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Purpose of This Chapter

The previous two chapters set forth the fundamental method for constructing 
Environments.  This chapter is an elaboration of the method along with responses to 
criticisms of the Environment idea.

Review of What an Environment Is

A complete Environment is a database whose content is a mathematical subject, or, 
indeed, any technical subject, and whose access has been optimized for speed of 
problem solving.  Normally, databases contain facts about the real world,  e.g.,  in a 
bank, the financial records of each customer, or, in a manufacturing firm,  employee 
records, or, in a lab, scientific data.  But there is no reason why a database can not 
contain a technical subject, e.g., linear algebra.  

Databases are accessed by queries.  The user issues a command such as, “Give me 
a list of all the employees who are under 30 years of age and are earning more than 
$30,000 a year.”  In the case of a computer implementation of an Environment,  typical 
queries might be, “Give me a definition of the term eigenvalue” or “Give me a list of 
all the theorems that contain the term orthonormal”. 

But an Environment is not merely a database.  (Any textbook can be regarded as a 
database.)  An Environment is a database optimized for rapid problem-solving in a 
technical subject.  Keep this in mind if you find yourself getting involved in long-
winded discussions and arguments about Environments.

Unfortunately, neither complete computer database Environments nor complete 
word-processor Environments nor complete printed Environments exist yet. (The 
author is working on the first one, for linear algebra.)  So, for the time being, you have 
to build your own (partial) Environments. This book tells you how to do this using 
long-hand or a word-processor. 

Before we proceed, however, it is important that you understand what an 
Environment is not. 

What an Environment Is Not

An Environment is not:
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A collection of programs, like Mathematica, Mathlab, StatView and numerous 
others, for solving certain types of mathematical problem.

An online representation of a mathematical text, with hypertext, computer-
generated indexes, and a search facility.

A collection of cookbook procedures which, if you follow them exactly, will 
enable you to solve a (limited) class of problems without your knowing, or being able 
to quickly find out, why each procedure works.

Straight Talk on Hypertext

Hypertext is the electronic linking of marked words and phrases in online text so 
that, when the reader clicks one of these marked words or phrases, a related text is 
immediately displayed.  Hypertext is a simple, obvious, inevitable electronic 
implementation of an index.  Yet careers have been built, families raised, kids sent to 
school, on this word, which is very impressive in the high-tech world.  (Anything with 
“hyper” in it is impressive in the high-tech world.)  Believe it or not, there is even 
something called “hypertext theory” (ye gods!) which is nothing more than the slow, 
painful, re-invention, by dim, liberal arts minds, of a few of the programming practices 
that were already well-established in the early seventies.

The point is, you should not be deluded by the argument occasionally raised 
against the Environment concept that “it is all just a matter of hypertext”, or, for that 
matter, “all just a matter of search facilities”, the latter referring to those programs that 
find, in a text, all occurrences of the words or phrases you specify.  

An Environment is a structure aimed at problem-solving efficiency and, at least at 
present, and for the foreseeable future, Environments can only be constructed with 
human intelligence, specifically, human intelligence that understands the structural 
principles described in the chapters, “Fundamental Concepts” and “How to Build an 
Environment”.

 Why the Environment Concept Is Important — And Inevitable

Even if the old way of learning mathematics — namely, by learning the logical 
structure of each subject — were determined to be the one and only best way to 
acquire depth of knowledge of a subject, nevertheless the old way is doomed, for the 
simple reason that there is far too much mathematics to attempt to master in that way.
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“...we have amassed more knowledge since World War II than all the knowledge 
amassed in our 2-million-year evolution on this planet.  In fact, the amount of 
knowledge that our scientists gain doubles approximately every 10 to 20 years.” — 
Kaku, Michio, Hyperspace, Anchor Books, N.Y., 1994, p. 274.

“During the past fifty years, more mathematics has been created than in all 
previous ages put together.  There are more than 1,500 mathematical research journals, 
publishing some 25,000 articles every year (in over a hundred languages).  In 1868 
The Jahrbuch ueber die Fortschritte der Mathematik (Yearbook of Mathematical 
Research) listed just twelve categories of mathematical activity; in Mathematical 
Reviews for 1992 there are more than sixty.” — Stewart, Ian, The Problems of 
Mathematics, Oxford University Press, New York, 1992, p. 19.

 I doubt if any mathematician would deny that the amount of mathematical 
knowledge has become so great that no one person can have the remotest hope of 
mastering it all, or even of knowing what, in the way of concepts, not to mention 
lemmas and theorems, is out there. 

Specialization is thus a necessity, and it has been made into a virtue. I have known 
mathematicians who clearly felt that you really had no reason to be walking the face of 
the earth unless you knew as much about their specialty as they did.  On the other 
hand, I have known recent PhDs in mathematics who decided not to pursue academic 
careers because, after all the labor and expense and time of getting a PhD, they were 
appalled at the vast areas of mathematics that they still knew nothing about.

This situation might not, in itself, be enough to call into question the old way of 
learning mathematical subjects if there were a guarantee that all problems in any given 
specialty could be solved solely within that speciality, and similarly for sub-
specialties, and sub-sub-specialties, etc.  (An interesting question!  What kinds of 
logical structure have this property?)  Unfortunately, there is abundant reason to 
believe that this is not the case.

“In the 1870s mathematics consisted of a number of separate and diverse 
disciplines, such as arithmetic, algebra, geometry, and infinitesimal calculus.  In the 
1970s [and, presumably, later] this is no longer the case.  There has been an enormous 
increase in the volume of material which a mathematician has to master, but there are 
no longer any boundaries between the different ‘branches’ of the subject, which are 
now so closely interdependent that no mathematician can afford to specialize.  In the 
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1970s [and, presumably, later] to be a good mathematician is to be a polymath.” — 
Temple, George, 100 Years of Mathematics, Springer-Verlag, New York, p. 282.

It is simply not possible to master all that material in the old, classroom way of 
studying all the theorems, and their proofs, and working all the exercises so that we get 
a B or an A on any closed-book exam in the subject.  It is no longer humanly possible, 
just as it is no longer humanly possible to do the world’s calculations by hiring people 
with the gift of doing rapid calculations in their head.

Expressing it in the language of computer scientists who specialize in database 
technology: the old way does not scale. As the amount of mathematics grows that may 
be required for the solution of a given problem or class of problems, the number of 
human beings capable of solving the problem shrinks rapidly — fewer and fewer 
persons have the ability to memorize and integrate such a volume of material — and 
the time required to solve the problems grows ever greater. This is not a desirable state 
of affairs! (No matter how flattering it may be to the exceptional few.) 

(A well-known mathematician has remarked that the explosion of mathematical 
knowledge suggests that there are too many mathematicians!  To me, this is an 
astounding indication of how stuck in the old ways of thinking some professional 
mathematicians are when it comes to the manner in which mathematics is presented 
(hence taught and learned).  It is as though a well-known computer scientist, looking at 
the growing size and number of computer programs in the sixties, had announced that 
it is clear there are too many programmers!)

To anyone who understands the Environment concept, and in particular structured 
proof,  it is clear that the exploding amount of mathematical knowledge and of the size 
of some proofs does not mean that mathematics is approaching some kind of limit, any 
more than the increasing size and number of programs means that computer science is.   
But mathematics has not yet had its Edsger Dijkstra, who already in the sixties 
recognized that a prime goal of programming theory must be what he called “the 
control of complexity”. 

We — the vast majority of those who study and use mathematics — must give up 
the old idea of mastering each subject, and instead settle for the new idea of “just-in-
time learning”: being able to move rapidly from subject to subject, solving the most 
common problems in each with a minimum of intellectual labor and with the help of 
paper and electronic tools (Environments) designed to aid us in this purpose. 

