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Structures of Mathematical Subjects

Before proceeding with the building of Environments, it is important to understand 
that there are at least two ways of organizing — of structuring — a mathematical 
subject.  The first is universal, and familiar to all students.  It is logical structure.  The 
second is hardly known, but has certain advantages over the first.  It is called, in this 
book, problem-solving structure.  I will try to make the difference clear, because the 
difference is important. However, let me emphasize at the start that the content of the 
subject is the same in both cases.  I can organize the parts of a car in many different 
ways — by part number, or by name, or by function, or by location in the car — 
without destroying their relationships, e.g., that the pistons go in the cylinders in the 
engine block, and that they are attached to the crankshaft.

Logical Structure

Ever since Euclid’s Elements, the great textbook on plane geometry, was first 
published in 323 b.c. (or, more correctly, first made available for copying, since there 
were no printing presses in those days), mathematical subjects (at least at the college 
level) have been presented in the form:  initial definitions, axioms, definitions, 
theorem, proof, definitions, theorem, proof, ... , with implied rules for constructing 
proofs (the rules you learn in a course on mathematical logic). In other words, 
mathematical textbooks, and courses in mathematics, always present the logical 
structure of the subject.  They assume that the only way you can solve a problem in 
chapter n is by having mastered chapters 1 through n – 1.  This idea can be expressed 
in various ways:   “If you want to tell the time, you need to know how the watch is 
built;” “If you want to go from point A to point B, you need to understand the territory 
first,” or, in other words,   “You have to learn everything in order to do anything.”

This structure has dictated the form of learning mathematical subjects for 
centuries.  It has been the structure of virtually all mathematical textbooks, and, indeed 
of all textbooks in the sciences.  To a modern student, nothing seems more obvious 
than that you have to learn the subject, or concept, before you can apply it.  

But that is by no means the only structure that a mathematical subject has.  There is 
at least one other structure that I hope the following examples will make clear. 

Suppose someone asks you, “How do I get from Berkeley to Palo Alto?”  There 
are at least two ways you can reply: one is by handing the person a map of the San 
Francisco Bay Area and saying, simply, “Here, follow the map.”  Another way is to 
give the person explicit directions: “Get on Highway 80 going south, veer right to the 
Bay Bridge, go across the Bay Bridge and then get on Highway 101 and follow it for 
about 30 miles until you see an exit sign saying ‘University Ave., Palo Alto’.  Turn off 
at that exit, bear right, and keep following University Ave. to downtown Palo Alto”.   
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In the first case, the person has to figure out his or her own route, and, if he or she 
doesn’t know Bay Area traffic very well, he or she might choose a route that is much 
slower than another that an experienced commuter might recommend. The person, in 
effect, has to study all of the territory in order to figure out how to make use of part of 
it.  His or her task is similar to that of a person who is attempting to learn to use a 
software system from a traditional manual.  In the second case, the person benefits 
from the experience of the person who gives him or her explicit directions.  Of course, 
if one of the roads happens to be closed, then the traveler will either have to proceed 
by trial-and-error, or by asking someone, or by getting a map. Which is why in a 
complete Environment, every set of tasks that can be performed on a given thing  
always includes the optional task, “Get background material on ...” — in other words, 
“Study the roadmap”.  The giant step forward, in the case of Environments, is that it is 
not always necessary to study the roadmap first.

One more example: suppose you have, on a sheet of paper, an arrangement of 
squares, triangles, and circles.  This is the “logical structure” of the “subject” which 
consists of these squares, triangles, and circles.  Now suppose there is another person, 
who is your student, and by dint of hard work, you manage to convey to him or her, by 
words alone, how the squares, triangles and circles are laid out on the paper.  (You are 
not allowed to simply hand him the paper because that would be the equivalent of 
transferring part of your understanding of a real-life subject directly from your brain 
into a student’s.)  Eventually, you are convinced that he or she has managed to 
construct a close approximation of what is on your page.  

Now once this has been done, you can indiscriminately ask the person anything 
you want about the subject.  “How many triangles are below and to the right of a circle 
that is in the upper left quadrant of the page?”  “Is there a triangle on the page such 
that, if you moved it less than two inches to the right, it would be directly under 
another triangle?”  Any question you asked would be answerable — at the price of the 
student’s having had to duplicate your entire page.

From here on in this book, I will use the term “logical structure” to describe any 
structure of a subject, whether in a textbook or a classroom, that requires you to learn 
all of the territory before you can get anywhere in the territory (e.g., solve problems).

Advantages of Logical Structure

The main advantage of logical structure is that when and if you have mastered it, 
you don’t have to worry about classes of problems!  To answer a question, any 
question, in the subject, you simply need to reason from what you have learned — 
from the “map” you have built in your mind.  
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Disadvantages of Logical Structure

The disadvantage of logical structure is that for the student — or, in general, the 
person trying to apply the subject to solve problems — it’s an all-or-nothing 
proposition.  Since he or she doesn’t know what kinds of questions will be asked, or 
can be asked, about the diagram (what classes of problems are to be solved), he or she 
must somehow make a mental copy of the entire diagram.  He or she needs to know 
everything in order to do anything.

But suppose the diagram is huge — suppose it fills a piece of paper the size of a 
football field.  Suppose the student is sorely pressed for time, and is not extremely 
skillful at reconstructing diagrams from verbal descriptions.  Suppose that, in truth, the 
student doesn’t need to be able to answer every question that could be asked about the 
diagram.  Then perhaps he or she might wish there were a better way of learning to 
solve problems than the all-or-nothing approach of mastering the entire picture.  And 
there is a better way, one which I am calling “problem-solving structure”.

Problem-Solving Structure

Whereas logical structure shows how the subject is made, problem-solving 
structure (there are no doubt many such structures, although this book will only 
describe one) is designed to enable students and other users of a technical subject to 
solve problems knowing as little as possible about the subject, but at the same time 
enabling them to find out rapidly whatever they want to know — the meaning of a 
symbol or term, the theorems associated with a given concept, techniques for proofs.  
A problem-solving structure is organized around the tasks, the questions, the classes of 
problems, that students and other users of the subject most commonly need to apply or 
answer. In other words, in a problem-solving structure, we attempt to put at least some 
intelligence in the structure — not merely knowledge, as we do in the case of logical 
structure, but intelligence: aid in solving problems. 

The classes of problems addressed by an Environment are those that are described 
under “The Principle Classes of Homework and Exam Problems” in chapter 1.  An 
Environment is, among other things, an implementation of the professor described 
under “Semantics versus Syntax” in chapter 3.  Thus, an Environment can be thought 
of as a “soft” calculator — “soft” in the sense that it provides merely heuristic, as well 
as algorithmic, aids for solving problems, and “soft” in the sense that paper 
implementations are constructed of soft material.

Problem-solving structure is designed for “just-in-time learning”.  The term is 
derived from the term “just-in-time inventory” which, in manufacturing, means that 
the parts required to build larger assemblies are not kept on the shelves for weeks or 
months until they are ready to be used, but instead are delivered just a few days before.  
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Thus the expense of storage is reduced. The analogy in learning mathematics is that, 
instead of having to store all those parts of the subject in your brain (theorems, proofs, 
definitions, explanations) just so that you will have the one or two ready when you 
need it, you store all this in a special kind of document called an “Environment”.

Of course, if we think about how we use a traditional textbook as a reference, we 
realize that we often use it in ways other than its logical structure implies. We do not 
read in one direction only, i.e., from front to back, but rather we often refer to various 
parts of the book: we try to look things up, we refresh our memories because we have 
forgotten details or even major points, we search for certain kinds of information, we 
use the book for brief periods of time, then go on to other things, then come back to it.  
We feel under no obligation to derive the answer to every question by proceeding 
through the book from the beginning to the place where the answer is given (nor does 
an expert typically come up with an answer by such a linear process); we try to look 
the answer up, treating the book (through the table of contents and the index) as a kind 
of table — a database, a means of rapidly solving problems.

Advantages of Problem-Solving Structure

The advantages of problem-solving structure are:
 It allows you to solve problems without having to learn any more than you need 

to solve just that problem;
 It is designed for speed of finding information.

Disadvantages of Problem-Solving Structure

The disadvantages of problem-solving structure are:
 The organization is unfamiliar to students and other users;
 At present, math teachers and professors regard it as a threat to their traditional 

ways of teaching (and their teaching  jobs), hence are not willing to teach courses 
based on problem-solving structure. However, my goal is not to put math professors 
out of business, it is to make their jobs easier.  It is to render unto the book (and the 
computer) that which can be so rendered, and thus allow math professors to have more 
time for their own research, and for helping students whose difficulties cannot be 
overcome by a new form of presentation of mathematical subjects. 

 At present, you have to build your own problem-solving structures (in this book, 
called “Environments”),  as opposed to being able to buy them ready-made.  This will 
soon change.
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Logical Structure vs. Problem-Solving Structure: Two Analogies

A good way to contrast the difference between logical and problem-solving 
structure is to think of the way a colored image appears on your computer screen (in 
the early 2000’s).  Typically, you see a blurry approximation of the entire image; then, 
as time passes, the image becomes less blurry, until you finally see it in its full clarity.  
From the very start, you see the entire image, albeit indistinctly at first.  In effect, 
problem-solving structure is like this, except that you can zoom in on any particular 
part of the blurry image at any time and obtain the degree of clarity you need to solve 
your problem.

