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Introduction

Whenever you are asked, in a problem, to show something, or demonstrate some-
thing, or verify something, (or, of course, prove something), you are being asked to do
a proof. This chapter deals with answering the following questions from “The Princi-
pal Classes of Homework and Exam Problems” in chapter 1:

¢ “How can I break the proof of theorem ¢ down into pieces I can understand?”

¢ “What theorem or lemma or axiom enables the author to go from this assertion to
that one in this proof?”

¢ “How do I prove the statement s?”

Learn How Proofs Work!

Many students of engineering, and even some physics students, even some math
students!, don’t like doing proofs. They feel that proofs are somehow mere formali-
ties, an attitude summed up by the student who, after a professor had spent the better
part of a class hour carefully explaining a proof, stuck his hand up and asked, “Profes-
sor C —, is any of this important or is it just mathematics?”

Can you get through a technical education — in particular, one involving a lot of
mathematics — without knowing how to do proofs? I suppose so, but it will mean you
will have to rely on your intuitive understanding of logic, which almost certainly will
be inadequate for all but the simplest proof problems, or else you will have to re-invent
the basic rules on your own. (Do you know the difference between “for all x there
exists a y such that...,” and, “there exists a y such that, for all x, ...”?) So why not take
the easy way out and learn the rules early in the game? I won’t say you need to under-
stand formal logic in order to get through everyday life — although, to comprehend
the deception of much advertising, it certainly helps to understand the logical fallacy
known as post hoc ergo propter hoc (“after this, therefore because of this””) — but
somehow I feel that to be truly civilized, you need to know, or at least know where to
find out if you have to, what a logically valid argument is.

One reason why many students are uncomfortable with proofs is that the students
have never been given a clear, concise presentation of what a proof is and how to go
about constructing one. The best book I know of for this purpose is Marvin L. Bit-
tinger’s Logic and Proof (Addison-Wesley, Menlo Park, Calif., 1972; the latest edition
is titled, I believe, Logic, Proof, and Sets, from the same publisher). It is as brief and
clear as I believe the subject can be made. Once in your life you should go through it,
or a book like it, and work all the exercises. You may not be able to prove everything
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you want to after that, but you will at least always know how to set up the proof task,
you will understand the meaning of various terms associated with proofs, e.g., if and
only if (i.e., equivalence, often abbreviated iff), contrapositive, proof by contradiction
(also known as indirect proof), necessary vs. sufficient, and you will know some basic
techniques to try, and know if each step is logically valid. You will also know the rela-
tionship between mathematical logic and set theory. Do yourself a favor: once and for
all, learn how proofs work!

Proofs and Programs

There is a similarity between mathematical proofs and computer programs that
you should keep in mind. A long mathematical proof typically begins with certain
definitions, then a number of lemmas (i.e., theorems to be referred to in the main
proof) are proved, then the main proof is given, referring to the lemmas as it proceeds.
This is precisely the way a well-designed computer program is written: first come var-
ious declarations (analogous to definitions), then a series of procedures — in some
programming languages they are called “functions” and in Assembly language they
are called “subroutines”— (analogous to lemmas) and finally the main program (anal-
ogous to the main proof), which is often no more than a page long, and consists pri-
marily of invocations of the procedures.

The following table summarizes the similarities:

Table 1: Similarities Between Programs and Proofs

Computers Mathematics
subsystem (“large program”) branch of mathematics
function theorem
algorithm idea of proof of theorem

implementation of the algorithm in an | actual written proof
actual computer program

declaration definition

procedure, function, subroutine lemma
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Table 1: Similarities Between Programs and Proofs

Computers Mathematics
main program main part of proof of theorem
structured program structured proof

How to Write Up Proofs in an Environment

In other books this section would be called How fo Study Proofs. When you make
an Environment, however, studying the proof and entering it into the Environment are
the same thing.

Why Are Proofs So Difficult to Understand?

To many students, it often seems that, somehow, by sheer genius, the author of a
proof has managed to string together a sequence of statements which, by God, once
you follow them all, do seem to prove the lemma or theorem asserted. But nowhere in
sight is the overriding idea that governs the proof and its subordinate proofs. The pre-
sentation of the proof wouldn’t be much different if in fact the author had come up
with the proof by pure trial and error, pure random selection of statements.

The main reason proofs are so difficult to understand is that the way they are
presented requires that you understand all of the argument as it proceeds. Proofs are
written as a succession of paragraphs. Even if, as is often the case, the proofs invoke
previously proved lemmas, the proofs require that, as you proceed, you somehow hold
in mind the entire argument which has so far been developed. A very difficult task
indeed, in many cases, especially when the proof runs to more than one page

Another reason why proofs are so difficult is that textbook authors and professors
in classrooms do not consistently give the justifications for each statement in a proof.
Often there is a tacit assumption — a knowing wink to future members of the Club,
namely, the future mathematicians in the class — that the student will know what the
justification is. The effect is what I suspect all too many textbook authors and profes-
sors hope that it will be, namely, the intimidation of the student. “If I can’t see imme-
diately what the justification of that statement is, then clearly I have no business
studying mathematics. In fact, [ have no business staying alive!” If pressed as to why
they do this, authors and professors will sometimes reply that they wanted to “keep the
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proof as short as possible”. If asked why this is desirable, they will reply that it makes
understanding easier. (How do they know?)