But then, sooner or later, an inevitable question arises: Why do we study? The 
traditional answer is: so that we will have the knowledge to solve problems. We learn 
the material so that we can use it.  But, as I hope is clear by now, we can use a subject 
(in the form of an Environment) without having learned it!  We can look up what we 
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need to know to solve a given problem. Studying, in the traditional sense, is becoming 
obsolete. 

  If you are still skeptical that the old ways of presenting mathematical knowledge 
need to be improved (or can be improved!) imagine that this country was engaged in a 
war in which victory would go to the side that could demonstrate the greater speed at 
creating and understanding difficult proofs.  Do you think we would continue in the 
way we have for the past 2300 years? 

Advantages of Environments

Environments Give Students and Professors What They Want Most

Ask students what they most want in any mathematics course, and the answer will 
most often be, “Formulas, short-cuts, ways to get the right answers!”

Ask professors what they most want in their careers and the answer will most often 
be, “Not to have to teach, so that I can do research instead!1”

Environments are the best means I know of to give students and professors what 
they want. In fact, this was one of the original motivations for developing the 
Environment concept.

Environments Make All Math Subjects Look “the Same”

A good description of Hell is: waking up each morning knowing that everything 
you learned yesterday is different today — or rather, knowing that some unpredictable 
subset of the things you learned yesterday will be different today, in an unpredictable 
way — as, e.g., in the computer industry.    Once you have learned something, it is 
easier to learn something that is almost the same than it is to learn something that is 
different.  Obvious, you say.  Yet this obvious idea seems to have escaped teachers of 
mathematics and authors of mathematics textbooks.  “The “Universal Template for 
Mathematical Entities”” on page 73, and, indeed, Environments in general, are an 
attempt to make all mathematical concepts similar to each other from a problem-
solving point of view, just as structured proof is an attempt to make all proofs similar to 
each other from a structural point of view.  Of course, you may point out that the 
traditional logical format in which almost all mathematics courses are now presented 
—  definitions, theorem, proof, theorem, proof, ... — that this format already makes all 

1. Well, no professor will say this out loud. You have to read studies of the academic mathe-
matics culture to discover this. See, e.g., Morris Kline’s Why the Professor Can’t Teach.
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mathematics subjects similar.The trouble is, this format shows us the logical similarity 
of mathematical subjects.  But that is by no means the only kind of useful similarity, as 
I think Environments will demonstrate to you.  Problem-solving similarity is equally 
useful.  If every subject looks “the same” from a problem-solving point of view, then, 
when you come back to the subject after having been away from it for a while — over 
a summer vacation, or after one or more semesters — it will be much easier to resume 
problem-solving in it.

The desire to determine the similarities between things is a common one in 
mathematics.  In the forties and fifties, a subject was invented (or discovered) which 
shined a new light on the similarity of mathematical subjects.  This subject is called 
“category theory”.  Very roughly, it views every subject as consisting of a set of 
objects and a set of functions relating the objects to each other.  Then, applying this 
whole idea “one step up”, it proceeds to consider subjects themselves as objects, and 
to relate them to each other via another set of functions.  This simple idea has been of 
great use in research in many branches mathematics.

They Enable You to Solve Problems More Efficiently

When I say that Environments result in greater problem-solving efficiency I mean 
the following: randomly divide all the students taking a given math or other technical 
course into two groups.  (I assume the course is taught by only one professor.)  Let one 
group study and take exams as they normally would.  Let the second group study and 
take exams using a complete Environment for the course.  Have both groups keep 
track of all the time they spend on the course.  When the final grades have been 
published, assign 4 to an A, 3 to a B, 2 to a C, 1 to a D, and 0 to an F.  Let each student 
in each group divide the numerical equivalent of his or her grade by the total number 
of hours he or she spent on the course.  The resulting number is what I am defining as 
problem-solving efficiency.  I claim that the average efficiency will be higher for the 
second group than for the first.

Students and Others Can Learn New Subjects Faster  

I continue to be amazed that this book wasn’t written by someone else ten or 
twenty or fifty years ago, because as long ago as that it must have dawned on many 
people that the explosion of mathematical knowledge which has occurred in the 
twentieth century carries with it a new problem, namely, the problem of how to get 
that knowledge by all those who need it when they need it.  Yet courses still last a 
quarter or a semester — weeks, months! — and a bachelor’s degree still requires four 
years.
122



Chapter 6 — More Ideas to Help You Build Better Environments
It is often said that you need to go to school in order to learn basics, the implication 
being that, once you have learned these, you will be able to learn advanced subjects on 
your own if necessary.  Pompous educators in speeches before entering freshman and 
before graduating seniors often talk about school being a place where you “learn how 
to learn”.  But never once — not once! — in many years of sitting in classrooms did I 
ever hear a teacher say anything remotely like, “And, by the way, when you need to 
learn something knew about a subject like this, some useful tricks are ...”  The truth is 
that not one teacher in a thousand knows beans about self-teaching because the 
education of those in the teaching establishment makes abundantly clear that such 
knowledge, and the dissemination and discussion of such knowledge, is distinctly 
scientia non grata.  (If you teach people how to learn things themselves, well, then, 
soon there will be no need of Us!)  

 I sometimes wonder how the typical math professor imagines his best students 
will go about acquiring new knowledge in his subject after they have left school.   The 
idea that every time someone in industry needs to apply a branch of mathematics or 
any technical subject which they are not familiar with, they should enroll at a nearby 
university and take a course (if it is being given) surely must have struck even a few 
professors as outrageously inefficient. 

Mathematics and indeed all technical subjects are used — applied — by many 
persons who are not experts.  Think of all the people who use probability and statistics 
in their jobs.  Think of all the engineers who use calculus, the programmers who use 
compiler theory.  The truth is that most users of mathematical subjects learn as much 
as they need and little more.  The truth is, there is less and less time to learn new 
subjects via the old process of studying (possibly in a course), memorizing, and 
practice-applying over a period of several months. 

In any case, what makes subjects easier to learn and apply for people outside of 
school, may also be of help to people in school, namely, to students.

The existence of Environments for each technical subject, I am convinced, will 
significantly decrease the time required to earn a degree in a technical subject.  In an 
age when technical knowledge is growing at the rate it currently is, that is not nothing.  

They Enable You to Get Back Into a Subject Faster

Every student has had the experience of suddenly needing to be able to solve 
problems in a subject he or she has partially forgotten, and therefore having to 
scramble through old notes and textbooks in order to recapture the necessary 
knowledge.  Environments reduce this effort significantly.  
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Less Need to Memorize

Why do we need to memorize so much of what we study?  Because it is the fastest 
way to access the knowledge we need when we need it.  We memorize so that it is “all 
there” when we need it.  We memorize because, up to now, our memory has been the 
best rapid-access database available for holding the knowledge we need to solve 
problems.  (Of course, we also memorize because that is what our teachers believe is a 
major part of learning.)

But even so, in the modern world we memorize much less than the ancients, say, in 
Greek and Roman times did.  I believe that, if any thinker or scholar or poet or 
dramatist from those times were brought back to this world with roughly the same 
faculites he had when he left it, we would be astounded at how much he had 
committed to memory.  Long texts, entire poems — pages and pages and pages.

Yet I think most would agree that the choice our  civilization made was the wise 
one, namely, to trade the instant recall of memory for the much vaster memory space 
represented by writing and then, later, by printing, and now, of course, by computer 
memoies, just as I think you will agree that our civilization made the right choice in 
developing calculating machines instead of trying to find and train more and more 
people with extraordinary abilities at doing large calculations in their head.  

 On the other hand, repeated use of knowledge or information — as in generating 
and using Environments — usually means gradual memorization,  so that repeated use 
means faster problem-solving.  Which is precisely how problem-solving speed should 
come about: not because smart students have memorized more theorems and formulas, 
but because experienced students need to spend less time looking up this knowledge in 
the first place.  (In a complete Environment, every student can look up the same 
knowledge equally fast.)

