + b  c.  Without loss 
of generality, we can write a = nf, b = ng, c = nh, where n is a positive integer.  There are now 
two possibilities: (I) n = 1, and (II) n > 1.  Case (I) can be broken down into two further cases: 
(I.1): f, g, h are powers of the same exponent; (I.2): f, g, h are powers of different exponents.

(C) Let u, m be positive integers, and let (u, m) = 1.  Consider the infinite sequence of congru-
ences,

1u  a1 mod m;
2u  a2 mod m;
3u  a3 mod m;
...
mu  am mod m;
(m + 1)u  am+1 mod m;
(m + 2)u  am+2 mod m;
(m + 3)u  am+1 mod m;
...
where the ai are minimum residues mod m.
Then by a basic fact of congruence theory,  a1, a2,  a3,  ..., am is a sequence of all m minimum 

residues mod m.  Furthermore am+1 = a1, am+2 = a2, am+3 = a3, etc.  

We see immediately that if a counterexample exists, and (x, m) = (y, m) = (z, m) = 1, then in 
each residue class mod m there exists an infinity of pairs <nxp + nyp, nzp>, where n is a positive 
integer.

(D) If x, y, z are constituents of a counterexample, then by “Lemma 0.0” on page 10, x + y > z. 
It follows from (B) that

(1)
1x + 1y > 1z;
2x + 2y > 2z;
3x + 3y > 3z;
...
nx + ny > nz;
...
By “Lemma 0.2” on page 10, we know that x + y = z + Kdef, and so we can write, from (1),

(2)
1x + 1y = 1z + 1Kdef;
2x + 2y = 2z + 2Kdef;
3x + 3y = 3z + 3Kdef;
...
nx + ny = nz + nKdef;
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...

(E) Consider a 5-dimensional matrix M such that cell (n, u, v, w, k) is occupied by the value of 
nuk + nvk –  nwk , where n, u, v, w, k are positive integers. The matrix makes it possible to speak of 
the values of neighboring cells, given the value and location of a cell — if we know n, u, v, w, k, 
then we can compute the value of nuk + nvk –  nwk , and then from that value we can compute the 
value of, for example,  n(u – 1)k + nvk –  nwk , which is the value of one of the cells next to that 
containing nuk + nvk –  nwk.  In fact, there are 10 cells next to each cell except where one of the 
arguments = 1, because each of the arguments (or “coordinates”) can be increased by 1 or 
decreased by 1. ( Obviously, we can generalize this matrix concept to contain the values of any 
number-theoretic function having m integer arguments, where m 1.)

The fact that the value of the contents of cells adjacent to a given cell can be computed from 
the value of that cell is important!  Let us give an example.  

Consider the cell at (x, y, z, p) which, by definition of the value of a cell, and by assumption of 
a counterexample, contains xp + yp – zp = 0.  A neighboring cell at (x,  y –1, z, p) contains the 
value xp + (y – 1)p – zp .  But for all values of xp + yp – zp we have

xp + yp – zp  – (yp –  (y – 1)p ) = xp + (y – 1)p – zp 

Clearly, given that x, y, z are fixed, the value of xp + yp – zp determines the value of xp +
 (y – 1)p – zp  .

This fact forces us to consider the following.  We begin with a quote from the section,““Con-
sequences” of a Counterexample” on page 11): “...we cannot seriously imagine a professional 
mathematician saying, prior to Wiles’ proof, things like, “Well, of course we know that 175 + 65   
195, but if counterexamples are proved to exist, then this might change, i.e., the difference 195 – 
(175 + 65) might change.”  In terms of our matrix, we say that the contents of certain cells would 
remain unchanged regardless if FLT were proved or if a counterexample were discovered. And 
yet, as we have shown in that section, an infinity of cells would have different contents if a coun-
terexample existed — different from what they would have if FLT were true.  So we ask: where is 
the “dividing surface” in the matrix M between cells whose contents would remain unchanged, 
and cells whose contents would be changed by a counterexample?  Prior to 1990 it was known 
that if a counterexample existed, p would be greater than 125,000 and (therefore, since p < x  by  
“Lemma 1.0.” on page 11)  x would be greater than p.  So all cells whose coordinates included p 
less than or equal to 125,000, would have permanent contents, regardless if a proof of FLT or 
counterexamples were later discovered.  Is it in the nature of a counterexample that somehow, 
from beyond a few cells of the counterexample, the contents of all cells remains the same as they 
would be if counterexamples did not exist?

