
Occam’s Razor and Program Proof by Test
Occam's Razor and Program Proof by Test

by

Peter Schorer

(Hewlett-Packard Laboratories, Palo Alto, CA (ret.))

2538 Milvia St.

Berkeley, CA 94704-2611

Email: peteschorer@gmail.com

Phone: (510) 548-3827

Feb. 29, 2016

Key words: Occam's Razor, Ockam's Razor, Ockham's Razor, program testing, program prov-

ing, algorithmic information theory
1

Occam’s Razor and Program Proof by Test
Introduction
Motivation

This paper was motivated by the attempt to answer two questions:

(1) Is there any theoretical basis for programmers’ confidence that testing will reveal signifi-
cant bugs (errors) in a program?

We have often felt that the surprising thing about programs is not that they often have bugs,
but that they have so few bugs, given their complexity — given the number of machine instruc-
tions they represent. On the other hand, in a well-known statement, Dijkstra asserted, “Program
testing can be a very effective way to show the presence of bugs, but it is hopelessly inadequate
for showing their absence” [8]. This statement is true in the general case, as is demonstrated
below in the section, ““Elusive” Errors” on page 8. It is not true of finite-state machines since, in
principle, the absence of bugs in any finite-state machine can be determined through exhaustive
testing. Neither is it true of the class of program described in [16.8], a class that is larger than that
of finite-state machines, but one in which depth of nesting of loops is limited. In this paper, we
define a class of program larger than that of finite-state machines, and with arbitrarily deep nest-
ing of loops, such that the absence of bugs can be determined in a finite number of tests. The
class is defined in “(3) Definition of the Class by Requring Every Instruction Be Executed Over a
Certain Finite Range of Inputs” on page 17. So far as we know, such a class of program has not
previously been defined.

To forestall any confusion: this paper is not concerned with practical programming tech-
niques for avoiding errors or for detecting errors. It is not concerned with the psychology of
programming.

The second question that motivated this paper was:

 (2) Can the validity of Occam's Razor be proved in a program context?
Occam's Razor is the principle that says, informally, “simplest is best”. The principle is

named after the medieval philosopher William of Ockham (1300?-1349?), who wrote that “enti-
ties shall not be multiplied without necessity”.

As applied to the program testing to be described in this paper, the principle can be interpreted
as asserting that, if two programs, p, p’, consisting of x, y, instructions respectively, where 1  x <
y, both produce correct results after n tests, where n then program p will most likely be correct
for all inputs.

In the hard sciences, the principle is usually expressed along the lines of: given two scientific
theories, one long, and one short, where “long” and “short” refer to the length of the theory when
written down, then if both theories seem to explain the same set of phenomena, we should prefer
the shorter theory as being more likely to be correct in the long run. Thus the fact that the Coper-
nican heliocentric theory is shorter than the Ptolemaic geocentric theory was one argument used
to argue for the truth of the former.

We shall refer to the above two questions as the Basic Questions.

Examples to Motivate Interest in the Basic Questions
Example 1

 Consider the following recursive program for ordinary multiplication of two non-negative
integers:
2

Occam’s Razor and Program Proof by Test

[1] mult(x, y) == {if x = 0 then 0 else y + mult(x – 1, y)}

It is well known that addition can be performed by a finite-state machine, but multiplication
cannot, because of the need to store the intermediate sums, which for arbitrarily large x or y
requires arbitrarily large memory. Therefore, in principle, it would seem that we can never hope
to determine if a program “like” mult is correct merely by subjecting the program to a finite set of
tests. Yet, at the same time, it seems hard to believe that at least certain types of error in mult
could not be detected by testing. For example, suppose that the if clause were, “if x = 0 then 1
else...”. This error would appear via a test of, e.g., mult(0, 3). The output would be 1 (incorrect)
instead of 0 (correct). Or suppose that the recursive portion were “(y + 1) + mult(x – 1, y)”. This
error would appear via a test of, e.g., mult(2, 1). The output would be 3 (incorrect) instead of 2
(correct).

Example 2
Consider the following recursive program for the factorial function, f(n) = n! = n(n – 1)(n –

2)...1:

[2] fact(n) == {if n = 1 then 1 else n fact(n – 1)}.