You Can Sell Copies of Your Environments

Under “Assume You Will Forget!” on page 93, I said that one way of to create a 
good Environment is by imagining you are creating it for another student. If you do 
your job well, then you may be able to sell copies of your Environments to other 
students.  Since all Environments have the same structure, your customers can then 
augment and improve your Environment from where you left off, without having to 
start from scratch.  This will doubtless be easier if your Environments are in the form 
of word-processor files, but pencil-and-paper Environments can also be improved by 
the next user.
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The Environment Concept Does Wonders for Your Self-Confidence

In the last analysis, this may be the major benefit of Environments.  You will find 
that no matter how intimidating, how unimaginably difficult a new technical subject 
appears to you, you will be able to say to yourself, “I may not know anything about the 
content of this subject, but I know how it goes from a problem-solving point of view.”  
You will know what shape you need to put it in for maximum problem-solving 
efficiency.  You will know that there is nothing profound about the author’s or the 
teacher’s need to present the subject to you in its logical structure, or about the absence 
of pictures and guides to intuition, or about the need for you to memorize everything in 
order to accomplish anything.  You will have a healthy contempt for being forced to do 
more intellectual labor than is necessary in this knowledge-crowded world, and you 
will have the tools to start reducing this labor.

It Is Easy to Test How Well Environments Work

It is tempting for me to say that Environments work if you, the student, think they 
do, e.g., if you think they enabled you to get a higher grade. But the best argument for 
(or against) the worth of the Environment concept is a statistical one. Such an 
argument can be easily made by the kind of test described under “How the 
Environment Idea Should Be Tested” on page 130. As you can see, unlike most 
educational theories, the worth of the Environment concept is easy to test. 

Disadvantages of Environments

It would be irresponsible of me not to set forth some of the disadvantages of 
Environments.  Here are the main ones I have discovered. See also  “Why Go Through 
the Trouble of Building an Environment?” on page 82.

Alphabetical Organization Seems Odd to Some Students

The most frequent criticisms I have received of the alphabetical organization are 
“It’s too hard to read,” “It doesn't flow,” this despite my careful explanation in the 
first-time user information referenced on the Start Page that, unlike the typical 
textbook, this one you don’t have to read first before you try to solve problems; that 
you simply look up things when you need them, that this is just-in-time learning.

The attempt to organize mathematical knowledge alphabetically has given me a 
first-class lesson in the difficulty which most people have in confronting what is 
known as a paradigm shift, meaning a major change in the way they think about a 
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given subject or task.  One mathematician remarked, “What do you think mathematics 
is, some kind of alphabet soup?” A number of people have even commented that 
headings such as “integral, multiple, how to compute”, “curve, determine tangent at a 
point” don’t look right because they contain commas (!).  This is how deeply oriented 
to syntax many people in technical fields are.  

Difficult Problems Require Extensive Page-Turning

In pencil-and-paper Environments, a lot of page-turning may be necessary, 
particularly in the case of definitions which use terms that require further look-ups, 
and in the case of proofs with several sub-levels.  When things seem likely to get out 
of hand, you can use pencils or paper clips to mark where you have been.

The equivalent of page-turning in on-line implementations — e.g., using hypertext 
— goes much faster.

Building an Environment is More Tedious than Taking Notes

Let’s see how much more tedious the building of an Environment is than taking 
notes.  If you are building a pencil-and-paper Environment, then, yes, as you take 
notes, you have to decide where the notes go — under which topic, and you have to 
decide if you want to cross-reference them from other topics.  You can  — and should 
— take lecture notes directly in Environment form, i.e., put them under the appropriate 
alphabetical heading and cross-reference as you go.

On the other hand, you will not have to do a linear search through your notes every 
time you want to look up something.  

Certainly, converting typical prose proofs into structured proofs is more time-
consuming.  (See the chapter, “Proofs”.) On the other hand, you save time when you 
need to review those proofs.  

Adding diagrams to word-processor Environments is often very tedious unless you 
have a good graphics program.  These are becoming available.  

Pencil-and-Paper Environments Require Lots of Paper

Partial Environments for some subjects, e.g., calculus, linear algebra, may require 
two 3-inch loose-leaf binders, assuming hand-written pages and one page per topic.  
Creating paper implementations on the computer vastly reduces the amount of paper 
required because a topic can always be inserted between two other topics (to maintain 
alphabetical order) without necessarily producing a new page in the printout of the 
Environment.
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You Need to Keep Track of Logical Order of Theorems

You need to keep track of the logical order of lemmas and theorems.  Otherwise 
you risk committing the logical fallacy of begging the question, that is, of assuming 
the truth of something which you are trying to prove.  This problem is avoided in 
traditional textbooks because logical order is what is typically made clear by the order 
of presentation.  A simple way to avoid the problem in Environments is to use the 
numbering of theorems and lemmas given in the main textbook you are working from, 
and then checking carefully before you use a higher numbered theorem or lemma to 
prove a lower numbered one.  If you are working from several textbooks, and, 
possibly, lecture notes, you will have to interpolate the appropriate numbering.

The problem of logical order in Environments has never been a serious one in my 
experience.

You Will Become Impatient With Traditional Textbooks and Courses

Once you start thinking about technical subjects in terms of Environments, you 
may become impatient with traditional textbooks and classroom teaching.  In class, 
you will sometimes feel like you are being forced to listen to someone read the t  
dictionary to you.  I’m afraid I can’t offer any remedy at this time.

Criticisms of the Environment Concept

Most of the criticisms of Environments I have heard so far fall into the following 
categories.  Responses are given immediately following each criticism.

Environments are just cookbooks, and no student (other than a student cook) 
ever learned a subject by following cookbook procedures.  In order to learn a subject 
as difficult as most mathematical subjects, there is no replacement for hard work and 
drill.  You simply have to struggle until you’ve mastered it, meaning, until you have 
understood it.  As Euclid is reputed to have said to the king of Egypt, “There is no 
royal road to learning.”

Reply:
 I never heard of a student who got all or most of the problems right, being accused 

of not understanding the subject.
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The term cookbook normally means that the user is not given an explanation of 
why the steps are as they are.  But that is emphatically not the case with an 
Environment.  An Environment is structured so that it is much easier to find out 
answers to questions than in a traditonal textbook, or in student notes.

  Learning is a red herring. So is understanding.  Yes, I know how outrageous those 
two statements sound to most ears. What the statements mean, of course, is that 
making learning and understanding the primary focus, diverts our attention from the 
business at hand, which is the ability to solve problems.  Learning and understanding 
should be side-effects of creating, using, and improving Environments. The student 
has a perfect right to say (fully realizing it is an exaggeration): “I don’t want to learn. I 
want to do!”1

Furthermore, I am certainly not proposing that the traditional form of textbook be 
eliminated! It is perfectly legitimate for a student, or anyone else, to want to see the 
logical construction of a subject.  Both Environments and traditional textbooks can, 
and will, exist side by side.

If you can find theorems and proofs rapidly, this will encourage you to look them 
up.  Furthermore, you will have a new way to simplify and understand proofs, as 
described in the chapter, “Proofs”.  

Finally, I must add that almost invariably when I ask math teachers and professors 
what they believe students most want in a math course, the reply is, “Formulas and 
cookbook procedures for solving problems! All they want to do is to be able to solve 
the homework and exam problems as quickly as possible.” This is meant as criticism 
of the students! I, on the other hand, think that a teacher or a professor has an 
obligation to deliver to his or her customers the product that they want! And the truth 
is, these customers, namely, the students, live in a culture in which solving problems 
— whether in the SATs, or in classroom examinations, or in Graduate Record Exams, 
or on the job — is really all that counts. I think that the argument that the “student 
must understand” is as often as not a smokescreen to hide the ineptitude of classroom 
teaching and of textbook authors. 