The matrix provides a framework for mathematical induction on any coordinate. We assume 
that a cell contains 0, which would be the case if a counterexample existed, and then compute the 
value of each neighboring cell such that at least one of the coordinates is decreased by 1.  We then 
repeat this process until we arrive at a cell the value of whose contents is known from other 
results.  If the values differ, then we know that the assumption of a counterexample was false, and 
thus FLT is proved.

The matrix is the second “geometric” representation of a number-theoretic relation we have 
introduced in this paper, the first having been the lines-and-circles model of congruence (see 
under “Approaches via The “Lines-and-Circles” Model of Congruence” on page 15).  
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We note immediately that if a counterexample exists, then M has an infinity of cells contain-
ing 0 that would not contain 0 if a counterexample did not exist.  There is one of these cells (n, x, 
y, z, p) for each n.  There is another countable infinity of cells containing values that would be dif-
ferent from those it would have if a counterexample did not exist.  These are the cells representing 
congruences in C-sets whose base element is <xp + yp, zp>.  See ““Consequences” of a Counter-
example” on page 11.

Does the multi-dimensional matrix concept, as applied above, provide us with a means of 
proving that no cell contains the value 0 if k > 2?  It may be profitable to consider two or more dif-
ferent “paths” — two or more different sequences of adjacent cells —  from the cell (1, x, y, z, p) 
to, say,  the cell (1, x , y, z, (p – 1)).  If the end value of different paths is not the same, then we 
have a contradiction and hence a proof of FLT.

To begin our investigations, let us consider the cell (1, x, y, z, p), whose value, by our assump-
tion of a counterexample, is 0.  Does the adjacent cell (1, (x – 1), y, z, p) contain a negative or a 
positive value?  We see immediately that it contains a negative value, because (x – 1)p +  yp –  zp  
+ (xp – (x – 1)p )  =  x p +  yp –  zp = 0, and (xp – (x – 1)p) is positive.  Informally, if we had a posi-
tive number b to a number a and get zero, then a must be negative.

We conclude that the cell (1, (x – 1),  (y – 1), z, p) contains a more negative number than (1, (x 
– 1), y, z, p).  

Conjecture: if u > 125,000 and p < u, then (u – 1)p > u(p – 1).
Recalling that, by part (g) of “Lemma 1.5.” on page 11,  xp  – 1 + yp  – 1 –  zp  – 1  Kdef + p – 

2, we ask if our Conjecture, if true, implies a contradiction. 

Approach Type V: Considering Congruences and Non-congruences Resulting from All C-set 
Pairs

Let M denote the set of all moduli m such that there exist C-sets mod m.  Let the elements of 
M be placed in a non-decreasing order: m1, m2, m3, ...

Let U = {uk | x
k + yk + uk = zk, for k  1}. 

Now consider the following table:

We fill in each cell (uk, mi) in accordance with the following symbols:

“”means that uk is a multiple of mi, or, in other words, that xk + yk  zk mod mi;
“~”means that uk is a not a multiple of mi, or, in other words, that xk + yk is not  zk mod mi;

Table 1: Relating Certain Congruent Elements of C-sets, and Moduli

uk m1 m2 m3 ...

u1

u2

u3

...
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“c” means that <xk + yk,  zk> is congruent to the counterexample element <xp + yp,  zp> mod 
mi, or, in other words, that  <xk + yk,  zk> and <xp + yp,  zp> are in the same C-set mod mi;

“c” means that <xk + yk,  zk> is not congruent to <xp + yp,  zp> mod mi, or, in other
 words, that <xk + yk,  zk> and <xp + yp,  zp> are not in the same C-set mod mi;

Each cell thus has one of the following pairs of symbols:

“”“c”, or
“”c, or
~c.
(We use “” because it suggests the “vertical congruence” imposed by Fermat’s Little Theo-

rem.)
No cell can contain the pair <~c>, because that would mean that <xp + yp,  zp> is in a 

non-congruent C-set, which is impossible.  We also point out that, with one exception, each row 
(each uk) can have only a finite number of pairs whose first term is “” because there are only a 
finite number of factors in uk, hence only a finite number of mi such that uk = nmi, the condition 
for congruence.  The one exception is up, which by assumption of a counterexample equals 0.  
Thus xp + yp  zp  mod mi for all i and therefore each cell in the up row contains <c>.