Now suppose that instead of seeing a blurry approximation to the entire image, you 
first saw a perfectly clear part of the image, say in the upper left-hand corner of the 
frame that is to hold the image.  Then, gradually, slowly, the perfectly clear part would 
spread, until you had the entire image before you.  Observe that here it would take a 
long time for you to have any idea of the general features of the image; you would 
have no idea what to expect in the bottom half of the image once the top half was 
completed.  You would have to wait for the image to be fully, completely, displayed,  
before you could be sure what exactly the image contained.  This way of presenting an 
image corresponds to logical structure.

We are now ready to learn the details of building an “Environment”.
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Definition of “Environment”

An Environment is a particular kind of problem-solving structure for a 
mathematical subject — indeed, for any technical subject.  An Environment is a set of 
notes that you develop while sitting in class and/or while doing homework problems.  
Its purpose is to increase the speed at which you become able to solve problems and to 
save you as much time as possible when you come back to parts of the course in future 
courses. The goal is that, at all times, you will only need to read what you need to read 
to solve the problem you are working on.  In addition, as you will see, an Environment 
enables you to understand a subject much faster, and takes you a step closer to 
knowing a subject backwards and forwards, inside and out. 

Of course, the presentation of a subject x in a traditional textbook can also be 
regarded as a problem-solving structure.  A classroom course, with or without a 
textbook, can be regarded as a problem-solving structure.  (If you need to solve a 
problem in subject x which you have never studied, you can take a course (if you can 
find one and if you can obtain permission to take it), and, starting at chapter 1 of the 
textbook, keep studying until you find out how to solve that problem.)   A student’s 
notes can be regarded as a problem-solving structure.  A popularization is a problem-
solving structure, but one that is very limited in the classes of problems it enables you 
to solve.  What distinguishes an Environment is that it is an efficient problem-solving 
structure, in a sense that is made clear under “How the Environment Idea Should Be 
Tested” on page 130.  In this book, the term Environment will always mean efficient 
Environment. There are several ways to implement an Environment.  One is by using 
pencil and paper only.  Another is by using a word-processor.  A third is by actually 
creating a computer database.  In this book, we will be concerned only with the first 
two ways.  Furthermore, we will be concerned only with partial Environments, 
because implementing a complete Environment for a subject is more work than you 
will have time for. Complete Environments will someday be available in book form 
(the author is working on one for  vector calculus) and then in database form.  Let me 
say a few words about a database approach to mathematics, because this concept is 
important.

Databases are computer software systems that are now used throughout the 
developed world. They are found in just about every large business and, of course, 
throughout government. A typical business database includes, among other things, 
information about employees, and permits a manager in the Human Resources Dept. 
to make requests like, “Give me a list of all employees who are over 30 and who have 
been with the company at least five years.” Or, “Give me a list of all employees who 
are not managers but who earn more than $60,000 a year.” There is absolutely no 
reason why this powerful technology cannot be applied to the body of “data” which is 
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a mathematical subject. You, the “user” of the subject, whether you are a student or a 
person working in industry or a researcher, will one day be able to access a database 
for any math subject. You will be able to ask questions like, “Give me a list of all 
theorems and lemmas whose statements contain the terms x, y, or z, or their 
synonyms.” Or, “Give me the definition of the term (symbol) u.” Or, “Give me a brief 
description of the major proof techniques used in this subject.” In other words, you 
will be able to ask most of the basic questions described in  “The Principal Classes of 
Homework and Exam Problems” on page 19.

Fortunately, and remarkably!, there is a way of approximating such a data base 
using only a word-processor.  It is called a KWIC index.  “KWIC” stands for “key 
word in context”.  In essence, it is an index in which each entry is repeated under all 
the key words in the entry.  Here is an example from Linear Algebra.  Symbols are not 
underlined, to avoid any confusing of them with vectors.  The page reference for 
further information about each entry follows the entry, in the form (M, n), where M 
denotes Saunders Mac Lane’s book, Mathematics: Form and Function1, and n is a 
page number..  Each symbol or commonly-occurring sequence of symbols, e.g., ATA, 
that is peculiar to the subject being indexed is in the index.

— A —  
A — common symbol for matrix.  (M, 199)

A square matrix A is orthogonal iff 
ATA = I = AAT, 
i.e., its transpose is its inverse. (M, 199)

— E —  
E — common symbol for inner product vector space. (M, 197)

— I —  
 I — a commonly used symbol for the identity matrix (1s down the diagonal, all 

other elements 0) (M, 199)

An orthogonal transformation is a function T: E  E which is linear and which 
preserves the inner product, in the sense that Tu . Tv = u. v for all pairs u, v. (M 198)

1. Springer-Verlag, N.Y., 1986
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A square matrix A is orthogonal iff ATA = I = AAT, i.e., its transpose is its inverse. 
(M, 199)

— M —  
A square matrix A is orthogonal iff the corresponding transformation is 

orthogonal, relative to the standard inner product. (M, 1990

A matrix A is orthogonal iff its columns are normal and orthogonal. (M, 199)

A square matrix A is orthogonal iff ATA = I = AAT, i.e., its transpose is its inverse. 
(M, 199)

— N —  
A matrix A is orthogonal iff its columns are normal and orthogonal. (M, 199)

— O —  
An orthogonal transformation is a function T: E  E which is linear and which 

preserves the inner product, in the sense that Tu . Tv = u. v for all pairs u, v. (M, 198)

If T carries any one normal orthogonal basis of E into a normal orthogonal basis,
then T is an orthogonal transformation. (M, 199)

A square matrix A is orthogonal iff the corresponding transformation is 
orthogonal, relative to the standard inner product. (M, 199)

A matrix A is orthogonal iff its columns are normal and orthogonal. (M, 199)

A square matrix A is orthogonal iff ATA = I = AAT, i.e., its transpose is its inverse. 
(M, 199)

— T —  
T — common symbol for linear transformation. (M, 188)

A square matrix A is orthogonal iff ATA = I = AAT, i.e., its transpose is its inverse. 
(M, 199)

In my opinion, a KWIC index is a necessary accompaniment to a formidably-
difficult textbook like Allen Hatcher’s Algebraic Topology1, with its many hundreds of 
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terms and symbols, especially function symbols, that are peculiar to the subject.  The 
existing six-page index is a disgrace, and there is no index of symbols.  The book is 
quite obviously constructed according to the prevailing rule in the Culture, namely, 
that the purpose of higher mathematics is to separate the Winners (those who can, and 
are willing to, master mind-numbing presentations like Hatcher’s book) from the 
Losers (those who can’t).  The book is a prime example of the racket that is university 
mathematics teaching in the present day.

The longer I work with Environments, the more I believe that a database for each 
mathematical subject (or a KWIC index approximation to one)  is where we are 
headed in a world in which more than 200,000 new theorems are published in all 
subjects each year.  I believe that one day it will be recognized that a database is the 
level playing field for all subjects involving mathematical proofs.  A database 
eliminates the kind of intellectual work that at the time of this writing is considered to 
be a major part of learning a mathematical subject, namely, memorizing definitions of 
terms and symbols, somehow keeping straight in one’s mind what is related to what, 
memorizing at least the statements of theorems and lemmas, and accomplishing all 
this at the pace set by the professor.   

However, let me emphasize that a database is part of, but not all of, an 
Environment.  The Environment template for each entity is necessary for rapidly 
gaining a conceptual view of each entity.  (The template is described below under 
“The “Universal Template for Mathematical Entities”” on page 75.)  The database is 
mainly an aid to doing and understanding proofs.

Also let me emphasize that these data bases are not Artificial Intelligence 
(although some math databases may contain reasoning modules that enable you to say 
things like, “Spend five minutes or so trying to prove w, starting from v.”) The 
database simply returns information that already exists, but does so very rapidly.  It 
does not “figure things out” except insofar as carrying out logical operations (and, or, 
not) is figuring things out. Most expert database programmers would probably 
consider that the only problem with putting, say, vector calculus or statistics or 
automata theory in a database is that it is not sufficiently challenging. They would 
admit it involves a lot of work, but given the Environment structure described in this 
book, there is very little creative intellectual work for them to do.

So that is where we are going. It is inevitable, if for no other reason than the huge 
explosion in mathematical knowledge. It is absurd to imagine that persons in the future 

1. Cambridge University Press, 2002
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who need to learn or re-learn how to solve a certain type of mathematical problem, 
will find it most efficient to sign up for a course (assuming one is being offered), still 
less wait until the next semester when it will be offered. 

However, until math databases (Environments) become widely available, you, the 
student will have to create your own Environments, and these will necessarily be 
partial ones. 

At this point, you might want to take a few minutes to look at some of the 
examples of partial Environments in the appendices.

:The Environment concept, of course, is not entirely new. The following are a few 
precursors.