It is an invoking of the logic of psychotherapists: if the patient improves, that 
proves how valuable psychotherapy is; if the patient doesn’t improve, or grows even 
worse, that is because he didn’t try hard enough (or, in classroom terms, didn’t attempt 
to “understand” the subject matter). I say again: learning and understanding should be 
side-effects of creating, using, and improving Environments. 

1. The sentence is a paraphrase of one used in an ad on some of the classical music stations in 
the San Francisco Bay Area in the early 2000s, the ad being for a company (whose name I have 
forgotten) that offered to do Internet searches. In the ad, an exasperasted computer user says to 
her primitive search engine:  “I don’t want to search.  I want to find!”
128



Chapter 6 — More Ideas to Help You Build Better Environments
2. Environments discourage memorization.  
Reply:
On the contrary, they are an aid to memorization because they enable you to 

quickly look up what you need to memorize, and because they put information into a 
form that is designed for rapid understanding hence (I argue) rapid memorization. The 
rigorous structuring of proofs as described in the chapter, “Proofs”, is certainly an aid 
to memorizing proofs. 

3. Environments discourage thinking.  
Reply:
The only kind of “thinking” they discourage is struggling to recall material that 

may or may not have been learned before. If you agree that a person with a 
photographic memory still needs to think — in other words, a person who can recall 
anything he or she has previous read or learned — then you agree that the use of 
Environments does not discourage thinking.

How (and Why) the Environment Idea Was Developed

Several readers of this book have asked how the Environment was developed.  The 
main impetus to its development was my going back to school in my thirties to get a 
Master’s degree in Computer Science.  I had had only two-and-a-half years of 
electrical engineering education some fifteen years previous and here I was planning 
to do a Master’s thesis on one of the most abstract and difficult new developments in 
computer science, namely, Scott and Strachey’s Mathematical Semantics of 
Programming Languages, a theory which made possible the first rigorous definition of 
the semantics of programming languages.  Very few computer science professors, and 
none at the university where I was working on the Master’s,  understood the theory, 
which had only been published a few years before.  So I had to teach myself.  I found 
that grinding the material out of books and academic papers in the traditional way was 
simply too difficult. I had to find a better way.  

But there were earlier motivations.  As an undergraduate, I had always been forced 
to learn according to someone else’s idea of how learning should be carried out.  In 
particular I regarded with contempt the whole idea of prerequisites for a course, 
because it seemed to me silly in its naivete.  There it was, late in September, and the 
course catalog would list, say, Calculus 101 and 102, Analytic Geometry 75, and 
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perhaps one or two other courses as prerequisites for, say, Calculus 110.  Did the 
plodding academic fathers seriously imagine that students remembered the contents of 
all those courses, some of which they might have taken a year or two previously?  If 
not, then just exactly how much did the fathers imagine, or hope, or demand, that 
students did remember, and where did they spell this out?  The fond academic fantasy 
of good students reviewing  all their courses throughout the summer, going over their 
notes at every spare moment, nauseated me.  Only a college professor could be 
capable of such delusions.

As I began developing my first Environments, I began getting a different view of 
the task of solving problems in a course.  Instead of  looking at it as an activity 
designed to separate the winners from the losers I began asking myself what it would 
be like if the purpose was to grind out as many correct answers as possible.  I imagined 
I was the Secretary of Education during a war in which, for some reason, victory 
depended on the problem-solving productivity of students. The more correct solutions 
to problems that were produced, the more likely would be our victory.  How would I 
organize textbooks and courses if that were the case?  Certainly not by the traditional 
method of students taking notes at lectures, then cramming for exams, a process 
which, like prerequisites, seemed silly, because after you had passed the exams and the 
course, what did you have?  Rapidly fading memories of knowledge you could only 
retrieve with difficulty.  Of course, the teachers and professors always had an out: they  
could always say, “Well, God knows I taught them, I covered all the material in the 
syllabus, I tested them.  If they can’t remember it, well, that’s not my problem.”  What 
a racket!

Of course, I was worried from the start about the weakness that the need for 
Environments revealed.  I thought: let’s face it, an Environment is a prosthesis, a 
device for the mathematically handicapped, something we use to get around in (get 
around a subject in), like a wheelchair or artificial leg.  But then I thought: so what?  so 
is a car or an airplane or a calculator.  If an Environment enables me to accomplish 
intellectual tasks I couldn’t accomplish otherwise, well, hooray for Environments!

I began wondering about how the Environment idea could be tested

How the Environment Idea Should Be Tested

As more and more students start using Environments, inevitably there will be 
arguments and discussions about whether Environments are any good or not.  One way 
of deciding is simply by polling students and determining if their math grades 
increased after they started building and using Environments.  But that would not be a 
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good argument for the value of Environments, since other factors may have been at 
work. A more rigorous way of deciding — and the way that I hope will eventually be 
used — is by a statistically significant set of comparison tests such as the following. 

1. At the start of any university class in mathematics or any other technical subject, 
divide the class, by random selection, into two groups.  

2. Now with neither group having received any classroom instruction or 
homework, give the midterm exam to both groups.  One group must use the standard 
textbook and other course materials, the other a complete Environment for the subject.  
Each student is to work alone and may take, say, two weeks to answer as many 
questions as he or she can.  (The time period may be shortened to only several hours, 
with the students required to take the test in the classroom.  In this case, there might be 
a loss of statistical validity due to fewer problems being answered.)  

3. Compare scores and times for completion for the two groups.  
My claim is that the Environment group will perform significantly better.  In fact, I 

suspect that several students in the textbook group will be able to answer few, if any, 
questions. 

A third kind of test is what we might call The Turing Test for Environments, after a 
test developed in the early fifties by the mathematician Alan Turing.  That test was 
aimed at determining if a computer was intelligent or not by comparing the computer’s 
responses to questions to a human’s responses, with both sets of responses being 
communicated via computer terminals.  In the Turing Test for Environments, we ask if 
an objective observer can tell the difference between a student who had completed the 
course and one who hadn’t taken it but who had an Environment at his or her disposal, 
the questions being taken from exams given throughout the course, but with the time 
that each student took to answer the questions being removed from the answers given 
to an objective judge.

Environments and Artificial Intelligence (AI)

“Artificial intelligence” (AI) is a term applied to computer behavior when this 
behavior is considered as approximating what we regard as intelligent behavior in 
humans.  Examples are certain kinds of symbolic reasoning, e.g., the proving of 
theorems,  the diagnosing of diseases from a list of symptoms, and the ability to react 
to commands expressed in natural, as opposed to computer, language. 

In the mid-eighties there was a brief flurry of interest in AI in the computer 
industry (as opposed to merely in academic research laboratories).  This period was 
sometimes referred to as “AI Spring” by researchers who felt that at last the time had 
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come when some of their efforts would find commercial applications.  Unfortunately, 
it was soon followed by “AI Winter”. 

At the same time, computers were being applied to aid in the design of integrated 
circuits, specifically, to the problem, called the “placement and routing problem”, of 
arranging transistors on a chip so that they, and the metal traces connecting them, 
would take up the least space on the chip, thus allowing the physical size of the chip to 
be as small as possible.

At the company where I was working, programmers tried to make the programs do 
these tasks without human intervention. It was an all-or-nothing proposition, no doubt 
because programmers’ egos would be much more satisfied if their creations could do 
the entire job unaided.  What brilliance that would demonstrate!  

I argued for interactive programs in which the user could say, in effect, “OK, try a 
placement in which the following transistors... must be placed as indicated..., and these 
others... as indicated..., but the rest can be placed whereever you want, and then show 
me the results...”  Then the user could manually move transistors and/or wires and tell 
the program to try to find a placement with the placement of these transistors and/or 
wires being fixed. I pointed out that the interactive approach contained the non-
interactive one, in that one could simply allow the program to run to completion 
without subsequent user intervention. Nevertheless, I lost the argument. It is not quite 
correct to say that modern placement and routing programs are not interactive. It is just 
that the interactivity takes place at the program design level, not at the chip design 
level, by which I mean that, nowadays, the programs themselves are constantly 
modified in an attempt to improve their performance. But once modified, they run to 
completion, or until they run out of memory space, or time. 