A third reason why proofs are so difficult to understand is that textbook authors
and professors in the classroom do not always explain what the immediate goal of a
particular sequence of steps is. Of course, the ultimate goal is to prove the lemma or
theorem. But in a long proof, there are typically several interim goals which can be
explained, beforehand, in language like, “Our immediate goal is prove ... To do this,
we will first show ..., then we will show ..., and these two facts will then imply ...”

A Way to Overcome These Difficulties — Use Structured Proofs!

Background: The Control of Complexity in Computer Programming Using
Structured Programs

In the early days of computer programming, programmers confronted problems
similar to those confronting students of mathematics (and professional mathemati-
cians!). When programmers attempted to understand another person’s program (or
even one of their own if they hadn’t worked on it recently), they had no choice but to
understand how each successive statement led toward the value which was to be com-
puted. For programs of more than a page or two, especially programs which had few
or no explanatory comments (because the person who wrote the program thought his
reasoning was “obvious”) this was often a hopeless task insofar as understanding
meant being able to say with some assurance that the program was correct or incor-
rect.

A giant step toward the solution of this problem was structured programming, as
developed by Dijkstra and others (see “Fundamental Concept 2: ‘Structure, or Break-
ing Complex Thing into Simpler Things”, in chapter 3), and which was already mag-
nificently implicit in the very structure of LISP programs. (In pure LISP it is, for all
practical purposes, impossible to write an unstructured program.)

The basic idea — as summarized above in the sub-section “Proofs and Programs”
on page 99 — was this: begin with a main program made up of a “few” statements or
commands, say, half a dozen or so, and show that if'the function computed by each
statement or command was what it was supposed to be, then the function computed by
the entire main program would be what it was supposed to be. Then recursively apply
this technique to each of the statements or commands in the main program, since each
statement or command must be implemented by its own program. Eventually the pro-
grammer would get to statements or commands whose implementations were provided
by the programming language itself, and could be presumed correct, and the process
would stop, having produced a correct program.
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The Control of Complexity in Mathematics Through Use of Structured Proof

There is no reason why the basic idea of structured programming cannot be
applied to proofs, and that is precisely what we do in Environments.

In a structured proof — see, e.g., “A Much Better Approach” on page 118 — we
proceed exactly as in a structured program. We break the proof down into a few major
steps — say, less than seven. (The number seven is chosen here because studies by
psychologists suggest that this is the maximum number of steps the average program-
mer can comprehend “at a time”.) The top level of the proof is analogous to the main
program of a computer program.

The steps must constitute a complete logical argument for the validity of the theo-
rem or lemma if each of the steps is valid.

The validity of each step is then established by separate proofs referred to at the
end of each step. “(See...)” tells the reader where the proof of that step is to be found.
Of course, if the step consists of a statement that the course assumes is valid, then you
don't need a reference to a proof. You only need to refer to the statement. Sometimes,
the proof of the step can be done in a few lines, in which case, you can give the proof
immediately below the step.

Each proof of a step, sub-step, etc., is composed of sub-steps, sub-sub-steps, etc.,
which, if'each is valid, constitute a valid logical argument for the validity of the step,
sub-step, etc. Where the process stops depends on your level of knowledge, or what
you are allowed, in the course you are taking, to assert without proof.

Let me emphasize that the argument in each proof and sub-proof must make sense
in itself — must be a convincing, valid, logical argument as it stands, the only condi-
tion being that you or the textbook author has somewhere proved the validity of each
step (indicated by “(See...)”). Thus, for example, a sub-proof might run something
like:

n.1 xis a y having the property z.
(See ...)

n.2 But all y having the property z also have the property w.
(See ...)

n.3 Therefore x has the property w (by a theorem of basic set theory), which is
what we were to prove."
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Here, n is the number of the step in the next higher level proof which these steps prove
the validity of.

Each step that is not proven by a sequence of sub-steps, but instead follows from a
known lemma or theorem, must reference that lemma or theorem in a way that will
allow you to quickly look it up days, weeks, months, years from now. Without ques-
tion, the failure by authors of standard textbooks to systemmatically and completely
provide these references has probably cost students more time over the years than any
other single failing of textbooks. (I have even heard professional mathematicians com-
plain about the time they had to spend trying to figure out what lemma or lemmas jus-
tified a statement in a proof.)

Think how much time you would have saved over the course of your math studies
if you always had been given the lemma or theorem reference, with page number, that
justified statements that weren’t justified in the proof itself. If the lemma or theorem
used is not contained in the textbook, then a reference to the lemma or theorem in a
well-known text should be given, or else its name, if it has one, or a brief description
of'it, so that you could quickly find it in a standard text.

You can see, I think, that structured proof is a giant step toward removing the three
difficulties explained above under “Why Are Proofs So Difficult to Understand?”” on
page 100.