 The Universal Encyclopedia of Mathematics (Simon and Schuster, N.Y., 1964), 
which covers a variety of high-school and early college-level subjects in geometry, 
trigonometry, elementary calculus, etc.; 

 the Mathematics Dictionary  ((ed. James and James), D. Van Nostrand Co., Inc., 
N.Y., 1959), which covers numerous terms typically confronted in high-school and 
undergraduate college math.

 the Encyclopedic Dictionary of Mathematics (ed. Iyanaga and Kawada, The MIT 
Press, Cambridge, Mass., 1977; later edition published in the early nineties), which 
covers much of higher mathematics.  If you are planning to get a Ph.D. in mathematics 
or in the more theoretical branches of computer science or in physics, I think the 
Encyclopedia Dictionary (EDM) is indispensible, despite its cost (more than $300 new 
in the early nineties, though used copies can be bought for as little as $50).  The 
effectiveness of several ideas to be described below can be seen in actual practice in 
this book: e.g., the marking of every term whose definition and context can be looked 
up, via the index, every time the term occurs (in other words, a paper implementation 
of hypertext); the separation of proofs from the presentation of theorems (no proofs 
are given in the EDM); the fact that every symbol can be looked up.  In the 1977 
edition, you can find the major theorems and ideas of point-set topology in 11 pages; 
of linear algebra in 10 pages; of probability theory in six pages.  

However, the Environment idea set forth in this book involves many more features 
than are contained in the above books.
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The Structure of an Efficient Environment

The question now is, “How do you structure a subject for efficiency at solving 
certain classes of problems?”  The answer is given in this section.  It applies not only 
to any mathematical subject, but also to any technical subject, including the use of 
computer programs (see Schorer’s How to Create Zero-Search-Time Computer 
Documentation). You can implement the ideas in this section — in fact, in this book — 
with pencil-and-paper, word-processor, or database.  Your goal is to put at least some 
intelligence into the Environment, not merely the knowledge that makes up the 
subject, but intelligence — aid in solving problems.1

It may help you to better comprehend the nature and value of the Environment idea 
described below if I exaggerate a little: the form of an efficient environment (including 
the Universal Template for Mathematical Entities that is described below) is a variable 
whose domain of values is mathematical subjects. We “plug” a mathematical subject 
“into” an Environment. We want to make (to whatever extent possible) all 
mathematical subjects look “the same”, because in a time when more than 200,000 
new theorems are published each year2, we feel that it is essential that users of 
mathematics (including mathematicians) be able to rapidly find the material they need 
in a subject with which they are not familiar. 

Title Page

It probably goes without saying, but let me say it anyway, for the sake of 
completeness: the first page of any Environment is the title page so that, a year or two 
or ten years from now, you don’t have to spend time figuring out what exactly the 
Environment covers.  This page contains just the title of the subject and the date you 
began building the Environment.

Start Page

Every Environment has a Start Page giving you a global view (“Big Picture”) of 
the subject, which means, a summary of the major classes of problems that can be 
solved in the subject.  The Start Page is the second page of the Environment.  In a 

1. The slogan, “Put the intelligence in the Environment!”, was originally that of a marketing 
manager in a computer company, in reference to the user Environment for a new software 
product.  I do not know the manager’s name. But the purpose of his slogan was to inspire pro-
grammers (and technical writers) to reduce the amount of time that users had to think about, 
and study documentation about, how to accomplish what they wanted to accomplish using the 
software.
2. Ulam, S. M., Adventures of a Mathematican, Charles Scribner’s Sons, N.Y., 1976, pp. 287-
289
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complete Environment, namely, one you would buy ready-made  — the author of this 
book is in the process of developing such an Environment for the subject of  vector 
calculus — it must be possible to get to every problem-solving procedure in the 
Environment by following references from the Start Page.  Normally, in an 
Environment you create for yourself, you will not have the time to achieve this degree 
of rigor.

 The Start Page answers the question, in our list under  “The Principal Classes of 
Homework and Exam Problems” on page 19, “What is the Big Picture of this subject?  
What does the forest look like, apart from the trees?”  The format of the Start Page is 
the same as that for the “Universal Template for Mathematical Entities” described 
below, except that some categories are not present.

The Start Page lists the major operations you perform on the principal entities in 
the subject.  Examples of entities are: numbers (of any kind), functions (of any kind), 
spaces or sets (of any kind), e.g., groups, rings, fields, topological spaces, vector 
spaces; also physical entities, e.g., force fields. Just about any noun pertaining to a 
mathematical concept can be an entity. 

In elementary calculus, the principal entities are the real numbers and continuous 
functions on the reals. The operations you perform are: finding the derivative of 
(some) continuous functions, finding integrals of continuous functions; solving certain 
classes of problems, e.g., finding areas, volumes, centers of gravity.  As you start 
constructing and using Environments, you will find yourself wondering about 
applying it even to — especially to — subjects which have a reputation for being 
notoriously difficult.  For example, you might ask a physicist what the principal 
entities are in quantum mechanics, and what the principal operations are that are 
performed on them.  

You need not complete your Start Page before continuing with the rest of your 
Environment, but you definitely need to keep asking yourself, as you proceed through 
the math course, “What are the basic entities in this course, and what operations do we 
perform on them?”

After the Start Page comes the body of the Environment.  All topics are in 
alphabetical order so you can find things fast.

The “Universal Template for Mathematical Entities”

 The Universal Template for each entity typically occupies a page or at most two in 
hand-written implementations. It makes all entities “look the same” from a problem-
solving point-of-view, which means that learning about and understanding each new 
entity is easier since, to a certain extent, that entity is similar to other entities you have 
learned about. The Template consists of the following categories. Each category is 
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designed to answer one or more of the questions under   “The Principal Classes of 
Homework and Exam Problems” on page 19. (The questions regarding proofs are 
answered in the chapter, “Proofs”.) Each category is explained in detail below.

 Definition and purpose of the entity

 Ways of representing the entity
        Mappings between representations

Common operations on the entity
     Determining equivalence of entities
     Arithmetical operations on the entities (not applicable in all cases, of course)
     Identifying the type of an entity
     Determining basic building blocks of the entity
     Breaking an instance of an entity into sub-entities
     Making more of the entity

Properties of the entity

Functions from the entity to the same or other entities

Theorems on the entity

Types of the entity

 Related 

If you are thinking, “I haven’t time to enter all that information!”, let me first 
remind you that, in the course of taking class notes or your own study notes, you will 
write down at least some of this information.  So it’s just a question of where you 
choose to write it down.  Second, you don’t have to make a complete Template for 
every concept you come across; only for those which are difficult for you.  Third, you 
can always simply reference parts of the textbook when you fill in the details for each 
referenced section. You can reference pages that at least give examples of solving a 
certain kind of problem even if they don’t give you the complete method.  You can 
reference pages that give proofs of theorems.  Then, as you figure out a complete 
method, or work through a proof, you can reference the pages in your course notes 
where you wrote up the method or the proof.  Fourth — and this is important — the 
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mere discipline of dividing up the information on each concept in accordance with the 
categories of the Template, will itself help you understand the concept.

Fifth, you can make a first approximation of an Environment by simply 
creating an index using the above template.  (You will need a computer word-
processor to do this.) Following each index item, e.g., “Properties of ...”, you will give 
the page no. or nos. of that material in your textbook (and/or in other textbooks).  You 
can then expand on specific topics in a separate, alphabetically-arranged, volume of 
notes. 

We now consider each heading in detail.

Definition and Purpose of the Entity

Here you put the formal definition of the entity (or a reference to the formal 
definition in the textbook), along with additional notes, comments, to aid your 
intuition — what a sympathetic grad student might tell you about the entity during a 
walk across campus. For example, following the formal definition of the entity, 
“continuous function”, you might have a note and diagram showing that a continuous 
function has “no gaps”. For the entity, “topological space”, you might have words to 
the effect, “A topological space defines the relative nearness to each other of its 
elements.” In many cases, of course, your definition will contain other terms that are 
part of the subject, and the definition of those will contain other terms, etc.  This 
recursive structure in fact keeps the length of each definition manageable, and if you 
can always look up the meaning of a term rapidly (as you can if all terms are in 
alphabetical order) then it does not require you to memorize the meanings of the terms 
as you come across them. 

Include a few notes on the history of the entity if you can!  The history will often 
do wonders for making a concept seem less forbidding, less remote. (Personally, I 
have no hesitation in saying that, If I don’t understand the motivation for a concept — 
what led to its discovery — then I don’t understand the concept.)  When did the entity 
first become important in mathematics? What questions, problems, was it a response 
to? Why does it have the name it does? (If the name is not obvious, this information is 
usually difficult to come by, yet having it can do wonders for helping your 
understanding.)

This category in the Template answers the question from our list “The Principal 
Classes of Homework and Exam Problems” on page 19, “What does the term (or 
symbol) x mean? If x represents a difficult concept, what are some guides to improving 
my intuitive understanding of x?”
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Ways of Representing the Entity

The representation issue is not equally important for all entities, but it is important 
that you know when you are, in fact, confronting this issue.  Probably the most 
familiar example is the various ways of representing a complex number, i.e., by 
rectangular coordinates, polar coordinates, a vector, or by stereographic projection. In 
computer science, the issue of representation is particularly important, since different 
types of representation — e.g., of various data types, e.g., arrays, decimal numbers, 
linked lists — may result in different computation speeds.