It is a shame that a few tests weren’t run of the present way of doing things vs. the 
interactive way, because I believe that there are occasions when human visual 
intelligence is capable of seeing, in a few seconds, solutions to problems which would 
take a machine many minutes if not hours to arrive at.

Similarly, the Environment concept will someday yield computer programs 
designed to be used interactively. Students (or other users) will be able to tell the 
computer, “Spend five minutes trying to find the following integral...”, “Spend ten 
minutes or so trying to prove the following..., starting at ..., and using the following 
theorems...”  Then, depending on the results, they will be able to repeat the command, 
perhaps suggesting other strategies.

I argue that a student should only have to demonstrate once that he or she has 
discovered a useful heuristic for solving a class of problems. This heuristic may, of 
course, be embedded in a computer program. Thereafter, the student should merely 
have to set up the problem — e.g., a triple integral — and then ask the computer to do 
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the rest, perhaps aiding it by given suggestions, e.g., specifying the order of 
integration.  

Another example is: “Graph this function...” (Have you, as a student, ever been 
asked to write down a useful procedure for performing this task that works in the vast 
majority of cases?)

Along the same lines is the following thought.

Euler-on-a-Chip

Leonhard Euler (1707-1783)  is generally considered one of the four greatest 
mathematicians who ever lived, the other three being Archimedes, Newton, and 
Gauss.  He was certainly the most prolific among them.  His total output runs to some 
seventy volumes and has not been completely published to this day.  Yet to me — and 
I must emphasize that, first, this is a personal opinion which many mathematicians 
will probably disagree with, and, second, that this is the age of the computer —  many 
of Euler’s discoveries seem to be the result not so much of conceptual breakthroughs 
as of an extraordinary facility with algebraic manipulation.  By this I mean that these 
discoveries might have been made by a human, far less talented than Euler, but 
working with a computer, perhaps even a present-day computer, which allowed the 
user to enter the equivalent of commands like, “Beginning with the following equation 
..., see if you can come up with an equation of the form ...   Quit if you haven’t found 
anything after 24 hours.”  An example of this kind of problems is: 

“Beginning with the following series,

see if you can come up with an equation of the form,
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where “...” contains only primes p and the positive integer s.”

The answer, or rather, an answer, is Euler’s famous product formula,

where the product is taken over all primes p.
I point this out because I think it is important for students to recognize — to 

develop an intuition about — the difference between algebraic manipulations (no 
matter how complex or ingenious) and new ideas, e.g., the idea of a group, the idea 
behind Cantor’s proof that there are at least two different infinities.  In the age of the 
computer, it is natural to become impatient with problems which are merely 
manipulations. 

Of course, there is a gray area here when we talk about proving theorems.  Some 
proofs are almost a matter of filling in the blanks, given other theorems, others are not.  

My point is that you should not hate yourself when you sense that the 
mathematical labors before you are not intrinsically difficult, but merely tedious.  It is 
important to recognize this.

Undergraduate-on-a-Chip

Let me be frank: one of my goals is to create a set of Environments that will enable 
a motivated high school graduate to solve all the problems in a typical undergraduate 
math curriculum — or in fact in any typical curriculum in the hard sciences or 
engineering — just as fast as he or she can. That includes doing proofs and answering 
essay questions. I simply don’t see the benefit of forcing students to sit through x 
number of hours of class. Time-serving is for prisoners. 
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“It is a profoundly erroneous truism, repeated by all copy books and by eminent 
people when they are making speeches, that we should cultivate the habit of thinking 
of what we are doing.  The precise opposite is the case.  Civilization advances by 
extending the number of important operations which we can perform without thinking 
about them.” — Whitehead, Alfred North, quoted in Newman, James R., The World of 
Mathematics, Vol. 1, New York: Simon and Schuster, 1956, p 442.

Maybe years from now, for high school graduation gifts, some parents may give 
their kids something called, say,“Undergraduate-on-a-chip”, which will be a set of 
Environments convering all of undergraduate technical subjects, or least math 
subjects. These Environments will certainly have access to programs like 
Mathematica, and, possibly, to “reasoning modules” like that described under “Euler-
on-a-Chip” on page 133.

Notation is Not Merely Symbols

At some point in the mathematics education of most students, they hear about the 
importance of “notation” in mathematics.  The typical example used is the Arabic 
number system — meaning our familiar base 10 number system, which originally 
came from the Hindus — and the second typical example is the algebraic notation 
used to solve word problems, e.g., equations like 

x2 + 3x - 4 = 0

The third typical example, if the school offers a course in calculus, is likely to be 
the dx/dy notation of calculus.  

“[Edsger Dijkstra:] It’s very illuminating to think about the fact that some — at 
most four hundred years ago — professors at European universities would tell the 
brilliant students that if they were very diligent, it was not impossible to learn how to 
do long division.

“[Interviewer:] Long division?
“[Dijkstra:] You see, the poor guys had to do it in Roman numerals.  Now here you 

see in a nutshell what a difference there is in a good and bad notation.  A hard 
university subject can be brought to such manageable proportions that it can be taught 
in primary schools.  You have exactly the same thing with Greek mathematics, which 
also used letters to denote digits, and therefore didn’t have the notation necessary for 
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the introduction of variables.  Add the fact that they gave all their proofs not in a 
formalization, but in natural language, and you see that some of their proofs doubled, 
or tripled, and how certain parts of mathematics were a closed book to them.

“[Interviewer:] All because the tools were wrong.
“[Dijkstra:]Yes.
“[Interviewer:]And tools make the difference.  
“[Dijkstra:] They make a tremendous difference.  Because tools have such a 

profound influence on the thinking habits of the people who are trying to use them.” 
— Cashman, Michael W., “An Interview With Professor Dr. Edsger W. Dijkstra”, in 
Datamation, May 1977.

From Dijkstra’s words, and the above examples, it is not surprising if the student 
concludes that “notation is symbols”.   But that is not necessarily so.

A good notation is one that makes an intellectual task easier — in our case, a 
problem-solving task, or, more vaguely, a task of “understanding” the concepts of a 
technical subject.  It is true that a set of symbols is one way of doing this, but another 
way is to organize information in a way that makes it much easier to use.  Thus, a table 
— whether it be a table of logarithms or a table of integrals or a table of prime 
numbers — is a kind of notation in this sense.  So is a dictionary or an encyclopedia.  
And so is the organization of technical knowledge which an Environment is.  Structure 
is notation! Structure can do some of your thinking for you!

A way to keep yourself on the structural track as you create Environments is to 
follow, as closely as you can, the rule: Get rid of prose!  Let structure (and pictures and 
horizontal curly braces — see “Get Rid of the Equals Sign!” on page 111) show what 
the prose in textbooks usually says, just as Viete’s new algebraic notation in the late 
1500’s showed what pages of prose previously tried to say.

In my experience, computer scientists seem to have a much more robust and 
creative attitude toward notation than mathematicians do.  The reason is probably that 
computer scientists have been forced, by the very nature of hardware and software, to 
confront the issue of What vs. How, semantics vs. syntax. Every mathematics student 
should take a few computer science courses that stress the importance of the difference 
between semantics and syntax. (A course in the programming language LISP is 
certainly among these.) As one of our best writers on mathematics has put it:

“...the symbolism of mathematics is merely its coded form, not its substance.” — 
Stewart, Ian, The Problems of Mathematics, 2nd ed., Oxford University Press, N.Y., 
1992, p. 9.