Such a program cannot be a finite-state machine because it must do multiplication. Therefore,
in principle, it would seem that we can never hope to determine if a program “like” fact is correct
merely by subjecting the program to a finite set of tests. Yet, as with mult, it seems hard to believe
that at least certain types of error in fact could not be detected by testing, e.g., an error in the if
clause such as “if n = 1 then 2” or an error in the recursive part such as “(n + 1)  fact(n - 1)”.

Example 3
Suppose that someone has chosen two real numbers, x, y, i.e.,
 u = 0.U1U2U3...,
 v = 0.V1V2V3...,

where: Ui, Vi, i are decimal digits.
This person will reveal the numbers to us one pair of digits at a time (up to some finite num-

ber of pairs), progressing from left to right. That is, he or she will reveal U1, V1, then U2, V2, etc.
Following his or her revealing each pair of digits, we are to make one of three replies:

 (1) “u v.”
 (2) “I am undecided whether u = v.”
 (3) “u = v.”
 Obviously, if, for some i, Ui  Vi, we will make reply (1). However, in general, we can

never make reply (3) since, no matter how large the i such that Uj = Vj, 1  j  i, it is always pos-
sible that Ui+1  Vi+1.

 Suppose, however, before showing us any digits, the person tells us that u was generated by a
Turing machine of x instructions and that v was generated by a Turing machine of y instructions.
Furthermore, the person tells us (truthfully) that the Turing machines belong to a class of
machines that are capable of expressing all computable functions, hence all computable numbers.

 Would there be a sufficiently large i such that, if Uj = Vj, 1  j  i, then we would be pre-
pared to make reply (3)?
3

Occam’s Razor and Program Proof by Test
 Probably not. (Consider that there exist finite descriptions of irrational numbers, e.g., pro-
grams to generate all the digits of .)

 The question, then, is: what further restrictions would we have to impose on u and v — hence,
on their descriptions (i.e., on programs to generate them) — such that, knowing only x and y in
advance, we would be able to compute an i such that if Uj = Vj, 1  j  i, then we could correctly
make reply (3)? In particular, would these further restrictions still permit u, v to be irrational?

Example 4
This example is obviously related to Example 3. Suppose A writes a program to generate a

number having an infinite number of digits. Suppose, further, A provides a valid proof that the
program in fact generates precisely that number. A shows B the program, describes the number,
and shows B the proof. A now challenges B to change the number in a way that A cannot detect
with a program of A’s own creation. However, A is allowed to stipulate the maximum number, d,
of additional instructions B is allowed to add to A’s original program to accomplish this. It may be
possible for B to win, namely, by adding to the program a sub-program which in effect duplicates
one from the literature that is known to compute a very large number, n, and then adding further
statements to A’s original program which say, in effect, “If the input = n then return the following
erroneous value... and terminate, else...” However, if A further stipulates that B’s change must be
of the form, “If the input = n...” where n must be given explicitly, digit by digit, in the program,
and not computed, then perhaps A can always win, namely, by making his program check all
inputs of length 1 through the length of the modified program, since B must represent n with at
most d digits.

Example 5
Consider any of the now-familiar fractal drawings of trees, leaves, and other similar struc-

tures. Suppose that one of the elements in one of these drawings were changed slightly: say, a tick
mark were added to one of the lines that are reproduced recursively. It seems immediately obvi-
ous that this modification would appear “everywhere”: there would be no doubt that a change had
been introduced into the drawing. We might be inclined to say something like, “No matter where
you would look, no matter at what scale, the change would be evident.” If we regard the change
as an “error”, then it is clearly a different kind of error than that introduced by the if statement in
Example 4 when n is allowed to be computed, and not specified digit by digit.

Other Ways of Stating the Basic Questions
The examples suggest that what we are looking for is a class of program (larger than that of

finite-state machines) in which inductive proofs of correctness can be performed by testing. We
are looking for a class of program about which we can say, informally, “If a program in the class
is correct over a few tests, then it is correct over all tests.” Or, “If you know a little about the
behavior of a program in the class, then you know a lot about the behavior, in fact, you know
everything.” We call this class of program, the Desired Class of program.