Once you start doing proofs in this way — I mean, doing difficult proofs this way,
since, obviously, you will not want to invoke all this machinery for proofs that are only
a few lines long — you will see how negligent most textbook authors are. For, by
rights, they should a/ways make explicit exactly what level of knowledge they are
assuming on the part of the student, and then they should provide detail in their proofs
down to that level of knowledge. Period. Everything else should be explicitly refer-
enced to theorems, lemmas, definitions in the textbook.

And you should now see how devious the argument is that by omitting justifica-
tions of statements, a proof is made shorter and therefore easier to understand: it is true
that it is easier to understand a small number of steps at a time than a large number of
steps at a time. That is why you should have no more than about seven steps at each
level of your proof. It is not true that by keeping the total number of steps small, the
entire proof will be more easily understandable, because usually that means that the
author is simply leaving out groups of steps and/or explicit references to other theo-
rems and lemmas. He is giving you an “encoding” of the proof. But the process of
“decoding” takes time! You either have to have previously learned and retained in
memory the omitted steps, or you have to spend time figuring out what the omitted
steps are, and then why they are valid. To do the latter, you must either do the proofs
yourself or find them elsewhere in the textbook or in another textbook. The technique
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of structured proof trades pages of paper (or computer screens) for time: a structured
proof is normally longer than the typical textbook proof, but it can be understood and
memorized in much less time.

Structured Proofs Make All Proofs Look *“the Same”!
We quote from an email we sent to a person doing research on ways of aiding
undergraduates’ comprehension of proofs in the traditional format.

All structured proofs can be represented by finite trees, in which:

The statement to be proved (e.g., lemma, theorem) is associated with the root
node;

Descending from that node is a small number of branches; the nodes on the ends of
the branches, reading, say, from left to right, being the statements that, taken in
succession, constitute a correct proof of the node statement;

Descending from each of these nodes is a small number of branches, the nodes on
the ends of these branches, again, reading, say, from left to right, being the state-
ments that, taken in succession, constitute a correct proof of the node statement
immediately above.

Etc.

Of course, some proofs of statements can be simply a reference to a known true
statement from another subject, or to a statement proved earlier in the course.
Eventually, levels must be reached in which this is true for all the statements
descending from each node.

That's it! End of story! The tree format I have just described works for simple
textbook examples, or for more difficult exercises at the end of a chapter, or for
proofs in PhD theses, or for Wiles's proof of Fermat's Last Theorem, which origi-
nally at least ran to well over 100 pages, or for ...

Why Isn’t Structured Proof the Normal Way We Do Proofs?

The idea of structuring proofs in the same way that programmers structure pro-
grams goes back to the seventies at least, although the earliest use of the term “struc-
tured proof” I have seen in print is the title of an example given by Leslie Lamport in
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Knuth, Donald E., et al, Mathematical Writing, MAA Notes No. 14, The Mathematical
Association of America, Washington, D.C., 1989, p. 72. Later papers on the subject
include: Lamport, Leslie, “How to Write a Proof”, American Mathematical Monthly,
Vol. 102, No. 7, Aug.-Sept., 1995, pp. 600-608; and Back, Ralph; Grundy, Jim; von
Wright, Joakim; “Structured Calculational Proof”, Formal Aspects of Computing, 9(5-
6), 1997, 469-483.

So why hasn’t structured proof become the norm? Why do mathematicians con-
tinue to use a format for presenting proofs that makes the proofs more difficult to
understand than necessary? I think there are at least two reasons:

(1) Mathematicians are naturally conservative about the way they present their
results because the present way, which goes back to Euclid, some 300 years before
Christ, has enabled them to produce such a stunning body of knowledge. It is a tried
and true method.

(2) The present way enables them to keep the Club exclusive: the kind of subtlety
of language, the kind of — let’s call what it is: pedantry — that is currently required
for an acceptable mathematical writing style, can normally only be learned by those
who have attended certain schools. If it is virtually impossible to write in the style I
require without your having studied under me, or under the (very few) people I
consider my equals, then I am able to severely limit membership in my Club.

(It would make a very interesting master’s, or perhaps even PhD, thesis to
investigate the subtleties of language (not of content, but of language) that distinguish
papers published in the most prestigious mathematics journals from those published in
the least prestigous journals. It would be the equivalent of a study of what is
considered good manners among the most elite social stratum in this country, vs. what
is considered good manners in the middle class.)

In passing, let me try to dispel the myth that journal papers are how new results in
mathematics are communicated. This wasn’t true before the development of the
Internet, when colleagues circulated drafts of papers among each other, and it is even
less true now, when it is becoming more and more common to be able to access
mathematical papers on the web. Publication in journals is for the purpose of
registering what those in the specialty already know. It is for building careers, not for
communicating knowledge.