“Mathematics is not about symbols and calculations. These are just tools of the 
trade — quavers and crotchets and five-finger exercises. Mathematics is about ideas. 
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In particular, it is about the way that different ideas relate to each other. If certain 
information is known, what else must necessarily follow?” — ibid., p. 10

“Someone once stated a theorem about prime numbers, claiming that it could 
never be proved because there was no good notation for primes. Carl Friedrich Gauss 
proved it from a standing start in five minutes, saying (somewhat sourly) ‘what he 
needs is notions, not notations’.” — ibid., p. 10.

What Should You Be “Allowed” to Look Up?

The better an Environment, the less work you have to do to find what you need in 
order to solve problems.  But sooner or later, you will begin to wonder how much you 
should be “allowed” to look up in the course of solving a problem.  In the case of the 
problem in  “A Trigonometry Problem” on page 219, should you be “allowed” to 
merely look up theorems on bisectors of angles and find the one that solves the 
problem?  Shouldn’t you concede failure because you didn’t remember that particular 
theorem (if you ever learned it at all)?

The answer to these questions is simple: suppose you had a photographic memory 
and you never forgot anything.  Would you allow yourself  to use anything you had 
memorized?  I suspect your answer is yes.  Therefore: you can use anything in any 
Environment (or in the extended Environment which is the textbooks you have 
available to you) — anything that helps solve the problem,  provided it does not beg 
the question, i.e., provided it does not assume what you are trying to prove, and, of 
course, provided the problem statement itself does not explicilty prohibit it (as in cases 
where you are asked to prove something without using a certain theorem).

Another answer is this: suppose online versions of standard math textbooks are 
made available to students.  Do you think you should be allowed to use the standard 
search facility which will no doubt be available with these online books to search for 
theorems containing a given word or phrase?   

“I began to read the paper [on nerve impulses in cats].  It kept talking about 
extensors and flexors, the gastrocnemius muscle, and so on.  This and that muscle 
were named, but I hadn’t the foggiest idea of where they were located in relation to the 
nerves or to the cat.  So I went to the librarian in the biology section and asked her if 
she could find me a map of the cat.

“‘A map of the cat, sir?’, she asked, horrified.  ‘You mean a zoological chart!’ 
From then on there were rumors about some dumb biology graduate student who was 
looking for a ‘map of the cat.’
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When it came time for me to give my talk on the subject, I started off by drawing 
an outline of the cat and began to name the various muscles.

“The other students in the class interrupt me: ‘We know all that!’
“‘Oh,’ I say, ‘you do? Then no wonder I can catch up with you so fast after you’ve 

had four years of biology.’  They had wasted all their time memorizing stuff like that, 
when it could be looked up in fifteen minutes.” — Feynman, Richard P., Surely You’re 
Joking, Mr. Feynman!,  W. W. Norton & Company, N.Y., 1985, p. 72.

 “The important truth which seems to have been understood, implicitly at least, 
from the very beginning [of Greek philosophy] is that learning is not a process of 
dishing out information. Some of this, of course, there must be. But it is neither the 
sole function of the teacher, nor yet the most important one. This is indeed more 
evident today than it was at that time, for written records were rarer and harder to find 
then than they are now. With us, it stands to reason that anyone who can read can 
collect information from a library. Less than ever before should a teacher need to pass 
on mere information...The role of the teacher is one of guidance, of bringing the pupil 
to see for himself.” — Russell, Bertrand, Wisdom of the West, Crescent Books, Inc., 
London, 1977, p. 68.

So, to answer the question that is the title of this sub-section: You should be 
allowed to look up whatever is look-up-able.  The rule for authors of textbooks and of 
complete Environments is: whatever can be made look-up-able, should be made look-
up-able.

Types of Computer Implementations of Environments

There are at least four types of computer implementations of Environments.  These 
are listed below. The first two you can implement yourself. All you need is a word-
processor with the usual text editing  facilities, plus math fonts, sufficient graphic 
capabilities to allow you to do simple, labelled, drawings, and a text search facility. 
Either of the second two types of implementations will have to be produced by a 
commercial software publisher (or an entrepreneur, perhaps yourself!)  since they 
involve extensive programming. 

 an off-line textual implementation in which the text is simply entered via a word-
processor and stored in text files for printing out whenever desired.  Such an 
implementation requires a word-processor with extensive mathematical symbols.  
Highly desirable, but not necessary, is some form of macro capability which will 
enable you to define the formats of certain types of text, e.g., theorem statements, and 
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then have the word processor automatically put the text (when it is suitably indicated) 
into that format.

 an on-line textual implementation intended for use on the computer itself.  Such 
an implementation is enormously simplified if the word-processor allows hypertext. 

 an on-line database implementation.  Here you actually input as much of the 
subject as you wish into a database, then access it to solve problems.  Thus, e.g., you 
might ask for all theorems which contain certain words (or synonyms thereof).

 an on-line database implementation with graphics, animation, and low-level 
reasoning facilities.  Here you will be able to ask the computer to graph an equation 
involving two or three variables, or various projections of functions involving more 
than three variables.  Animation will be available where appropriate to aid in the 
explanation of concepts.  Low-level reasoning facilities will allow you to enter 
requests such as “Spend up to about three minutes seeing if you can prove this 
lemma...  Try using the following theorems...”  

“Environmental Consciousness”

You will find that as you create Environments you will begin developing 
“Environmental consciousness”, meaning that you will begin developing the habit of 
observing (and writing down!) what is difficult for you in each subject and what you 
find could have been understood more rapidly had it been presented differently.  
Probably the three most common questions that experienced users of Environments 
ask are:

1. “Why is this difficult?” 
2. “How do I wish this had been presented?” A variant of this question is, “How 

could this have been presented so that I could have understood it ‘at a glance’?” 
3. “What do I spend most of my time on in the course of solving problems in this 

subject?”

 Importance of a  “Start” Environment

Once you have developed several Environments, you will begin to notice a need 
for an Environment which serves a similar function relative to all your other 
Environments as the Start Page serves relative to a particular Environment.  Call it a 
Start Environment.  It primarily contains references to other Environments, but it also 
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may contain information in itself, especially on topics which are found in many 
different subjects, or on subjects for which you have not yet had to start building an 
entire Environment in itself.  Thus, as an example of the first case, you might put all 
the theorems and lore (and references to same) which you come across concerning 
Pascal’s triangle, in your Start Environment.  Whenever you find, in the course of 
problem-solving, that you don’t know in which Environment a theorem or lemma or 
concept explanation which you need, is located, you add the correct reference to the 
Start Environment after you have found it.  

More on Heuristics

The invention (or discovery) of mathematical proof by the ancient Greeks was 
unquestionably one of mankind’s greatest achievements.  The detailed history of how 
the invention occurred will probably never be known, but conceivably it began with 
the question,  “How do we know that this statement is true in all cases?”, e.g., “How 
do we know that the only triangle that can be inscribed in a semi-circle — any semi-
circle — is a right triangle?"  (The answer, “Because it always has been true in the 
past,” was a perfectly good answer for the practical applications that mathematics was 
put to in pre-Greek cultures.)

Yet the question, “How did you go about discovering this proof?”, or, more 
generally, “How did you go about solving this problem?”, receives almost no attention 
in the university curriculum.  I think part of the reason is that mathematics professors, 
like the professors of all scholarly disciplines, have felt it important to maintain their 
priestly mystique and to exclude those not deemed eligible for admittance to the inner 
circle.  The temptation must be particularly strong in mathematics, the one discipline 
which is, in fact, in possession of eternal truths and a rigorous means of demonstrating 
them (the dream of every priesthood that ever existed!).

“...mathematical results are published and taught quite openly, but there is very 
little explicit teaching on how to do mathematics, and publishing besides the results 
also the heuristics that led to them is regarded by many as ‘unscientific’ and therefore, 
bad style: quite often the editor’s censorship will try to prohibit publication.” — 
Dijkstra, Edsger W., "Craftsman or Scientist?", address to conference on computing, 
1975, photocopy, p. 4.