Stated more abstractly, our question comes under the heading: what are some of the conse-
quences of finite descriptions of infinite sets? The finite descriptions here are programs, the
infinite sets are the sets of input/output pairs representing the functions that the programs com-
pute.
4

Occam’s Razor and Program Proof by Test
Possible Benefits of This Research
In the late sixties, Dijkstra argued that it was advisable to get rid of GoTo statements in pro-

gramming. Dijkstra was particularly concerned with GoTo statements inside of loops, which
under certain specified conditions cause an immediate exit from the loop, instead of allowing the
loop to terminate normally. GoTo statements are therefore like the if statements in “Example 4”
on page 4.

If we can prove that the Desired Class of program exists, and contains “useful” programs —
i.e., at the very least, programs to perform the basic arithmetic functions of addition, subtraction,
multiplication, division, exponentiation, and extraction of roots — then we may get an insight into
why Dijkstra’s advice was well-founded.

Another possible benefit from this research is that it will give us further insight into one of the
basic ideas of algorithmic information theory. (See, e.g., [4], [5], [6].) This theory was initiated by
Greg Chaitin in the late sixties. One of several remarkable results of this theory is the most gen-
eral definition of randomness now known: informally, a number (e.g., a string of binary digits) is
random if its shortest (Turing machine) description is essentially as long as the number itself. For
example, a binary string arrived at by flipping a coin is typically random according to this defini-
tion. A number is non-random, or orderly, or has a pattern, if its shortest description is consider-
ably shorter than the number itself. For example, “10” repeated a million times is non-random (it
has a very short description, e.g., the one just given).

But even though the number of bits in a program can be shown to be equivalent to the number
of instructions in the program (for our purposes here), Chaitin’s theory, as far as we know, does
not deal with one of the central questions addressed in this paper, namely, how does the number of
instructions in a program (in other words, the program’s length) affect the degree of repetition
present in the output of the program? Or, as we put it above, What are some of the consequences
of finite descriptions of infinite sets?

A third possible benefit of this research is that it might shed light on Popper’s Criterion of
Falsifiability, which asserts that, of two scientific theories that seem to explain the same set of
phenomena, that one is to be preferred which is more easily falsifiable.

Preliminaries

What Is An Error?
We must become aware of a hidden assumption we have been making all along, and that is,

that there are programs, e.g., those for multiplication and the factorial function, from which other
programs, e.g., those containing elusive errors, “differ”. In other words, we have been assuming
that programs can be divided into two classes: correct ones and ones that are incorrect relative to
the correct ones.

But “correct” and “incorrect” are notions imposed by us. It is just as possible to consider a
program with errors as being “correct” and the others as being “incorrect”.

Let P be a class of program. Then P defines a class of functions, F(P), namely, the class of
functions computed by the programs in P. In restricting P to be the Desired Class of program, we
are restricting the class of functions that we want to consider. We are saying, in effect, “the func-
tions we attempt to compute will be all and only the the functions defined by the Desired Class.”
Then an error in a program p in the Desired Class will always mean a difference between the func-
tion computed by p, and the function computed by one or more other programs in the Desired
Class.
5

Occam’s Razor and Program Proof by Test
Therefore, before we begin testing a program p in the Desired Class to see if it computes a cer-
tain function f, we must prove that f is a function computed by at least one program in the Desired
Class. We will have more to say about this under “(3) Definition of the Class by Requring Every
Instruction Be Executed Over a Certain Finite Range of Inputs” on page 17.

Definitions
We assume familiarity with the Turing machine and finite-state machine concepts, and with

elementary computer programming. We will here repeat briefly some of the definitions of terms
pertaining to these concepts. Definitions are in alphabetical order by term. In some cases, we use
terms from commercial programming instead of from the formal literature, e.g., we call the finite-
control of a Turing machine, its program.

computation — the sequence of steps from the first, in which the tape head is on the leftmost
cell of the input, to the last, in which the tape holds the output and the tape head is on the last writ-
ten cell.

execute — see under instruction.

 finite-control state — the state that the program itself is in. Same as program state.

finite-state machine — a Turing machine having only a finite amount of memory (tape cells)
available for computation and storage of intermediate results. Addition of two integers can be
performed by a finite-state machine because the machine only needs to remember the carry after
adding each successive pair of digits. But multiplication cannot be performed by a finite-state
machine because the arbitrarily large set of intermediate sums must be remembered.