Structured proof requires a much less elaborate writing style. It reduces the impor-
tance of syntax in mathematics papers, because it imposes a stricter form on proofs:
form does some of the work that otherwise words have to do.The form of a structured
proof is very simple, as we have seen. It consists of a few steps, each of which con-
sists of a statement and a reference to the justification of the statement. Period. True,
a brief idea of the strategy to be used may often be required at the start of the proof as
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an aid to understanding, and each statement must be clear. But there is much less need
for the kind of fussing over style which is present in a book like Knuth’s Mathematical
Writing (ibid.), with, e.g., its pages of discussion devoted to the corrrect usage of
“which” vs. “that”. Be honest: if you read in a textbook, “4 is the set which we have
been seeking,” and someone asked you, “What is 4?”, would you be unable to answer
the question until which was replaced by that? Or if you read, “In order to rapidly cal-
culate this quantity, we can use the method described on p. 27,” would you throw up
your hands in utter perplexity as to what the sentence means because you do not
understand the meaning of split infinitives like “to rapidly calculate”? One of the
experts quoted in Knuth’s book says, “A split infinitive should really jar. ‘It’s got to
light up in red!”” (ibid., p. 47). Apparently, the expert is unaware that the book that is
considered by many to be the supreme authority on correct English usage, namely,
Fowler’s Modern English Usage, allows split infinitives in many contexts. In fairness,
however, I must point out that Knuth and another of his experts do not prohibit split
infinitives at all times (ibid., p. 114).

In Mathematical Writing (ibid.) we read “Don [Knuth] says that a computer pro-
gram is a piece of literature. (‘I look forward to the day when a Pulitzer Prize will be
given for the best computer program of the year.”)” — ibid., p. 21. To me, this reveals
such a colossal misconception of the nature of computer programs that I cannot help
but point it out here, and cannot help but warn students to question the value of what
Knuth says about the writing of mathematics. A computer program is emphatically not
a piece of literature. Ever since the late fifties, complex computer programs have been
generated by other computer programs (namely, by programs called compilers and
interpreters), and programs, as far as we know, have no literary skills at all. No com-
puter program, to my knowledge, has produced anything that anyone would want to
call a piece of literature. A computer program, whether generated by a machine or not,
is a sequence of instructions that can be executed by a machine. Making a program
easy to understand by humans is not primarily accomplished by literary skills, it is pri-
marily accomplished by organization and formatting. When a class of programs aimed
at solving a particular type of problem starts to become too complex, the solution is
normally to define a higher-level language that hides many of the details that contrib-
ute to that complexity. The solution is nof to find programmers with greater literary
talents!

In mathematics, a similar prejudice towards words and style prevails regarding the
nature of proof. “A proofis a story,” says lan Stewart in a book published in 2006
No, itisn’t. A proof is — or should be — an argument presented in structured format
with the goal of enabling qualified readers to understand it to the depth they choose in
the shortest possible time. If you want to read stories, become an English major.
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It is remarkable how Stewart misunderstands the nature and purpose of structured
proof. He says: “Structured proofs make explicit every step in the logic, be it deep or
trivial, clever or obvious. ...there can be no doubt that [structrured proofs] can ve very
effective in making sure that students really do understand the details.” !

But the main purpose of structured proof is not to present details! It is to place
details where they belong, namely, at the deeper levels of the proof, and to allow the
reader to understand the Big Picture, the structure of the argument of each step and
each sub-step. Stewart’s distinguishing between deep and trivial, clever and obvious
steps reveals all too clearly the mentality of the professor: “the good students will
understand this next statement...”. How does he know? Has he explicitly stated, at the
start of his textbook, exactly the minimum set of skills and the minimum knowledge
he assumes of all readers? The successive structuring of the proofs of steps ends with
those steps the reader can be assumed to accept based on the stated minimum set of
skills and minimum knowledge. Whether a step is deep or clever has nothing to do
with it!

Why should a proof contain knowing winks and nudges aimed at future members
of the Club? Why should a proof be yet another mechanism for separating the winners
from the losers? Why can’t a proof be simply what it is, namely, an argument?

Perhaps the belief — which is certainly held by many mathematicians besides
Stewart — that “a proof'is a story” is part of the reason for those narratives that are so
common in textbooks and are so perplexing to many students, namely, the narratives
that begin, without explanation of their purpose, with sentences like, “Suppose that ...,
and suppose further that ... Then ... This in turn implies ...” and on and on, leading
the reader down the walk through the woods until only at the very end does he or she
discover that the purpose of this story has been to prove the statement p. Perhaps the
textbook author hoped to make the proof of the statement p more interesting in this
way. [ don’t know. ButI do know that, whether textbook authors like it or not, an
argument is more easily comprehended if the reader knows in advance what the pur-
pose of the argument is.

An obsession with words permeates contemporary mathematics culture. A mini-
mum of two published papers a year is required for tenure. Thereafter, one of the
important measures of a mathematician’s reputation is the number of papers he has
published. The paragraph-based, prose-centered format of proofs has placed a pre-

1. Letters to a Young Mathematician, Basic Books, N.Y., 2006, p. 89. My criticism of Stewart’s
view of the nature of proof is in no way intended to detract from his deservedly high reputation
as a mathematician or from his reputation as one of the best popularizers of mathematics of our
time.

1. Ibid., p. 91.
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mium on fine points of style, much of it the most outrageous pedantry. But what mat-
ters is not numbers of papers but originality of ideas. That is what is important.