“As for publications, mathematicians nowadays are almost forced to conceal the 
way they obtain their results.  Evariste Galois, the young French genius who died at 
the age of 21, in his last letter before his fatal duel, stressed how the real process of 
discovery is different from what finally appears in print as the process of proof.  It is 
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important to repeat this again and again.” — Ulam, S. M., Adventures of a 
Mathematician, Charles Scribners Sons, N.Y., 1976, p. 271.

“...Polya's larger work on the same subject [heuristics], Mathematics and Plausible 
Reasoning, has been cooly received by the mathematical community and has had at 
most a very minor influence on the teaching of mathematics at university level.  Its 
cool reception by the mathematical community says at second thought, however, 
nothing against the feasibility of Polya’s project.  On the contrary!  For its cool 
reception by the mathematical community can also be interpreted as the rejection by 
the mathematical guild that feels threatened, as all guilds do, when the secrets of their 
trade are made public.  To publish 30 years ago a book about the making of 
mathematical discoveries was heresy, as it still is in the eyes of many mathematicians 
today." — Dijkstra, op cit., p. 5.

Rightly or wrongly, I can’t help seeing a parallel between learning mathematical 
problem-solving in the West, or at least in the U.S., and learning to read in pre-modern 
China.  In both cases, the task is (was) accomplished only by a very small percentage 
of the population, and only with great difficulty except for the tiny handful for whom it 
comes (came) “naturally”.  Please understand that I am not suggesting, via the 
following quotation,  that mathematical notation is analogous to Chinese script. What  
I am suggesting is that the (ancient) way we teach mathematics is analogous to 
Chinese script, and that the Environment concept is analogous to Western writing 
systems.

“...in China, while you will find great numbers of people who know the 
significance of certain frequent and familiar characters, you discover only a few whose 
knowledge is sufficiently extensive to grasp the meaning of a newspaper paragraph, 
and still fewer who can read any subtlety of intention or fine shades of meaning.  In a 
lesser degree this is true also of Japan.  No doubt European readers, especially of such 
word-rich unsystematic languages as English or Russian, vary greatly among 
themselves in regard to the extent of books they can understand and how far they 
understand them; their power varies according to their vocabularies; but the 
corresponding levels of understanding among the Chinese represent a far greater 
expenditure of time and labour upon their attainment.  A mandarin’s education in 
China was, mainly, leaning to read.” — Wells, H. G., The Outline of History, 
Doubleday & Company, Garden City, N.Y., 1971, p. 492.

The main reason I wrote this book was to try to convince you, the math student 
(and, possibly, your teachers), that the old idea of “learning” this or that portion of a 
math subject so that then you can solve problems in that portion of the subject, is an 
extraordinarily inefficient way of approaching mathematics; that a far more efficient 
approach is to start with the classes of problems to be solved, and proceed from there.
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This approach shines a light, for the first time, on the problem-solving attempt 
itself; it puts in its proper place the traditional obsession with speed which has always 
been part of mathematics courses; it encourages you (and, I hope, your teachers) to 
study your own problem-solving attempts, to observe what you spend most of your 
time on and to think about ways to reduce that time, to control the thrashing which is 
so often the only real heuristic that math students apply, to start thinking about the 
problem-solving craft, to free yourself of the old obsession with answers, the old 
obsession with either-or, winner-loser, and instead to start thinking about good 
problem-solving craft vs. bad problem-solving craft.

As far as I know, this approach — at least as implemented in this book — is new.  
Among other things, it makes clear that books on problem-solving invariably assume 
(unconsciously) the existence of an Environment, i.e., one in the student’s head.  How 
many times have you read, in these books on problem-solving, statements like, “At 
first this looks like a very difficult problem, but if we just think it through and 
remember the rule, ‘Keep it simple!’, we soon see that...”; or “By working backwards, 
it soon becomes clear that we can apply the law of cosines...”; or “By following the 
rule, ‘Try to convert the problem into a problem you know how to solve’, we see that 
we can apply the transformation ... to each region and ...”

“A Trigonometry Problem” on page 219 will, I hope, make clear the difference 
between such superficial heuristics and those which are an inherent part of a good 
Environment.

There was a saying in computer science circles in the seventies, “You don’t 
understand something until you can program it.”   I say, “You don’t understand how to 
solve a given class of problem in mathematics until you are able to write down a 
procedure for at least approaching any problem in the class — for at least making an 
attempt that would get you more than, say, 65% partial credit in any exam.”  Not all 
the problems in the class of problems may be solvable!  For example, not all functions 
are integrable, and, of those that are, the techniques required to perform the integration 
may be unknown at any given stage of a student’s mathematical development.  Or they 
may be too difficult for students at a given level in their mathematical education.  
Nevertheless there is a workmanlike approach to doing integration.  I think it is a 
scandal that beginning calculus students are not encouraged to develop, and write 
down, such an approach, or failing that, that such an approach is not given to them.  
The argument that they must discover it for themselves is hyprocritical if the teacher 
does not encourage them to write it down and then use it and improve it through the 
doing of problems.  Otherwise, the argument is just more teacherly empty talk.   
Similar remarks apply to the solving of differential equations1.  On the other hand, if a 
derivative of a function exists, then there is always a way to find it — an algorithm 
142



Chapter 6 — More Ideas to Help You Build Better Environments
exists to find it.  Similarly,  although there is no algorithm for finding proofs, 
nevertheless there is a workmanlike way to go about searching for a proof, as 
explained in chapter, “Proofs”.

Let me go further and state boldly: calculus is the kind of thing that belongs in a 
machine.  Professors should make every effort to prevent students from confusing 
concepts and calculations.  Students should be encouraged not to “demonstrate 
knowledge of”, or to demonstrate memorization of formulas and rules but instead to 
demonstrate the effectiveness of written-out procedures for solving various classes of 
problems. The answer to the question, “Do you know how to do derivatives and 
integrals?” should be, “Here are the procedures that I wrote to perform these tasks.”  
The equivalent of some of these procedures may, of course, have been implemented in 
commercially-available programs.

Render unto the machine, that which is the machine’s, and unto humans, all the 
rest  

In fact, let me go further and assert, A calculus textbook is a great big calculator. I 
use the term “calculator” here for emphasis: it would be more correct to say “is — or 
should be — a great big computer program.”.  As you apply the Environment idea to 
calculus, you will understand more and more why I say this.

What we want — what we should be striving for — is a conscientiousness about 
heuristics — about making them explicit — that matches our conscientiousness about 
logic. 

I will conclude this section with a second answer to the question, “aren’t heuristics 
at the center of mathematics teaching?” The second answer is that heuristics seem a 
rather peripheral concern to teachers who never themselves have to learn new, back-
breakingly difficult subjects. Primary, middle, and secondary school teachers teach the 
same math subjects year after year. Some may attempt to increase their knowledge of 
these subjects, and/or improve their skill at teaching them. But these are entirely 
different matters from attempting to learn how to solve problems in new subjects.

1. As far as I know, to this day there is not a published table or flow-chart that allows a person 
wishing to solve a differential equation to start at the top and work his way down to a list of the 
names of methods that can be used to solve that particular equation. Instead, the student is 
expected to take sufficiently many courses so that he can create the equivalent of such a table 
in his mind. Yet another example of the shocking backwardness and professor-serving nature 
of the mathematics culture.  
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Essay Questions on a Math Exam?  Yes!

One of the iron-bound articles of faith of mathematics teaching is that the only 
acceptable demonstration of understanding is the ability to solve homework and exam 
problems.  The ideal class of students, for many college math teachers, would be one 
which could be given theorem, proof; theorem, proof; ... and nothing more, because 
that is, after all, the essence of any mathematics subject.  (As elsewhere in this book, I 
am assuming that theorems include the statement of formulas for solving problems).  
By studying the theorems and the proofs, this ideal class would then be able to do the 
homework problems and get good grades on exams.  They would “understand” the 
subject.