Closely related to representation, is the issue of “decoding”.  It is often the case 
that a concise mathematical description (an “encoding”) is not at all a description that 
is easy to understand the first time you confront it.  So an important question to ask 
when you confront something difficult is whether the difficulty is inherent in the 
concept, or whether it lies in the decoding effort required.

.Mappings between Representations

If an entity has several representations, then an immediate question is, “How do 
we convert from one representation to another?” For example, in the calculus, we 
often need to convert a representation of a curve in one set of coordinates, e.g., 
Cartesian, to another, e.g., polar. 

Common Operations on the Entity

In mathematics, the term “operation” is often restricted to mean “function whose 
domain is itself a set of functions”. However, in this book, the term means any kind of 
function, formally or informally defined. It means a task that you the user of the 
Environment can perform. I say it without a moment’s hesitation: Task-orientation is 
the great vacuum cleaner of mathematical (indeed of all technical) presentations. In 
times of seemingly hopeless difficulty, if you ask yourself, “What tasks are performed 
in this subject (or part of the subject)?”), you will find that doors to understanding 
begin to open.

The tasks (operations) on the typical entity in an Environment include:
  operations on the real numbers include addition, subtraction, multiplication, 

division, extraction of roots;
  operations on continuous functions include finding the derivative and the 

integral; 
  operations on polynomials include factoring, converting to a standard form, 

adding, subtracting, multiplying, dividing; 
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  operations on equations include adding a term to both sides; multiplying through 
by a term; determining if the equation is solvable and, if so, how many roots it has; 
solving the equation; 

  operations on expressions in boolean algebra include simplifying, computing the 
truth value;

  operations on vectors include finding the length (“size”) of a vector; adding, 
subtracting two vectors; multiplying two vectors (scalar product and cross product);

  operations on infinite series include determining if a series converges and, if so, 
to what number;  adding, subtracting, multiplying series; determining the coefficients;  

  operations on computer programs include running the program; proving its 
correctness; debugging it; proving that the program is in a certain class of programs; 
determining the computational complexity of the program; determining if its 
computations are time-bounded or space-bounded.

This category of the Template helps you to answer the following questions from 
the list under  “The Principal Classes of Homework and Exam Problems” on page 19: 
“What are the basic operations we perform on the entity x?”; “How should I go about 
solving a problem of type w?  What are some good ways of approaching this type of 
problem?”, and the sub-class of this class “What is the formula for y?”

The idea of organizing the information about each entity by the operations that can 
be performed on the entity lies at the heart of the Environment concept. In computer 
science, the idea has been well-known since the seventies at least, under the name of 
abstract data structure.  Here is the background. 

A data structure, as its name implies, is a way of organizing data.  For example, a 
list, (a, b, c, d, ..., z), is a data structure, the items of data being represented by a, b, c, 
etc., and the address of any item of data being specified by a number, k, representing 
how far down the list, from left to right, you need to count in order to reach that item.  
An array is a data structure, with each item of data having a row and column address.

 Such structures are indispensable to programmers, but, as programmers gradually 
found out, there were many ways to implement each data structure, depending, for 
example, on the programming language they were using and the constraints of 
program operating speed they were faced with.  For example, a list could be 
implemented as a one-dimensional matrix if the language contained the matrix data 
type, or it could be implemented as a linked list, meaning a series of memory locations 
each (except for the last) containing the address, in computer memory, of the next 
location.  It slowly dawned on programmers that it didn’t really matter how the data 
was stored in the computer; what differentiated one data type from another was the 
kind of operation you had to perform to access the data in the structure.  Thus, the 
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programmers argued, you have a list data structure when you can access any piece of 
data in it by a command (operation) which in effect says, “Get me the kth item in the 
structure.” You have an array data structure or table when you can access any piece of 
data in it by an operation which says, in effect, “Get me the data in the ith row and the 
jth column of the structure.”  It doesn’t matter, as far as the abstract definition of the 
data type is concerned, how this is done.

So the key idea here is that the data type is defined by the operations that can be 
performed on it.  Period.  

We adapt this idea to Environments by requiring that every mathematical entity in 
the subject — I am speaking of a complete Environment here: you will not have time 
to do this in the Environments you build for yourself — have associated with it, in the 
Environment, all and only the elementary operations that can be performed on the 
entity, with an explicit reference to the location in the Environment where the 
procedure for performing the operation can be found.

Determining Equivalence of Entities

One of the most important common operations is determining if two entities are 
equal, or, more generally, “equivalent”.  Thus, if the entities are complex numbers, 
they are equivalent if their real parts are equal and their imaginary parts are equal.  If 
the entities are sets in the subject of modern algebra, then the sets are equivalent if 
there exists a type of function called an “isomorphism” between them.  On the other 
hand, if the entities are topological spaces, then the spaces are equivalent if there exists 
a type of function called a “homeomorphism” between them.  If the entities are finite-
state machines (which are studied in the computer science subject, automata theory), 
then the machines are equivalent if they generate the same language, i.e.,  set of strings 
over an alphabet.

One of the most helpful first questions you can ask about a new and seemingly-
difficult-to-understand mathematically entity is, “How do I tell if two of these entities 
are ‘equal’ (i.e., equivalent)?” Of course, in some cases, the entity may be the 
equivalence relationship itself, as in the example of congruence in the Appendices.

Building Blocks of the Entity

“Building blocks” are “simple” elements out of which we can make more complex 
elements.  For example, in linear algebra, we learn that a set of linearly independent 
vectors can be used as the buildings blocks of a vector space.  In topology, we learn 
that the elements of a sub-base can be used to define the topology of a space.  In 
symbolic logic, we learn that the two logical functions not and and can be used to 
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construct any logical function we wish.  In group theory, we learn that, in certain 
groups (namely, free groups), there exist elements which can be used to generate the 
entire group.

The building blocks concept is an example of  “Fundamental Concept 2: Structure, 
or Breaking Complex Things into Simpler Things” on page 47.

In passing, I should mention that not all entities have building blocks!  In this case, 
they may be described as having the property of being indecomposable.  A simple 
example is the prime numbers, like 2, 3, 5, 7, 11, which can be thought of as having no 
building blocks (factors) except themselves and the number 1, whereas composite 
numbers, like 4, 6, 8, 10, have other building blocks (factors). 

Breaking an Instance of an Entity into Sub-Entities

Thus we break a a set into various kinds of subsets — for example, a group into  
various kinds of sub-groups, a function into various kinds of sub-functions, a space 
into various kinds of sub-spaces, etc.

Making More of the Entity

A related common operation for many entities is that of making more of them out 
of one or more given ones, e.g., beginning with a group, making another group out of 
the set of automorphisms on the given group; or given a finite set of topological 
spaces, making another topological space out of the product of the spaces.

Properties of the Entity

This is a redundant category, since ideally it is covered by the categories 
“Theorems on the Entity” and “Types of the Entity”.  (Properties are typically 
established by theorems and lemmas; an entity with a certain property is a type of the 
entity.)  But often it will help your understanding if you have this separate category.  
You can jot down the properties here as you come across them in the text or in 
lectures.  In fact, it is a good habit to get into to ask, of each new entity, “What are the 
properties of this thing?”

Functions from the entity to the same or other entities

In algebraic subjects, the most common of these functions are homomorphisms 
and isomorphisms.  Probably the best idea is to have a page headed, “Functions, types 
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of”, and then on that page, for each entity, an item, “[name of entity], functions on”, 
with an indication that details on each item can be found under the item.

Theorems on the Entity

Theorems assert facts, properties, about entities. This category is where you list all 
the theorems (or references to them in your textbook) that you come across that pertain 
to the entity. No proofs!  After each theorem, you add a reference to where the proof 
(or a proof) can be found, e.g., in a “Proofs” section at the end of the Environment, or 
in the textbook.  The chapter, “Proofs”, has a number of guidelines for writing out 
proofs which you will find helpful. If you can understand the textbook presentation of 
a proof without great difficulty, then the reference is simply to the pages in the text.  If 
you find it necessary to redo the proof in structured form, as described in the chapter, 
“Proofs”, then your structured version goes in the back of the Environment.

When there are many theorems associated with a given concept, it will be 
important to group them in a way that will help you to quickly find the theorems you 
need in the course of doing proofs. Thus, e.g., in the elementary number theory 
Environment of which a part is given in  “A Number Theory Environment (partial)” 
on page 203, theorems concerned with moduli are divided into:

 those concerned with prime moduli, p;
 those concerned with moduli which are powers pk of a prime p;
 those which are concerned with moduli which are products of different primes to 

arbitary powers, p1
kp2

m...pn
t.

 Note: Whenever you see an exercise at the end of a textbook chapter that asks you 
for a proof of something, you should add that something — or a reference to it — to 
your list of theorems under the appropriate Template.  That’s right: if an exercise states 
what amounts to a theorem, then it belongs in your list of theorems for one or more 
concepts.  If you doubt the importance of this, consider how often have you come 
across a statement like this in a textbook:  “Now to prove this theorem, we make use of 
the result achieved in problem 47 of chapter 12...”?  Or, even worse, how often have 
you slaved over a problem, then found, in the Answer section, that it is very easy if 
you happen to have worked a problem a few chapters earlier, and very difficult if you 
haven’t?  By now, I hope that you are beginning to develop a healthy skepticism about 
the pedagogical benefits of such textbook practices.