I don’t believe that the Math Dept. should be part of the English Dept.

[ urge you not to dismiss structured proof until you have rewritten a few textbook
proofs in structured form, and seen how this form makes clear the essence of the argu-
ment, and how the form enables you to dispense with a great many concerns about
“how shall I say this?” It is a basic tenet of this book that the less important — the
less needed — the fine points of prose writing become, the better for both the creators
and users of mathematics. “Let the format do your writing for you” is a motto I rec-
ommend, always understanding that this is a bit of an exaggeration, since some writing
will always be necessary.

A More Formulaic Approach Can Speed Writing and Understanding

I want to conclude this sub-section by arguing that a// of mathematical writing, not
only proofs, can be made far more formulaic than the current proponents of “good
style” believe. You need not read the following if you have no intention of ever doing
any writing of formal mathematics.

Semantic Categories in Mathematical Writing

Whenever we write something in mathematics, we have a specific purpose in
mind: to define something, to state a lemma or theorem or conjecture, to prove a
lemma or theorem or conjecture, to give an informal idea of what we are about to
prove, etc. Each of these purposes — each of these tasks, “jobs” — define what I will
call a “semantic category”. In other words, by a “semantic category” I mean a set of
words, phrases, or sentences having a single purpose.

Definitions constitute a semantic category. Here the purpose is to establish the
meaning of a term which we introduce.

Lemmas, theorems, corollaries, and conjectures constitute another semantic cate-
gory. Here the purpose is to state (in the first three cases) something that is true, and,
in the last case, something that we believe might be true.

Proofs constitute another semantic category. Here the purpose is to establish the
logical validity of a lemma, theorem, corollary, or conjecture.

Informal remarks constitute another semantic category. The purpose here is to aid a
reader’s understanding of a formal argument, or to call his attention to certain matters.
This category is the one and only one where literary skills will continue to be of great
value.

References constitute another semantic category. The purpose here is to let the
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reader know where the proof of a relevant lemma, theorem, or corollary can be found,
or where an exposition of a given subject can be found.

Indexes constitute another semantic category. The purpose here is to enable the
reader to rapidly find definitions, lemma statements, proofs.

In mathematics papers published in journals, abstracts constitute yet another
semantic category.

The reason why I have given a special name, “semantic categories”, to these famil-
iar parts of mathematical texts is that I want to separate the task to be performed, from
the means of performing it. I want to put into its proper place the kind of pedantry that
is promoted in books like the above-mentioned one by Prof. Knuth. I want to make
clear that there are many different ways to perform each task.

But you might be inclined to say that in principle there is an infinite number of
words, phrases and sentences, in each category. That is true, but I will argue that there
is only a finite number of sub-tasks, sub-“jobs” — sub-categories — in each category,
and that each can be covered by a format. This is not the place to go into detail on
each of these. 1 will simply give a few examples:

¢ Every logical statement can be expressed using the logical terms if, if-and-only-
if (iff), and, or, not, then, there exists, for all, and others, in the way that is taught in
basic logic and set theory courses. There is nothing sacred about literary variations on
if such as “let” and “suppose”.

¢ Every definition can be expressed in one of a small number of formats, e.g., “If
<statement of condition(s)> then we say that ... is <new term>".

e As we have seen, every proof can be expressed in the form of a structured proof.

At this point, you might argue that it is well known that all of mathematics can be
formally expressed using symbolic logic, and so why am I going through all the trou-
ble of making that case again. The answer is that most human beings find it very diffi-
cult to read mathematics that is expressed in nothing but the symbols of symbolic logic
and the symbols of a given branch of mathematics. My purpose here is, instead, to
argue that if mathematics aimed at human consumption were written in the more for-
mulaic way described, then (1) the mathematics would be much quicker to write, and
(2) it would be much quicker to understand, because recognizing formats would
replace much of the labor that currently has to be done in reading prose.

I will conclude with an extremely controversial statement: if the mathematics
world continues to insist on doing things the old way, then I do not believe it should be
the author’s responsibility to fine-tune his paper to the stylistic requirements of this
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journal, and then that journal. Keeping up with the syntactic nuances that each journal
editor has decided are the sine qua non of publication is not how a mathematician
should be spending his time! He should be able to give his paper to a person expert in
the journal’s requirements, pay him a reasonable fee, answer his questions about
obscurities in his paper, and that should be that! He has better things to do with his
time.

Contrary to popular opinion, mathematics is not a language. It is a system of
abstractions, held together by formal logic, and representable in an infinity of lan-
guages, some of them better for human use than others.

Aim for Understanding Each Proof and Sub-Proof “at a
Glance”

In writing up proofs, you use the same techniques which were described in “Aim
for ‘Understanding at a Glance’” in chapter 4. In addition to these, you can and should
use the following techniques, which apply specifically to proofs.