The question is, can we derive a contradiction from these relationships?  In trying to answer 
this question, we must remember that each C-set contains an infinity of elements.  Thus, the con-
tents of each cell, regardless which of the above three pairs of symbols the cell contains, must be 
duplicated in an infinity of cells in the same column (same mi).  In particular:

For each mi, a countable infinity of cells must contain the pair <“”“c”>.  The reason is 
that, for each mi, there is a (congruent) C-set containing the element <xp + yp, zp >, and since a C-
set contains an infinity of elements, an infinity of cells must contain <“”“c”>.

We also remind the reader of the facts concerning an infinite succession of prime moduli, q, 
q2, q3, ..., as discussed under ““Consequences” of a Counterexample” on page 11.

In passing, we mention the following possible tactic: begin with the assumption that no coun-
terexamples exist, and then show that there is no way, in the above table, to change the contents of 
the requisite cells to <“”“c”> as required by a counterexample.  Would that give us a proof of 
FLT?

Approach Type VI: Show that the Assumption of a Counterexample Implies a Contradic-
tion in the U_k

First Implementation
Let Uk = xk + yk – zk , where k  1.   “Lemma 60.0:” on page 12 states that if a counterexample 

exists, then for each modulus qj,  where q is a prime and  j 1there are a finite number of residue 
classes mod qj that contain no Uk, and furthermore among those residue classes that do contain 
Uk’s, there is always one congruent to 0, that is, there is always the unique residue class mod qj 
that contains all multiples of  qj.
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If we can show that this consequence of the existence of a counterexample is impossible, then 
we have a proof of FLT.

Second Implementation
Let q be any prime and consider a modified C-set mod q containing the counterexample ele-

ment < xp + yp, zp> .  The modification is that we ignore the base element, and instead merely con-
sider the infinity of elements < xk + yk, zk >, where k p mod q – 1, and k > p.  Then by definition 
of congruence, we have:

xk  xp mod q,
yk  yp mod q, and
zk  zp mod q, 

which in turn implies that there exist non-zero u, v, w, such that 

xk qu xp ,
yk qv yp, and 
zk  qw = zp .  

Thus, from xk + yk – zk = Uk;  we have

(xp + qu) + (yp qv)– (zp + qw) = Uk .  

Assumption of a counterexample yields

 qu qv– qw = Uk , or  q(u v– w) = Uk .  

What we have just established applies to all primes q and to all k such that k  p mod q – 1.  
Furthermore, similar facts apply to all C-sets mod qr, where r  1, which contain the counterex-
ample element < xp + yp, zp>.  Furthermore, similar facts apply to all C-sets mod m, where m is a 
composite number that is relatively prime to at least two of x, y, z.  (There is an infinity of such 
composites, because there is an infinity of primes but only a finite number of different primes in x, 
y, and z.)  In the case of composite moduli, we must use Euler’s generalization of Fermat’s Little 
Theorem (see “Fermat’s Little Theorem” on page 7).  

If we can find a contradiction in the set of facts concerning the Uk’s we will have a proof of 
FLT.  However, initial attempts have not been promising, not even when we consider a modulus m 
as described in the previous paragraph, an m containing powers of, say, n different primes, and 
then investigate the exponent p + j(m) of x, y, z in the modulus m, and in the modulus of  each of 
the different primes. 

A related Approach is to show that there exists an appropriate modulus m such that for each k, 
where 1  k  (m) – 1, (Uk, m) = 1.  If such a modulus exists, then <xp + yp, zp> is an element of 
a non-congruent C-set mod m, which is a contradiction, and gives us a proof of FLT.

We can relax the condition on Uk and still achieve a contradiction and a proof of FLT if we can 
show that <xp + yp, zp> is an element of a non-congruent C-set, that is, a C-set such that Uk for its 
base element is relatively prime to m.
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For details, see “Lemma 60.0”, “An Approach Via Congruence of Exponents”, and other sec-
tions containing “Uk” in Part (4) of this paper.
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