The function that a finite-state machine computes can be determined in a finite number of
tests related to the number of its instructions. The reason is that, in computing all inputs of length
1, then of length 2, then of length 3, ..., eventually the behavior of the machine must repeat
because there is only a finite amount of memory available for computation and storage of inter-
mediate results.

An informal argument that Occam's Razor does, in fact, apply to finite-state machines is the
following:

Since, in a finite-state machine there is only a finite number of possible machine states (due to
the finite memory), if we start testing all input strings in lexicographical order — 0, 1, 00, 01, 10,
11, 000, 001, 010, ... — eventually we will go through all possible machine states and then start
repeating them. So we can determine the function computed by a finite-state machine over all
inputs (an infinite number) by making only a finite number of tests.

An upper bound on the number of inputs we have to test is directly related to the number of
instructions in the finite-control. For example, if we test all inputs of length 1, 2, 3, ..., x + 1,
where x is the number of instructions in the finite-control, then we know that the execution of at
least one instruction must be repeated. The point is that it is easy to create a Turing machine T
that determines, for any finite-state machine M, the sequence of inputs, in lexicographical order,
that must be tested in order for M to go through all of the machine states that can occur in any
computation.Suppose, now, we have two finite-state machines, one with x instructions, the other
with y, where x < y. Assume that after testing the same inputs of length 1 through k on each
machine, each machine produces the correct output, where k  x. Then clearly, the maximum
6

Occam’s Razor and Program Proof by Test
number of inputs that must yet be tested is smaller for the x-instruction machine than for the y.
When all inputs of length 1 through x + 1 have been tested, we know the complete behavior of the
x-instruction machine, but we don’t yet know the behavior of the y-instruction machine.

In other words, in the case of finite-state machines, the smaller machine (as measured by num-
ber of instructions) reveals its errors sooner than the larger (sooner in terms of the lexicographical
order of inputs. And this is what Occam's Razor asserts. For a very simple model of a finite-state
machine, see “The Wheel Model of the Desired Class” on page 14.

input — In a Turing machine, one tape contains the input string. The tape-head is initially
positioned at the first (leftmost) digit of the string. A single input string can be an encoding of
any finite set of numbers, e.g., two in the case of multiplication, where the two numbers are the
ones to be multiplied. See also length of an input.

instruction — a standard <<current state>, <next state>>-pair in a Turing machine definition.
Each such pair says, in effect, “If the program is in finite-state control state u, and the symbol s is
under the tape-head, then the tape-head replaces that symbol with the symbol t, moves one cell {to
the left, to the right} and the machine enters finite-state control state v.”

 We sometimes refer to the (finite) set of <<current state>, <next state>> pairs in the finite-
control as the machine’s program.

 We say that an instruction is “executed” when the <current state> - <next state> transition
occurs. The execution of an instruction is sometimes called a step.

length of an input — the number of digits in the input, i.e., the number of tape cells the input
occupies initially.

 machine state — the machine’s program state, the contents of the tape, and the position of
the tape-head on the tape.

output — the result of a computation; the value that the program computes for a given input.

program — the content of — i.e., the (finite) set of instructions in — the finite-control of a
Turing machine.

program state — a set of one or more instructions. There are two distinguished states: a start
state, in which every computation starts, and a halt state, in which every program terminates com-
putation. (In other words, all programs in the class of programs we are attempting to define in
this paper are algorithms.)

statement — a certain sequence of instructions. In higher-level programming languages,
examples are assignment statements, if...then... statements, loop statements.

step — the execution of an instruction, although sometimes the term step will mean the execu-
tion of a statement in a higher-level program.

Turing machine — an idealized computer consisting of:
(1) a finite number of finitely- or infinitely-long tapes each of which has been divided into
7

Occam’s Razor and Program Proof by Test
equal-sized cells. Each cell may contain one of a finite alphabet of symbols, or be empty. Without
loss of generality, we assume that the alphabet throughout this paper is {0, 1, blank}.

(2) a tape-head positioned on one cell. (Initially, one tape contains the input string and the
tape-head is positioned at the first (leftmost) digit of the string.) The behavior of the tape-head is
governed by a program contained in the finite-control of the machine. Every computable function
can be computed by such a machine, i.e., by programs in such a machine.