These same teachers, however, if asked to evaluate a student’s (or a prospective 
colleague’s) understanding of a subject in a face-to-face interview, do not ask the 
interviewee for a recitation of theorems and proofs, nor do they give the interviewee a 
random selection of textbook problems to solve.  They instead ask for what amounts to 
a restatement of some of the key ideas of the subject in the interviewee’s own words 
(including, of course, the key ideas of some of the most important theorems).  They  
probe how well the interviewee knows the “lay of the land” of the subject.  This 
metaphor is entirely appropriate, because the teachers are proceeding as though 
“understanding the subject” meant having a big diagram (map) of the subject 
somewhere (in the interviewee’s mind and/or on paper and/or — who knows? — on 
the walls of the interviewee’s study) and then being able to talk informally about the 
contents of the diagram, just as one who has drawn or otherwise obtained a map of a 
country and acquainted him- or herself with it, is able to talk informally about the 
geography of the country with an ease that is the envy of listeners who don’t possess 
that map.

The late John Holt, unlike virtually all other experts in education, actually spent 
time in the classroom, and not only that, spent time talking to students (in this case, 
primary school students) trying to find out how they thought about what they 
supposedly knew.  

He was amazed to find that some students who got consistenty high math grades 
often had very little conceptual grasp of the mathematics which, on the basis of their 
performance on homework, classroom and exam problems, they supposedly 
“understood” .  Instead, they had become extremely skillful at reading the teacher’s 
non-verbal clues as to the right answer. 

One way of building conceptual understanding is by talking and writing about 
concepts, specifically, by responding to questions like:  “Describe how you go about 
solving a problem of the type ...” (i.e., give your heuristic for solving this type of 
problem); “Draw a map (e.g., a Venn diagram) of all the types of” (such-and-such 
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entity) “which we have studied in this subject;” “Describe as clearly as you can the 
parts of this subject which you find most difficult and try to give reasons why you find 
them difficult;” “State informally, in your own words, what you understand the gist of 
the” (such-and-such) “Theorem to be;” “What are the kinds of acceleration we have 
met with so far?  Show which is a sub-set of which.”;  “If the angular speed of a ball 
whirled on a string is constant, how can it be undergoing acceleration toward the 
center of the circle?” “Describe how you might test Newton’s Third Law.” Essays on 
math exams, despite the contempt with which they are viewed by many in the 
mathematical community, are now becoming more common, as part of the so-called 
“New New Math” (which is distinguished from the “Old New Math” that fluorished in 
the sixties and was aimed at teaching young students set theory, arithmetic in other 
than the decimal number base, and other abstruse subjects).

If you have doubts about this, I invite you to look at the heuristic (here, an 
algorithm) under “linear congruence, how to solve a” on page 211. Given such a 
heuristic, and assuming that you have proved that it is correct, what is the point of 
working exercises that ask you to solve linear congruences (other than, perhaps, the 
pleasure of seeing the heuristic in action)? You have already done the important work, 
the hard work, in developing the heuristic. 

Similarly — and I know this will sound outrageous to many math professors — I 
don’t see the point of working calculus problems until the heuristic is in place. It is 
well known that an algorithm exists for obtaining derivatives, but not for doing 
integration. Nevertheless, there are better, as opposed to worse, ways for approaching 
integration problems, and your business, as a success-oriented student, is to write 
down a heuristic as soon as possible, modifying it as you go. Given any integration 
problem that you are likely to encounter in the present course, or that you encountered 
in any past course, how should you proceed? Certainly an early step will consist in 
checking if the integrand is a sum, in which case you will break it down into a sum of 
integrals. 

Once you have come to agree with the heuristic-first point of view, you may may 
understand why I say that calculus is the kind of thing that belongs in a machine. I 
don’t believe there is any great value in proving, over and over again, to a succession 
of teaching assistants and professors, that you can do certain basic algebraic operations 
which follow from the definitions of derivative and integral, even though you still 
make mistakes in doing them. Learn them once, write them down, and then let a 
computer program (like Mathematica) do them from then on. Render unto the machine 
that which is the machine’s, and unto humans, all the rest.
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On “Understanding”

A frequent criticism of the Environment idea has been that it is merely a 
“cookbook” approach to learning, and that students do not benefit from cookbook 
approaches because these approaches aren’t based on “understanding”.  But I have 
never heard of a professor writing on a student’s exam paper, “It is true that you got all 
the answers right, and that the methods you used were all correct, but since I am 
suspicious that you do not really understand what you did, I am giving you an F.”

As I think you will agree when you have begun developing and using 
Environments, the method is by no means a cookbook approach in the sense that it 
encourages you to merely memorize formulas and procedures.  All that an 
Environment does is allow you (not force you) to know as little as you really need to 
know in order to solve a given class of problem.  (In the computer industry, this is 
called “just-in-time learning”.)  Its very characteristic of rapid access to the 
information you want, encourages you, I think, more than any traditional textbook, to 
investigate why certain procedures and heuristics work.  Rapid access to what you 
want to know is an aid, not a detriment, to understanding.

But let us not throw the baby out with the bath!  A cookbook approach is not 
necessarily a bad thing.  The astronauts use such an approach, in the form of a check-
list, whenever it is important that no step be overlooked.  Scientific experiments are 
often conducted in the same way, in order that the researchers can be sure that 
variations in procedure do not influence the outcomes.  You  can be sure that the 
Viking Lander  experiments in 1976 that tested for signs of life on Mars followed a 
cookbook approach.

You might reply that, in order to set up the the list of steps, understanding is 
required.  But even here, I see nothing wrong with attempting to develop a checklist 
for all the issues that must be dealt with in an experiment that falls into a given class of 
experiments, e.g., issues such as (in biology) temperature control,  purity of sample 
and of surrounding conditions, etc., and (in physics) issues such as accounting for all 
potential sources of energy gain and energy loss.

A cookbook approach is only bad when the user does not know and cannot find 
out, easily and quickly, the reason for each step.

On Drawings

(This section expands on the section, “Use Drawings!” on page 89.)
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I am convinced that the vector calculus and, in particular the divergence, gradient, 
and curl functions, particularly as they are used in field theories in physics, could be 
made much more rapidly understandable by the right pictures.  But no one wants to 
spend the time it would take to create the right pictures. Far better — far easier — to 
cover the page with explanatory prose and equations.

“The reason Dick’s [Feynman’s] physics was so hard for ordinary people to grasp 
was that he did not use equations.  The usual way theoretical physics was done since 
the time of Newton was to begin by writing down some equations and then to work 
hard calculating solutions of the equations.  This was the way Hans [Bethe] and Oppy 
[Robert Oppenheimer] and Julian Schwinger did physics.  Dick just wrote down the 
solutions out of his head without ever writing down the equations.  He had a physical 
picture of the way things happen, and the picture gave him the solutions directly with a 
minimum of calculation.  It was no wonder that people who had spent their lives 
solving equations were baffled by him.  Their minds were analytical; his was 
pictorial.”  — Dyson, Freeman, Disturbing the Universe, Harper & Row, Publishers, 
N.Y., 1981, p. 56. 

“Felix Klein [one of the leading mathematicians of the nineteenth century] did not 
hesitate to admit, ‘To follow a geometrical argument purely logically without having 
the figure on which the argument bears constantly before me is for me impossible.’”  
— Kline, Morris, Why Johnny Can’t Add, Vintage Books, N.Y., 1973, p. 57.

“Quantitatively, a person can visually absorb information equivalent to millions of 
characters a second, while the normal rate for reading text is less than 100 characters 
per second.” — Ingalls, Daniel, Byte, Aug. 1981, p. 168. 
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