Use Standard Form for all Theorem Statements

A standard form for all theorem statements makes it immediately clear what the
logical form of the theorem is. This is a great help in constructing a proof. In my own
experience, a simple form incorporating indents seems best, e.g.:

If ...
and ...
or ...
Then ....
For all ...

iff
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If ...
Then ...
iff

and not ...
etc.
The rules, in brief, are:

¢ Begin every line with a logical connective — If, and, or, Then, etc. —
(except when a line is the continuation of a long previous line). (In paper Environ-
ments, you can use a double-underline instead of boldface.)

e Indent when the logical connective(s) are within the scope of the next previ-
ous logical connective.

Number the Steps in Every Proof and Sub-Proof

In mathematics journals, steps are almost never numbered; each proof is written
out as a succession of paragraphs. Since textbooks are written by mathematicians, the
same practice is carried over, to the great disadvantage of the student. Numbering of
steps is essential for structured proofs, because the numbers are the way you identify
proofs and sub-proofs of each step. Also, the numbers save you the all-too-familiar
time and labor which textbooks force upon you of searching for exactly what the
author was referring to when he said “as shown above”.

In “Theorem (NZ 2.25b), step 1.3, proof™, in the Appendix, “A Number Theory
Environment (partial)”, the decimal system employed is, I think, obvious. For exam-
ple, the steps in the proof of step 1 of the main theorem are numbered 1.1, 1.2, 1.3,
etc.; the steps in the proof of step 1.3 are numbered 1.3.1, 1.3.2, 1.3.3, etc.

Get Rid of the Equals Sign!

The title of this section is an exaggeration, of course. The equals sign was a won-
derful invention for mathematics', but it is by no means the only way to represent
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equality. A much better symbol in many cases is the horizontal curly brace or equiva-
lent, as shown in the following example:

((8xD)/3 + (16x)/4) — (xX*/3+x/4)

- ¥¥3 — x/4

7x2/3 + 15x/4

More examples, taken from the working of calculus problems, will be included in the
next edition of this book. If you have a long equation or other logical statement, and
you want to show, in that equation or statement, what various terms or groups of terms
are equal to, the horizontal curly brace does this much more directly than a succession
of equations, each of which requires that you look back to the original long equation or
logical statement to find the term or group of terms on one side of the equation. Too
much eye-work and brain-work! Use the curly brace instead. (In my experience, pro-
fessors and graders are perfectly willing to accept the use of this symbol, provided you
make clear at the start of your paper what it means.)

The point is, you should use whatever symbol, equals sign or curly brace, makes
understanding more rapid, more immediate.

Have a Section, “Proofs, Tricks for Doing”

A mathematician to whom I explained the Environment idea said it was too lim-
ited, and among the reasons he gave was that an important proof in a branch of mathe-
matics usually provides a new method for doing other proofs. “Fine,” I said. “I’ll just
add a section that gives references to examples of various proof techniques. That's one
of the beauties of the Environment idea!”” He wasn’t convinced, but on the basis of

1. “The equals sign was invented by Robert Recorde in his Whetstone of Witte, 1557, but it did
not come into general use until more than a hundred years later.... Fermat [1601-1665] never
used it, preferring always to write ‘@q’ or ‘adaeq’ or fuller Latin words like ‘adeequibantur’ that
these terms abbreviate...Descartes used ‘=" to mean something completely different...” —
Knuth, Donald E., et al., Mathematical Writing, MAA Notes No. 14, The Mathematical Asso-
ciation of America, Washington, D.C., 1989, p. 91.
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long experience, [ am. You can always add a new section whose title is some subject
that you find is important. Of course, it takes a few seconds’ thought to determine
what the title should be. I hope it is clear to you that “proofs, tricks for doing” will
probably result in faster look-up time days, weeks, months from now, than, e.g.,
“tricks for doing proofs”. It may take a few additional seconds’ thought to check for
reasonable synonyms you should add to your Environment, with a simple one-line ref-
erence, “See ...”.

Use Drawings!

In every mathematics class, the professor makes free use of drawings, diagrams,
arrows, circling of terms, in order to explain proofs. But when the same professor
writes a textbook, particularly an advanced textbook, he feels compelled to use as few
drawings as possible, presumably because he accepts the mathematicians’ Party line
that pictures are not “rigorous”. But consider what one of the 20th century’s great
mathematicians said on this subject:

“A heavy warning used to be given that pictures are not rigorous; this has never
had its bluff called and has permanently frightened its victims into playing for safety.
Some pictures, of course, are not rigorous, but I should say most are (and I use them
whenever possible myself). An obviously legitimate case is to use a graph to define an
awkward function (e.g. behaving differently in successive stretches): recently I had to
plough through a definition quite comparable with the ‘bad’ one above [i.e., in a pre-
ceding example not quoted here], where a graph would have told the story in a matter
of seconds. This sort of pictoriality does not differ in status from a convention like
‘SW corner’, now fully acclimatized. But pictorial arguments, while not so purely
conventional, can be quite legitimate.” —Littlewood, J. E., Littlewood's Miscellany,
ed. Bela Bollobas, Cambridge University Press, N.Y., 1990, p. 54.