Each Turing machine computes exactly one function. For some inputs, the value of the output
may be undefined, i.e., the program may go into an infinite loop. This is assumed never to happen
for any machine in the Class of machine we are attempting to define in this paper. That is, we
assume that all machines in the Class are algorithms.

Contrary to standard practice in the literature will frequently use program to refer to a Turing
machine.

“Elusive” Errors

Definition of “Elusive” Error
When the possibility of proving the correctness of a program by testing is mentioned, people

often say, “You can’t know by testing if a program is correct because it might happen that...”, and
then they usually give a description of what I will call an elusive error. One example of an “elu-
sive” error is the if statement in “Example 4” on page 4, when n is allowed to be computed and d
is large. Intuitively, an elusive error is one that does not occur “often” or, if it does occur often,
then its first appearance, relative to the lexicographical ordering of inputs, 0, 1, 00, 01, 10, 11, ...,
does not occur until a large input. An error that occurs only once over the infinite set of all inputs,
is elusive if it does not occur for a “short” input, e.g., for an input like 0, 1, 00, 01, 10, 11 ..., up to,
say, an input whose length, in number of digits, is less than the total number of instructions in the
program. The reason for this length-of-input criterion, which does not exclude all elusive errors,
will become clear as we proceed.

For another example of an elusive error, consider any program containing the following state-
ment (the program is here written in a pseudo-Pascal language}. We assume the program takes a
single integer input, n. k is a fixed integer  0.

 .
 .
 .

 IF the n'th, (n+1)'th, (n+2)'th, ..., (n+k)'th digits in the decimal expansion of  each = 5
 THEN Output an erroneous value and halt ELSE
 Proceed as normally.
 .
 .
 .

Such an error we call “elusive” because its occurrence is not predictable for all n. If there
exists an n such that, for all digits beyond the n'th in the decimal expansion of , k+1 successive
5's do not occur, then the above error occurs only a finite number of times over all inputs to the
above program. Otherwise, the error occurs an infinite number of times. However, no amount of
8

Occam’s Razor and Program Proof by Test
testing can reveal which is the case, or for which untested inputs an error will occur (the existence
of published decimal expansions of  does not, of course, invalidate this statement in the general
case). Our goal, then, is, at the least, to define a class of program in which such errors are not pos-
sible.

Types of Elusive Error
The following are several types of elusive error:

(1) Elusive error resulting from an if statement or if clause, in which the input whose output is
to be erroneous, is explicitly specified digit by digit, as in “Example 4” on page 4;

(2) Elusive error resulting from an if statement of the type described under “Definition of
“Elusive” Error” on page 8;

(3) Elusive error resulting from an if statement of the following type:
 if the length of the input is  x, where x is the total number of instructions in the program,
 then proceed so as to produce a correct output, else output the following incorrect value...
 and terminate.

The Busy Beaver Problem
A problem that must be taken into account in our discussion of elusive errors is the the so-

called Busy Beaver Problem. It has been expressed in several different forms. The one that we
will use asks: does there exist an algorithm to decide, for any Turing machine, what the largest
number is that the Turing machine can write on its tape and then halt? Clearly, the machine must
contain any “input” it uses in its computation, for otherwise we can in effect create a countably
infinite class of machines, each of which does nothing but write its input to its output and halt.
Since the size of inputs is unlimited, so can the size of outputs be.

The solution to the Problem is: no, there does not exist such an algorithm. Research has
shown that, even machines with only a few states are capable of writing very large numbers. Con-
sider, for example, a machine suggested by Graham’s Number (see Wells, David, The Penguin
Dictionary of Curious and Interesting Numbers, Penguin Books, London, 1987, pp.209-210).
The machine first writes a number, say, 3, on its work tape. At stage 2, it writes 33 on its work
tape. At stage 3, it writes 33 raised to the 33 raised to the 33 raised to the ... raised to the 33 on its
work tape, where the number of 33 ’s in the exponent tower is 33. At stage 4, it repeats this pro-
cess, taking the number produced at stage 3 as its basis, and creating a tower of exponents of
length that number. The process continues for some number of stages specified in the program,
say, 64. Call the final number, Big Number. Then a truly devilish elusive error could be intro-
duced into a program by the following program segment:

Compute Big Number;
If n = Big Number then output the following erroneous value ... and terminate else proceed as

usual.