Another benefit of listing and, possibly, grouping theorems is that it discourages a 
bad habit which some math students get into.  These students are typically those for 
whom math is first and foremost a mechanism for judging their own worth — not 
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merely their own worth as math students, but as human beings.  They are tormented by 
thoughts like, “If I were any good, I’d be able to solve this problem in a few seconds!” 
“If I were any good, I’d be able to do this proof without looking at the book!” In the 
latter case, what they often wind up trying to do is to do the proof from “first 
principles”, i.e., from the axioms and definitions which they remember.

Now the truth is that it is seldom the case that a difficult proof deep into a subject 
can be done from first principles.  That is one reason why the theorem appears later, 
rather than earlier, in the textbook.  You will, in fact, be saddling yourself with proving 
all the lemmas and theorems (the equivalent of subroutines or procedures in a 
computer program, per our discussion under “Representation” on page 46) which you 
need to construct your proof. (Most of these lemmas and theorems have already been 
presented in the text).  Or, what is more likely, you will be condemning yourself to 
failure and further self-recrimination.

Your aim in developing a proof (and, indeed, in solving any problem in math!) is to 
get the most for the least work.  Remember that you can use any theorem or lemma 
that is logically prior to the one you are trying to prove, whether or not you have 
worked through the proof of that theorem or lemma.  Lists of lemmas and theorems 
with mere references to the proofs, are a way of encouraging you to develop this very 
important habit, and to get out of the habit of tormenting yourself with, “If I were any 
good...”

This category answers the question, in our list under “The Principal Classes of 
Homework and Exam Problems” on page 19, “What does the theorem or lemma called 
y assert?”

Incidentally, in the case of theorems with names, e.g., Rolle's Theorem in the 
calculus, you enter the name alphabetically and then reference where it is listed and/or 
proved in your Environment (or in the textbook).

Types of the Entity

This is where you make a list of all the different types of the entity as you come 
across them in your reading.  You will be amazed at how much this helps your 
understanding of the entity.  Of course, the proofs that the hierarchical relationships in 
fact hold is another story, and will have to be done by the textbook author and/or by 
you.  Kit Carson’s motto  was “First get the lay of the land.”  and that is exactly what 
finding out the various types of an entity, does. Whenever possible, you should try to 
indicate which types are subsets of other types, using any convenient means, e.g., 
indenting each sub-type under its type, or using Venn diagrams. In my opinion, it is 
outrageous that no representation of the types of each entity are not a normal part of 
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every textbook  Careers are built on the labor of transmitting this knowledge via words 
alone.  A simple picture, perhaps a hierarchy of diagrams, would save you, the student, 
many hours.

Here is an example of a Types of Group list:
Abelian (commutative) groups, 
free groups, 
cyclic groups, 
finite groups,
infinite groups, 
continuous groups, 
quotient groups, 
symmetric groups of degree n, 
alternating groups, 
solvable groups, 
simple groups, 
groups of automorphisms, 
and the various types of sub-groups, e.g., normal subgroups, centers, etc.  
Examples of the entity rightfully belong here, although you may want to break this 

rule intelligently now and then.  Thus, e.g., in most group theory textbooks, following 
the definition of a group, the example of the integers is given, with addition as the 
group operation.  But this group should also go into your Types of Group list.

One of the most important Types of pages in any Environment is “Types of 
function”.  Keeping track of the important types of function in a subject (with sub-
types clearly indicated when you happen to know which are, in fact, sub-types) is in 
itself an aid to understanding, as you will find.

Related

The term “Related” (which you will probably soon start abbreviating to “Rel”) 
means other entities which are closely related to the one under which it appears.  Its 
purpose is to help you in the course of problem-solving searches. This category can be 
named “See Also” if you prefer.

This category answers the question, in our list under “The Principal Classes of 
Homework and Exam Problems” on page 19, “What theorems or lemmas are closely 
related to theorem or lemma z?”  

And that’s it!  You keep adding your notes in this form, and improving them as you 
proceed through the course.
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Let me hasten to say again: you don’t have to write out things if you are pressed 
for time.  You can, at least as a start, reference pages in the textbook.  But do it, so you 
don’t keep have to do those linear searches through the book if it has a bad index, and 
it probably does.  Your goal is to reduce the amount of intellectual labor you have to 
go through in solving problems — in short, to make problem-solving as much a matter 
of looking up things as possible.  Your goal is to reduce the amount of memorization 
you have to do in order to access information.  

“Einstein claimed never to memorize anything which could be looked up in less 
than two minutes.” — “Albert Einstein Anecdotes”, Google, 9/22/18.

This does not mean that you shouldn’t memorize material! If you are forced to take 
closed-book exams, you will have to memorize some of the content of the course.  But 
you should never have to memorize because the information is so hard to find in the 
text or your notes that the cost in time and effort would be too great not to memorize it. 
Paradoxically, as you will find, one of the appealing things about an Environment is 
that it makes memorization much easier.

Why Go Through the Trouble of Building an Environment?

Let me anticipate a few of your possible initial objections to building an 
Environment for a mathematical subject:

”I have no time to produce such careful notes!” 
But when you are in class, you will take notes of some kind.  When you work 

through passages in the text, you will take notes of some kind.  Why not do the job 
once, in a way that will save you almost all duplication of effort, and will at the same 
time improve your problem-solving ability?

Furthermore, and I must emphasize this point, you don’t have to apply all the ideas 
in this book! In fact, you will find, after you have built Environments for a few 
subjects, that the Environment form becomes one that you keep in your head, a way of 
thinking about each subject, a kind of Cheshire Cat’s grin without the Cat:

“‘All right,’ said the Cat; and this time it vanished  quite slowly, beginning with 
the end of the tail, and ending with the grin, which remained some time after the rest of 
it had gone.”

                         — Lewis Carroll, Alice's Adventures in Wonderland, in The
                               Annotated Alice, ed. Martin Gardner,  New American
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                               Library, N.Y., 1974, pp. 90-91.

 “I can't believe that simply reorganizing the information which constitutes a 
mathematical subject will improve my math grades.”

The only reply I can make here is — and it is based on years of experience — try 
it!  At the least, start observing, and keeping track of, what you spend your time on in 
the course of working problems, particularly hard problems.

 A complete Environment is too big! It has too many pages! 
That is because an Environment reveals, probably for the first time, the true 

complexity of mathematical subjects.  A great deal of knowledge surrounds even the 
simplest concepts (entities), namely, the knowledge represented by all the categories in 
the Universal Template.  Professors, both as teachers in the classroom and as authors 
of textbooks, attempt to conceal this complexity (“the student should know”, “the 
student should be able to figure out...”).   An Environment makes it explicit and, in the 
process, gives you a systematic way of dealing with it.

 “Putting mathematical knowledge in alphabetical order seems silly.”
Or, as one student expressed it, in a masterful application of the rhetorical device 

known as tmesis, “I haven’t time to put things in no alpha-bloody-goddamn-betical 
order!” A mathematician once remarked to me, with ill-concealed contempt, “What do 
you think mathematics is, some kind of alphabet soup?” 

My reply to both comments is that alphabetical order is simply a means of 
obtaining random access of information in textual implementations of Environments. 
In a database implementation, there would be no need for storing the information 
alphabetically.

Now let us proceed to a discussion of some of the techniques you can use in 
building an Environment.

Guidelines for Building Environments

Build the Smallest Environment You Need

Throughout this book, I am presenting the elements of a complete Environment.  
You will probably never have time to build a complete Environment for a subject.  But 
there are many ways to implement partial Environments. For example, you may find 
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that the content of a subject is not so hard to understand. Then you may be able to get 
by with simply adding entries to the index of the textbook.  Or you may find it 
necessary to use the Universal Template described above only for a few difficult 
concepts.  

But always remember that, no matter how you choose to implement your partial 
Environment, you should explicitly state, e.g., on a page referenced from the Start 
Page, how the partial Environment “works”, i.e., the general rule to follow in 
attempting to solve any problem in the subject.  The rule may be no more than, “Try to 
solve problem using index of textbook; if not successful, then use this partial 
Environment.” You can, of course, add references in the textbook pagesto rewrites of 
certain difficult theorems which you have included in the partial Environment.

Probably the simplest approach to building a partial Environment is:
1. Simply look at the examples in the Appendices of this book and take all lecture 

notes and personal study notes according to the format shown there.  Refer to  “The 
Structure of an Efficient Environment” on page 74 for details if you need them.

2. Work all homework problems, and take-home exam problems, using the 
Environment.  If the Environment doesn't have what you need to solve the problem, 
add the necessary information to the Environment, or a reference (e.g., to the textbook 
page) to where that information is!

It’s that simple.
If you want further explanations about various aspects of an Environment, use the 

Table of Contents and the Index of this book to look up what you want to know about. 
Remember that there is only one criterion of the worth of the ideas of this book, and of 
your success in applying those ideas, namely, whether or not your math grades 
improve!

Use Alphabetical Order

Take all lecture notes and study notes in alphabetical order by mathematical term, 
as shown in the appendices.  Include synonyms.  In other words, every time a new 
concept is introduced in class which you sense will be difficult, every time a new term 
or symbol is introduced, you start a new page in your loose-leaf notebook (or a new 
look-up-able heading in your word-processor file).  Each term gets a separate page (or 
a separate heading), so that alphabetical order can be maintained.  Every time you 
come across more information about a concept already in your Environment, you 
simply enter it under that concept.