Littlewood then gives an example of a proof that relies on a picture. He continues,
“This [proof] is rigorous (and printable), in the sense that in translating into symbols
no step occurs that is not both unequivocal and trivial. For myself I think like this
whenever the subject matter permits.” — ibid., p. 55.

And yet, as Littlewood points out, the myth dies hard. A young mathematician
once asked me to criticize a paper he had just completed. It was only five or six pages
long, but after several cursory readings, I found I couldn’t understand it, so I did what
I always do in such circumstances: I started at the beginning and began making a suc-
cession of drawings to show the development of his argument. Eventually I was able
to understand it, and found it quite simple and elegant.
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When I went over the paper with him, I told him that he could present the underly-
ing idea in a couple of drawings occupying a single page and thus save the reader the
trouble I had had to go through. He replied, “If you make it too easy to understand,
people don't read the paper.”

In the ensuing discussion, he repeated the standard argument that a good drawing
makes it too easy to overlook logical errors. I countered that it is also easy to overlook
logical errors in a long, written, argument. In fact, about the same time as I read the
paper, I heard a computer scientist remark in a lecture that good mathematicians don’t
memorize the details of proofs, but instead memorize a picture from which they can
easily reconstruct the proof.

Here is Littlewood again:

“In presenting a mathematical argument the great thing is to give the educated
reader the chance to catch on at once to the momentary point and take details for
granted; his successive mouthfuls should be such as can be swallowed at sight; in case
of accidents, or in case he wishes for once to check in detail, he should have only a
clearly circumscribed little problem to solve (e.g. to check an identity: two trivialities
omitted can add up to an impasse). The unpractised writer, even after the dawn of con-
science, gives him no chance; before he can spot the point he has to tease his way
through a maze of symbols of which not the tiniest suffix can be skipped.” — ibid., p.
49.

Littlewood then gives an example of a three-page, truly intimidating proof of a
famous theorem by Weierstrass that a function f{x;, x,) continuous in a rectangle R,
can be uniformly approximated by a sequence of polynomials in x;, x,. He remarks
that the example “is unduly favorable to the criminal since the main point is hard to
smother.” He follows this proof with a “civilized” one consisting of a single drawing
and about a page of text.

As proofs start running into hundreds of pages— Andrew Wiles’ first proof of Fer-
mat’s Last Theorem was over a hundred pages long — mathematicians will have to
start asking themselves just what it means to understand a proof and what it means to
agree to a proof’s validity. Perhaps computer verification will become more import-
ant, but then we confront the problem of verifying the verifying program. Personally,
I would much rather bet on the correctness of a structured, illustrated proof that several
mathematicians had found to be correct, than on the correctness of an unstructured
version of the same proof that had been checked by machine.
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How to Use These Techniques to Construct Your Own Proofs

You can use all the techniques described above to develop proofs of your own.
Keep in mind that, just as you can use a computer program without having any idea of
how the program works (consider the programs in your pocket calculator), so you can
use a theorem without having any idea of its proof(s). Many students, particularly first
and second year college math students, think that, if you’re really good — if you were
really meant to study mathematics — somehow you always know how the proofs go
of the theorems you use. Somehow you quickly understand the proofs. Somehow it is
indecent to use a theorem whose proof you don’t understand, or even know. Not true!
Throughout your study of mathematics you have been using theorems you weren’t
even aware of, some elementary examples being the theorems guaranteeing the cor-
rectness of the familiar grade school algorithms for doing addition, subtraction, multi-
plication and division, not to mention those guaranteeing the correctness of the rules of
factoring.

Here is a general procedure for doing proofs:

1. Be sure you know what you are trying to prove, i.e., be sure you write down
what you are trying to prove, in structured form, as described above in “Use Standard

Form for all Theorem Statements” on page 110.

2. Look up the meanings of all terms you don’t know. (Easy if you have an Envi-
ronment!)

3. Set up a tentative main proof whose steps you believe you can prove, even
though you may not know how to prove them at the moment.

It is amazing how much mileage I have gotten out of this practice in homework
and exam problems. For example, with time running short, I would write something
like,

“We are being asked to prove ...”, “We would have a proof if we could prove:

“1. ...

“2. ...

“3. ...

“The proof of 1. seems straightforward, given theorems ... and ...
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“The proof of 2. is more difficult. I will outline the steps that seem likely to yield
a proof...”

etc.

I think that one reason I have gotten such a large proportion of partial credit from
this approach is that it says to the professor or grader: “Here is a person who knows
how to think. He may not have at his fingertips all the knowledge we wish he did, but
he certainly knows how to deal with a mathematical problem.”

“The test of intelligence [is] not how much we know how to do, but how we
behave when we don’t know what to do.” — Holt, John, How Children Learn, Dell
Publishing Co., Inc., N.Y., 1967, p. 116.

4. Scan all theorems that seem related to the theorem you are trying to prove.
(Again, much easier with an Environment!) Work on the steps you feel you can make
progress in. Forget about proceeding in a “logical” order. You may be able to prove
step 5 long before you prove step 1. Remember that what you are trying to do is build
a chain of steps from something that has been proved, to the theorem you are trying to
prove. Remember, too, that just as you don’t need to have any idea of how a computer
program works in order to use it, you don t need to understand the proof of a theorem
in order to use the theorem itself!