Put non-alphabetical symbols at the end in any order you wish.  Greek letters can 
go either where you think they belong in our alphabet, e.g., “” (omega) under “O”, or 
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else at the end.  The only condition is that you know immediately where to look them 
up.

Your goal should be to make the Environment such that all you need to know is the 
term or a synonym for the term and you can find it!  You shouldn’t have to figure out 
where information on a given topic must be, e.g., by going through a reasoning 
process such as, “Well, x is a case of y, and y comes under the general heading of z, 
therefore...”

There is, of course, nothing wrong with marking up the index of the standard 
textbook and using that as part of your Environment (What vs. How).  In my 
experience, however, indexes are so incomplete that sooner or later you are forced to 
start creating your own separate pages.  Also, there is not enough room in a book index 
to add additional reference material (see, e.g., “Related” on page 84).  Your own 
experience and needs will be the best guide.

Build As You Go

The idea is not to somehow build your Environment and then start using it to solve 
problems.  No!  You start using it immediately, on the first day of your course, 
typically, though not necessarily, by making a Start Page.  This might entail some 
persistent questioning of the professor.  If he or she is reluctant to give you the kind of 
problem-solving-oriented Big-Picture information you want, don’t annoy him or her, 
since he or she is the one who gives you your grade.  Try to get the information some 
other way, e.g., by asking another professor, or by looking in encyclopedias or math 
dictionaries or popularizations, or by talking to students who have taken the course.

As you work problems, ask yourself, first, what class(es) of problem the one you 
are working on belongs to, and then,  what procedure (heuristic) enables you to solve 
the problem.  Write down the procedure in whatever form you feel will be clear to you 
when you return to this part of the subject later.  Remember that the procedure is your 
goal, because a correct procedure enables you to solve any problem in the class.  

The key questions to keep in mind as you build an Environment are:
 What questions (classes of problems) do I (and other students) of this subject 

typically find ourselves asking about it or find ourselves being asked about it?
 How much of the content of this subject can I avoid remembering by putting it in 

the Environment?  Or, in other words, how look-up-able can I make the task of solving 
problems in this subject?

Creating an Environment is a build-as-you-go proposition.  You are incrementally 
engineering the use of a mathematical subject for the efficient solving of problems. 
Every time you and the Environment are unable to solve a problem, you enter the 
missing information (or references to it) in the Environment.  
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If you are motivated to become as good as you possibly can at mathematics, you 
should keep a rough record of the kinds of problem-solving activities you spend the 
most time on.  This will enable you to know which skills you need most to develop.

Build Your Environment So That It Allows You to Select the Depth of 
Detail You Want

This is simply the application of structured programming principles to 
Environments.  (See “Fundamental Concept 2: Structure, or Breaking Complex Things 
into Simpler Things” in chapter 3.) You organize the material for each topic in the way 
that will give you the most rapid problem-solving ability with the least effort.  You  
can find all the details you need, but you are not forced to wade through details you are 
not at the moment interested in.

Use Tasteful Redundancy

You want to save yourself turning pages as much as possible.  Therefore, space 
permitting, you should always include brief reminders of the meaning of difficult 
terms, brief statements of theorems (in addition to mentioning the theorem number), 
where this can be done without cluttering the page or forcing it to spill over onto a new 
page.

Have a “Formulas Page”

Rather late in the development of the Environment concept, I realized how helpful 
it is to have a page of the most frequently occurring formulas — usually, equations that 
define important functions — that can be referred to at any time.  A subject in which 
this is especially helpful is vector calculus.  On the page, closely related equations — 
e.g., those express some kind of duality in the subject, can be written close to each 
other.

Aim for “Understanding at a Glance”

View each page of an Environment — or each computer screen, in the case of a 
computer implementation — as a gestalt — a visual whole, not a sequence of words.  
Think of a page as a picture, rather than as a medium for holding sequences of words 
and symbols.  Make the visual layout of each page correspond, as much as possible, to 
the logical relationships it contains.  This is particularly important in regard to proofs, 
as explained in the chapter, “Proofs”. 

Here are some ways to make “eye logic” do some of your mental work for you:
 Give a separate line to each item in a list or sequence where appropriate, rather 

than running them end-to-end, in prose form;
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 Use indents to show subsets, special cases.
 Give similar locations and sizes to similar items, e.g., if you use the same 

geometric figure repeatedly in different drawings, whether in a cinematographic 
presentation (as described under “Cinematographic Presentation” on page 94) or 
otherwise, try to keep the size and the relative location within the framing border of 
the illustration consistent, in order to reduce the necessity of mental translation;

 Decide on one and only one term to refer to the same thing, although all 
synonyms should appear in the Environment.  The best idea is to put all the 
information for a given concept or term or entity under the symbol, not under the name 
of the concept, since the symbol is what will appear most often in text or lecture notes.

 Get straight on the pronunciation of symbols, e.g., Greek letters.  If you keep 
track of what you spend your time on in the course of problem solving, you may be 
surprised to find that you do often interrupt a train of reasoning to try to recall the 
name of a Greek symbol: “Now, let's see, is that eta or nu?”  In my opinion, it is a 
worthwhile effort to memorize the names of the Greek letters, once and for all.

 In writing down difficult concepts or lines of reasoning, “cinematographic 
presentation” is a useful technique, i.e., presentation via a sequence of drawings, as 
described under “Cinematographic Presentation” on page 94.

Use tree graphs!  The absence of these in popularizations, not to mention 
textbooks, in which there are numerous entities of the same type — groups, algebras, 
moduli spaces, topological spaces to name just a few — is proof of the fundamental 
incompetence of most authors of popularizations and textbooks.  Tree graphs show at  
a glance how all the entities are related to each other.  This is not knowledge that the 
student should somehow accumulate after weeks, months, of grueling study. It is not 
knowledge that should be presented in page after page of tedious and mind-numbing 
prose.  It is knowledge that should be on page 1 of the popularization or text. 

(You will almost certainly need to ask your professor where in the tree graphs 
many, perhaps most, of the entities belong.  My recommendation is not to do this in 
class, because he might not know, and hence will have to do a little research on his 
own, but instead to ask him in office hours.  Be suitably humble: “I’m terribly sorry to 
have to bother you with this, but I have found that, when there are many entities of a 
given type, it helps me enormously in my understanding, to know how they are 
related, and a tree graph is an excellent way to show this.”)

 Use tables!  In fact, a good question to ask yourself when you are confronted 
with a complicated collection of facts about a given set of entities, e.g., topological 
spaces and their properties, or abelian groups and subgroups and their properties, is: 
“Could all this be put into table?”  Often you will find that the answer is yes, and that 
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the labor of constructing the table will be amply rewarded by the increase in your 
understanding.  A table is a prime example of “understanding at a glance”.

For more on math subjects as tables, see “Appendix A — Linear Algebra and 
Tensor Calculus Are Just “Great Big Tables”!” on page 100.

. Closely related to tables is the practice of putting closely related entities on the 
same page even though you may have separate entries for them elsewhere in your 
Environment.  Good examples are the functions div, grad, and curl in the vector 
calculus.  The definitions of these functions are much easier to memorize when they 
are seen side-by-side.  The same is true of closely related theorems, e.g., Stokes’ 
Theorem, Green’s Theorem, and Gauss’s Theorem. Of course, you must have a 
reference to this comparison page under the entry for each function or theorem.( 

It is a scandal that every calculus text does not present a side-by-side, graphical 
representations, with words, of all the different types of derivatives.)

 Use drawings and ordinary language, when possible, to tell what the symbols 
mean.  This is especially helpful, e.g., in the three theorems in the preceding sub-
section, and in Maxwell’s equations.  Tell, via a reference to a drawing, what each side 
of an equation means.

Yes, Include Frequently-Occurring Strings of Symbols in Your Environ-
ment!

In most subjects, some strings of symbols occur repeatedly.  For example, in Basic 
Calculus and Vector Calculus, among many others, the strings, 

 adx + bdy + cdz 
 

In complex number theory, among many others, the strings

sin(t 

e2imn

Why shouldn’t you be able to quickly look up frequently-occurring strings of 
symbols in your Environment for the subject, and there find your notes (with a picture, 

f x y  xd yd
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if at all appropriate!) explaining what the string stands for, and why it is important, and 
what it arises from, and/or a reference to the places in the text that explain it.

In some cases, it will be very useful to have, on one page, a list of related strings, 
e.g., in the calculus, those pertaining to the total differential. 

Of course, the term “strings of symbols” includes strings of length one.  These are 
the symbols that textbook authors occasionally (but, shamefully, not always!) put in a 
glossary of symbols at the back of the book.

In passing, let me confess that it was late in my development of Environments that 
I realized the importance of being able to rapidly look up strings of symbols.  I had 
until then accepted without thought that, if I had forgotten what a string of symbols 
stood for, or what it was derived from, the fault was mine: if I had been a good student, 
I would have remembered.  I now consider that attitude as ridiculous. If you have 
forgotten something, then you should be able to look it up rapidly.  Period.

Use Drawings!

(A further elaboration on this section is given in the section,  “On Drawings” on 
page 146.)

Most Mathematicians Think Visually

The best mathematician I ever personally knew — a man who had the entire 
undergraduate mathematics curriculum at his fingertips, along with a vast amount of 
knowledge pertaining to his specialty, algebraic geometry — this mathematician never 
used pictures, at least not in any of the conversations I had with him about 
mathematical subjects.  But this is unusual.  To repeat an earlier quotation:

“Some mathematicians, perhaps 10 percent, think in formulae.  Their intuition 
deals in formulae.  But the rest think in pictures; their intuition is geometrical.  
Pictures carry so much more information than words.  For many years schoolchildren 
were discouraged from drawing pictures because ‘they aren’t rigorous’.  This was a 
bad mistake.  Pictures are not rigorous, it is true, but they are an essential aid to 
thought and no one should reject anything that can help him to think better.” — 
Stewart, Ian, Concepts of Modern Mathematics, Penguin Books, N.Y., 1981, p. 5.

(See also the remarks by various mathematicians in the chapter, “Proofs”.)

Against Print

I am now going to say something shocking: don’t repeat it within earshot of any 
mathematics professor: here it is: I think that one of the worst things that ever 
happened to mathematics was the invention of the printing press — or, I should say, 
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the invention of movable type —, and three of the best things were the invention of 
chalk-and-blackboard, paper-and-pencil and photo-lithography (including the copying 
machine).  The daily work of mathematics is done with pencil-and-paper and/or chalk-
and-blackboard.  If you ask a mathematician to explain a concept, he does not start 
setting type or cranking up his word-processor.  He reaches for pencil and paper or 
chalk if the room happens to have a blackboard.  Whenever he feels the need for a 
picture, he draws one and labels it as necessary.  If he has used pencil-and-paper, then 
chances are you could take what he has written and copy it (including his drawings), 
adding clarifications as necessary, go to a copying machine and make as many copies 
as you need to distribute to other interested persons, and, if your handwriting is 
reasonably clear, their difficulty in understanding the explanation will not be because 
it is handwritten, or because the drawings are free-hand.  (I once read the author’s  
handwritten draft of what became a very important paper in computer science and was 
amazed at how “intimate” it seemed, how much it seemed to invite me to dive in and 
understand what was going on.  I hadn’t the slightest impulse to set it aside and read 
the published version instead.)

If a quarter of the effort that Professor Donald Knuth put into perfecting the 
typesetting lanuage TeX had gone into perfecting a program that made the creation and 
modification of labelled mathematical drawings very easy, the mathematical world 
would be a better place.  

“Technical illustrations...cause no end of trouble.  Don [Prof. Donald Knuth] says 
that the amount of work involved in preparing a paper for publication is proportional 
to the cube of the number of illustrations.” — Knuth, Donald, et al., Mathematical 
Writing, Mathematical Association of America, 1989, p. 40. 

We must ask why illustrations cause such a great deal of trouble.  Any student or 
professor of mathematics with a reasonably clear handwriting can write a page of 
mathematics and draw an illustration free-hand that is perfectly clear and 
understandable.  He or she can then take the page to any copier, and make any number 
of copies of it.  Or he or she can bring it to a local print shop that can do photo-
lithography (offset printing — and most of them can) and have the shop run any 
number of copies.  So what’s the problem?  The problem is that the mathematical 
community believes that anything that is not typeset, and in which the illustrations are 
not drawn by a professional illustrator, and provided with typeset labels, may simply 
not be, well, mathemtics!  A similar prejudice exists throughout the university.  I once 
knew a humanities professor who really believed that the quality of Truth is conferred 
on a paper by its being typeset and published in a prestigious journal.  The idea that 
something True could exist unpublished in a drawer somewhere made no sense to her. 
Now mathematicians aren’t that bad, of course, but their prejudice for the presentation 
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of mathematics in old-fashioned typefaces, with illustrations drawn by guys with 
green eye-shades, is strong and shows no signs of weakening.  

Print is for the archiving of results.  Print is for building careers.  Print is for 
intimidating students.  It is often not the best means for conveying ideas1.

And this criticism does not only apply to mathematics. “It is a surprise to me that 
so little of the new physics is taught today in terms of pictures, particularly when it is 
being learned. Undoubtedly, much of the controversy dealing with quantum physics 
and its paradoxes arises from a paucity of pictures.” — Wolf, Fred Alan, Parallel 
Universes, Simon and Schuster, N.Y., 1988, p. 114.

Cinematographic Presentation

“The view that change is constituted by a series of changing states [nineteenth 
century philosopher Henri Bergson] calls ‘cinematographic’.” — Russell, Bertrand, A 
History of Western Philosophy, Simon and Schuster, N.Y., 1972, p. 804. This form of 
presentation is what you see when a teacher or professor explains something at the 
blackboard. In the case of, say, a proof in geometry, the teacher typically begins by 
drawing a figure — a circle or triangle, say — and then, as he or she talks, he or she 
adds lines and labels. This type of presentation never appears in textbooks. A cynical 
person might say that’s why students have to pay so much to go to college: because 
some things are simply not available anywhere else, e.g., in books. But there is 
absolutely no reason why this form of presentation can’t be put into a book, although 
there is a trade-off: space for speed in understanding. Here is an example of such a 
presentation:

This type of presentation (in a book) can be improved if the important change in 
each successive drawing is highlighted, so that the eye can almost see how the 
argument goes, rather than the mind having to figure it out from a single drawing or, 
worse still, from text alone.  Now in some cases, it is possible to number the parts of 
the figure in the order of the steps in the proof,  and thus save all those drawings. In 
effect, what such numbers do is tell the reader how the drawing should be looked at. 
And why not go the next step, and with each number include the words constituting 
that step in the argument? 

1. Computer graphics, in conjunction with the Internet, are now removing the last excuse of 
mathematicians for keeping illustrations to a minimum. The printed mathematical journal may 
continue to be the final source of prestige in the mathematical community, but more and more 
mathematical ideas (I don’t say “papers” because the presentation is often much more informal 
than that of a paper) are being circulated and read and discussed and criticised via the net.  The 
life of mathematics is moving away from the journals and into this new medium.
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Pictures vs. Language to Talk About Pictures

In the section “Logical Structure” on page 64, we saw that there is a distinct 
difference between a picture (e.g., a map or an arrangement of squares, triangles, and 
circles) and the language which can be used to talk about the picture. This is a very 
important concept. Let us consider the latter example. If we knew that we were going 
to be presented with a series of such arrangements of figures, we might begin to collect 
language forms with which to describe such arrangements. Examples of these forms 
might be: “The ... is under the ... .”, “The ... is to the left of the ... .”, “The number of 
...s is ... .”, and various combinations of such forms, e.g., “The ... is under and to the 
left of the ... .” We would then have a language to describe any arrangement of 
geometric figures. We would not have to learn, or create, a new language for each 
figure that confronted us. An Environment is something like such a language. 

Let us go to one extreme (because going to extremes is often instructive) and 
imagine trying to create a textbook (or Environment) with the fewest words we could. 
Imagine that a law had been passed requiring that math be taught only by mimes, or by 
animated cartoons in which the cartoon teacher could not speak, but only could 
express Strong Approval, Strong Disapproval, and something like Look Here! The 
teacher could, of course, use arrows, rectangles and other enclosing line drawings, and 
whatever symbols were essential. I hope you will agree that, at least in subjects with a 
geometric basis, e.g., calculus, complex number theory, and linear algebra, a great deal 
could be communicated this way. It would be a new way to learn math! It would 
(almost) be “math without words”.

At the other  extreme is picture-less mathematics, in which everything is expressed 
through prose, including, of course, equations, inequalities, and representations of 
statements in formal logic. 

But it’s never an either/or world. Sometimes, when a picture is too complicated to 
draw, you have to rely on logic — use it as your  sole navigation system. Other times, 
a picture is much better than logic, at least to find the solution to the problem. 
Ultimately, of course, everything has to be presented in, or be reducible to, statements 
of logic.

The Promise of Computer Graphics

So far I have been speaking as though drawings and text are independent of each 
other, in the sense that changing one does not automatically cause a change in the 
other — I mean, a physical change on the page or on the computer screen. But the 
computer has already begun to make each form of representation dependent upon the 
other. There are a number of programs which generate curves and surfaces from 
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specifications typed in by the user. It is only a matter of time before the reverse is 
possible: given a curve, say, a parabola displayed on the screen, you will be able move 
it, rotate it, and observe how its equation changes. Similar programs might allow you 
to move a tangent line along a curve and observe how the numerical value of the slope 
changes, or allow you to begin with a chord intersecting the curve, with the value of 
the slope being displayed, and then shorten this chord and watch the value of the slope 
changes.

Assume You Will Forget!

Memorization seems always to have held a special place in the minds of educators.  
Socrates is reputed to have complained that the invention of writing would only curb 
man’s intellectual progress, since the memorization of knowledge would no longer be 
necessary.  Similar remarks have been made by educators regarding the use of 
calculators — that students will no longer know the rules for doing arithmetic — and I 
am certain they will be repeated in response to the idea of a new way of organizing 
mathematical knowledge which is aimed at relieving the student of as much 
memorization as possible.  Which, of course, does not mean that an Environment 
makes it more difficult for you to memorize mathematical information!  Quite the 
contrary.  In fact, as you will find out, it makes memorization much easier than a 
traditional textbook does.  All an Environment does is to relieve you of the need to 
memorize as much as you have in the past in order to work homework problems and 
open-book exam problems.