There is something else you should keep in mind when you are working on proofs.
Fundamental intuitions — the basic ideas on which proofs are built — are often picto-
rial or accompanied by almost childlike expressions: “It must repeat!”, “The numbers
grow farther apart!” Such pictures and expressions seem to come from a “mathemati-
cal subconscious” in the sense that they have a peculiar simplicity and that they are
not, in this form, in any sense “logical”. I believe that this subconscious exists in all
students who are attracted to, or are at least curious about, mathematics, regardless of
their grades in school. Of course, it is by no means equally developed in all students,
or even in all mathematicians. It is important to be aware of the difference between
the way this subconscious expresses ideas, and the way they are supported in proofs.
Any suggestion that the two are the same, or that intuition is less important than the
long, impressive-looking chains of argument on paper, is simply wrong.

Finally, it is important that students as well as experts in mathematical subjects
realize that the finished, published proof is not a “thing” in itself but merely the latest
stage in a sequence of approximations. It is “clear and concise” only to those who
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have one way or another passed through the lower stages of understanding. It is not an
object, but a stage in a human activity.

An Example of How Bad the Presentation of Proofs in Text-
books Can Be

In the course of writing this chapter, I searched for textbook proofs that I could re-
do as structured proofs, in order to show the advantages of the latter. It occurred to me
that the proof of the Schwarz-Christoffel transformation might be a good example.
The transformation is discussed in most elementary courses in complex number the-
ory.

I had no idea just how bad the presentation of this proof'is, at least in the textbooks
at my disposal. I first studied the version in Churchill’s textbook. Then, in an attempt
to overcome the difficulties I found, I studied Cohn’s and Spiegel’s texts. (Reference
information is given at the end of this chapter.) It was at times hard to believe that
each of these texts was discussing the same transformation!

The Example

Let me begin with Churchill’s text. The chapter devoted to the transformation
begins,

“In this chapter we construct a transformation, known as the Schwarz-Christoffel
transformation, which maps the x axis and the upper half of the z plane onto a given
simple closed polygon and its interior in the w plane.” — Churchill, p. 239.

Well, that is straight-forward enough. The next section is titled, “91. Mapping the
Real Axis onto a Polygon” which begins with the sentence, “We represent the unit
vector tangent to a smooth directed arc C at a point z, by the complex number ¢.”

If you have understood just the main points of the chapter you are now reading,
you should be scratching your head, and perhaps exclaiming to yourself, “What?”
Exactly what are we proving? Why wasn’t that stated first? Only a couple of para-
graphs later are we told what follows if the arc C happens to be a segment of the x axis.
We are left to write down the exact statement that has just been proved.

Suppose we now look ahead a few pages. We find that on the third page of the
chapter, there is a sub-title “The Schwarz-Christoffel Transformation”. And that’s it!
No more sub-titles until the sixth page of the chapter!
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The actual transformation is not even stated until the fifth page!

It is business as usual — a succession of paragraphs set forth deductions that, at the
end, we discover are proofs of facts that appear to have some relevance to the subject
at hand!

I found myself thinking of a line from the Bible: “Father, forgive them, for they
know not what they do!” But here “them” is the textbook authors.

Let the reader decide if he or she would prefer the above-described deductive

sprawl (which I am sure exists in any basic textbook on complex number theory the
reader owns) to something like the following (on the first page of the chapter):

A Much Better Approach

Theorem. Given a simple closed polygon of n > 3 vertices in the w plane, a trans-
formation, F(z), called the Schwarz-Christoffel Transformation, exists that:

maps the x axis of the z plane onto the boundary of the polygon, and that

maps the upper half of the z plane, excluding the x axis, onto the interior of the

polygon.

Proof:

Step 1.

We assert without proof that F(z) must meet the following requirements.
1. F(z) must be continuous.

2. F(z) must map n points on the x axis of the z plane, where n > 3, onto the n ver-
tices of the polygon.

3. F(z) must map the intervals between the n points on the x axis, onto the sides of
the polygon.

4. F(z) must map, one-to-one, the upper half of the z plane, excluding the x axis,
onto the interior of the polygon.

Step 2:

118



Chapter 5 — Proofs
z
—k —k —k
The function F(z) = Aj-(s —x;) (s—x,) “..(s—x, ;) " 'ds+ B meetsthe
above requirements, where,
2o

X1, Xy, ..., X,_1 are points on the x-axis, with x; <x, <...<x,_y;
X,, = 00;

k; m = the size of the exterior angle at the vertex w(i) of the polygon;
A, B are complex constants that establish the location and size of the polygon;

[z( 1s undefined in the definition in Churchill]

Proof that F(z) meets requirement 1. See...
Proof that F(z) meets requirement 2. See...
Proof that F(z) meets requirement 3. See...
Proof that F(z) meets requirement 4. See...
U

Now we have the Big Picture before us at the very start. Now we know what needs
to be proved. We don’t have to plow through a lot of detail in order to find out why we
are plowing through the detail!
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