In my opinion, memorization should be viewed as a natural byproduct of repeated 
use.  We should (and usually do) memorize the information we use most often, and 
look up in the Environment the information we use less often.  I realize that many 
math professors think otherwise, but that doesn’t necessarily mean they are right.

So, in building an Environment, you should always proceed as though you were 
building it for next time — for the next time you will have to use it to solve a problem 
— or, better still, proceed as though you were building it for another student. **Just 
like we program for the next programmer.  You take notes for when you will have 
forgotten 4/23/02**  If you build it solely for yourself to use this time, there is a great 
danger you will say to yourself, “Oh, I’ll remember this; I understand it now, surely 
I’ll understand it next time — even in the next course — even a year or two from 
now!” But chances are you won’t.  So why not do the job once, write it down, and save 
all that time in the future when you will have to go through at least part of the labor 
you have just gone through? 

Computer programmers — the better ones — apply a similar idea, namely, that of 
programming for the next programmer, meaning that they make a point of adding 
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comments to their programs that they feel the next programmer would most want to 
see. The fact that the next programmer might well be themselves in no way invalidates 
the importance of the idea.

In building an Environment, you are pre-learning, pre-processing for the next time 
you use it.

This might be a good place to point out another fundamental difference between 
classroom teaching that is based on the logical structure of a subject and one based on 
problem-solving structure. Each implies a model of the typical student’s learning 
behavior. The model implied by typical classroom teaching is that students, after being 
taught new knowledge, can, or should, retain it indefinitely into the future — not only 
until the next set of homework problems, or until the next exam, or until the finals, but 
indefinitely thereafter, as is clearly implied by the notion of prerequisites for college 
courses. Furthermore, the model implies that memorization is the best way for them to 
retain fast access to the knowledge whenever they need it. 

Contrast this model with the one implied by the Environment approach. Here the 
model implies that students will probably not remember what they should, that they 
will frequently need to look things up (fast!), and that they will occasionally, perhaps 
often, have to take courses without having “taken” one or more prerequisites, so that 
they will need to look up material in the prerequisite courses fast. 

Which model is the more realistic one, based on your own experience?
Finally, lest you think that a dislike for memorization is a sign of a loser, or at least 

of a second-rate intellect:
“Einstein duly graduated [from the Swiss Federal Polytechnic, one of the best 

schools of its kind in Europe] in 1900, but the four years of hard slog had taken their 
toll:

‘One had to cram all this stuff into one’s mind for the examinations, whether one 
liked it or not. This coercion had such a deterring effect on me that, after I had passed 
the final examination, I found the consideration of any scientific problems distasteful 
to me for an entire year.’ — Einstein, Albert, quoted in Hollingdale, Stuart, Makers of 
Mathematics, Penguin Books, N.Y., 1989, p. 373.

Include Heuristics

Heuristics are procedures which get you the right answer most of the time. You 
may run into teachers (and possibly students) who say that “it shouldn't be necessary” 
to write down heuristics, that “if you understand the concepts, you won’t need to write 
down the heuristics”.  These remarks might have some validity if every student were 
preparing for a life’s work in the subject under discussion, but every student is not.  
Furthermore, the forcing yourself to write down the heuristic instead of forcing 
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yourself to somehow work it out in your mind and then somehow keep it straight in 
your mind, will enable you to start solving problems correctly sooner. 

Of course, not all heuristics are algorithmic: not all heuristics are guaranteed to get 
you the right answer every time.  In some subjects, especially at the start, the heuristic 
for doing proofs may amount to nothing more than:

“1. Pick strategy which seems most likely to bring results, e.g., the strategy of 
proving the contrapositive, or of using proof by contradiction, or of working 
backward, or of working forward from the given if clause.

“2. Use theorem lists to try to construct proof.  If no success within reasonable 
time, pick another strategy and repeat step 2, etc.”

Try To Capture Intuitions

Mathematical intuitions can be divided into two classes: those pertaining to 
concepts and those pertaining to problem-solving in the subject.  Examples of the first 
class are:

 the familiar description of continuity as a function whose curve has “no gaps”;
the wheel-and-spokes model of congruence given in “A Number Theory 

Environment (partial)” on page 203;
 Bertrand Russell’s illustration of the Axiom of Choice via the problem of 

selecting the left shoe from each pair of an infinite set of pairs of shoes, vs. the 
problem of selecting one sock from each pair in an infinite set of pairs of socks;

 the idea that in the Lebesgue integral we sum by first placing the elements to be 
summed into categories, then sum the elements in each category, whereas in the 
Riemann integral, we simply sum “from the first element to the last”.

Even broader intuitions like the following are useful.  To repeat an earlier 
quotation:

“When I think about mathematical ideas, I see the abtract notions in symbolic 
pictures.  They are visual assemblages, for example, a schematized picture of actual 
sets of points in a plane.  In reading a statement like ‘an infinity of  spheres or an 
infinity of sets’, I imagine a picture with such almost real objects, getting smaller, 
vanishing on some horizon.” — Ulam, S. M., Adventures of a Mathematician, Charles 
Scribners Sons, N.Y., 1976, p. 183

Problem-solving skills, along with self-teaching skills, are the most difficult for the 
Environment to capture.  You should first of all include the suggestions of professors 
(when you can obtain such suggestions!), e.g., “If I have to solve a problem of this 
type, I generally begin by ....” Second, you should (always) try to reduce searching as 
much as possible, by, e.g., categorizing and cross-referencing your lists of theorems, as 
described under “Theorems on the Entity” on page 82.
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Use “...” Instead of x, y, f, g, as Generic Symbols

Normally, you put non-alphabetical symbols immediately following the 
alphabetical section of the Environment. Sometimes, however, you may want to have a 
place in your Environment for information on non-alphabetical symbols, e.g., {, }, or 
[, ], but at the same time indicate the context. So you need a symbol that is more 
general than the generic x, y, f, g. If you use these letters as generic symbols, you then 
have to remember which symbol you used so that you can find it in the alphabetical 
ordering in your Environment. A way of getting around this problem is simply to use 
the ellipsis, ..., instead of these symbols. 
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Appendix A — Linear Algebra and Tensor 
Calculus Are Just “Great Big Tables”!

You don’t need to take a course in a subject that can be made virtually 100% look-
up-able!  Two examples of such a subject are linear algebra and tensor calculus, the 
first being relatively “easy”, the second being very difficult (even for Einstein!).

And yet, each year students go deeper in debt so they can sit and listen to the phone 
book1  being read to them for an entire semester — and take notes and memorize 
content that can and should be made available to them in easily look-up-able format 
i.e., as an Environment.

One of these days, the light will dawn in the mind of some exceptional academic 
mathematician and he or she will realize at the very least that there is money to be 
made in the publication of Environments for one or both of these subjects.

He or she will begin by listing all the technical terms, symbols and frequently-
occurring expressions in the subject and will be amazed by how long that list is.  Then 
will come, first and foremost, the writing of definitions for each term and symbol in 
the list, them the  formatting of related content as described above in this chapter.

The mathematician will, I think, be unable to avoid recognizing how much of the 
content of both subjects can and should be given over to the computer: in linear 
algebra, that includes solving systems of simultaneous linear equations (for now, the 
written procedure must be included in the Environment) and of course computing 
determinants.  Of course theorems will be collected under appropriate headings.

In the tensor calculus, all the tedious calculations of outer and inner products, and 
of finding derivatives, and of raising and lowering indices and of performing 
contractions, etc., and, of course, of expanding abbreviated expressions, can and 
should be handed over to the computer2.  If this is not possible, then written 
procedures for the student to follow, must be in the Environment.

Students need to be reminded that the tensor calculus is, among other things, a tool 
that turned out to be useful for representing the facts of Einstein’s general theory of 
relativity.

1. Since the traditional phone book is becoming obsolete, I should probably say, “dictionary” 
here.
2. I have been told that there are currently available mathematical program packages for com-
puting some 250 tensor calculus functions associated with Einstein’s general relativity..
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(If I were writing a textbook on general relativity, I would state the most important 
facts first, then do top-down proofs of each.  In other words, I would proceed on a just-
in-time-learning basis as far as the tensor calculus was concerned.)

t
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Appendix B — “There Are No Difficult Subjects, 
Only Incompetent Presentations of Subjects”

I am hoping that by the time you have read this far in the book, and you have 
perhaps built at least one partial-Environment, you will not find the title of this 
Appendix to be absurd.  You might even agree with it.  

What brought the words into my mind was reflections on the way the tensor 
calculus is presented in textbooks, vs. the way it would be presented in a complete 
Environment.  (See previous Appendix.)  The idea that this subject should be 
presented in the traditional linear format of the typical textbooks, is a prime example 
of the dimness, the fundamental-not-getting-it, of mathematicians when it comes to 
the presentation of mathematical subjects.  I could almost say, it is a prime example of 
the determination of mathematicians to maintain their prestige by keeping things 
difficult.
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