Here, n is the input to the program.
The memory required to store the instructions for computing Big Number would be very
9

Occam’s Razor and Program Proof by Test
small relative to the memory required to store Big Number after it had been computed. So there
would be no way to know from the total memory required to store the program as a whole, that it
contained an encoding of such a big number.

The Two Extremes: Programs as Tables and Programs as General Rules
Clearly, over a finite set of inputs, any program can be written as a sequence of if clauses. For

example:

fact(n) == {
if n = 1 then return 1 else
if n = 2 then return 2  1 else
if n = 3 then return 3  2  1 else
if n = 4 then return 4  3  2  1 else ...
if n = c then return c  (c-1)  (c-2)  ...  1
}
Such a program — which we might call a program in “table form” — is easily changed. We

can change any one output by simply changing a single if clause. That change produces no
changes in the computation of other inputs. Of course, since a program can consist of only a finite
number of such clauses, we can only define outputs for a finite number of inputs using exclusively
if clauses as in the above example. Outputs for an infinity of inputs will then be undefined unless
we resort to a “closed form” sub-program, e.g., of the recursive type normally used to describe the
factorial function.

On the other hand, we can write a program that computes, not merely a finite, but an infinite
number of outputs via a much shorter statement, e.g.,

(5) fact(n) = { if input = 1 then 1 else n  fact(n - 1)}

But here it seems difficult if not impossible to change just one output without introducing
additional if clauses and/or statements. It seems that, to change just one output we must increase
the size of the program, i.e., the number of instructions, namely, by adding an if clause. A pro-
grammer might say that one or a few exceptions are expensive in terms of memory usage.

The Last-Pass Problem
People sometimes argue, “But the program can always make a last pass over the entire output

tape and introduce unpredictable changes.” On the other hand, at least some programs that are not
finite-state machines, can produce final output “as they go”, e.g., in the case of multiplication, the
least significant digits of the product can be written as soon as the least significant digits of the
summands have been determined.

Expressing this another way: suppose someone reveals the least significant digits of two long
numbers to be multiplied, and the least significant digit of the product. The person asks us if we
can tell how big the numbers are. Of course we can’t. The person now reveals the next-least-sig-
nificant digits of the numbers, and the next-least-significant digit of the product. Again the per-
son asks the same question, and again, of course, we can’t answer. In fact we can’t answer until
we come to the most significant digit of the larger of the two numbers.
10

Occam’s Razor and Program Proof by Test
Reasons for Believing the Desired Class of Program Doesn’t Exist
In this section, we list some of the reasons for believing that the desired class of program

doesn’t exist. In the next section, we will reply to each of these reasons.

Reason 1 — Non-existence of machine to tell if two programs produce the same
number

This Reason addresses Examples 3 and 4 under “Examples to Motivate Interest in the Basic
Questions” on page 2. We use two theorems and a plausible assertion to state the case for this
Reason.

Theorem 1: There does not exist a Turing machine M which, given any two machines M1, M2 as
input, will return 1 if the two machines compute the same number, and 0 if not. The number may
have a finite or infinite number of digits.

 Proof of Theorem 1: (supplied by a friend)
Assume there exists such a machine M. We can now build another machine, N, which solves

the Halting Problem1 as follows:
N takes as input any program P and any input I to P.
N contains a program U which generates all the digits of .
N also contains two programs W and W. W simply contains a copy of U. W also contains a

copy of U. When it is given P and I, W initiates the computation of P on I. Every time P exe-
cutes an instruction, the next instruction in the generation of the digits of  by the U contained in
W is executed.

We now use, in N, the assumed machine M to determine if W and W both compute . If the
answer is yes (i.e., 1), then we know that the machine P computing the input I never halts. If the
answer is no (i.e., 0), then we know that the machine P computing the input I does halt (leaving
an infinite number of blank cells on its tape).

Thus the assumption of the existence of the machine M implies that the Halting Problem is
solvable, which is false. Hence no such machine M exists.

Theorem 2: There does not exist a Turing machine M which, given any two machines M1, M2 as
input, and the number of instructions in each machine, will return 1 if the two machines compute
the same number, and 0 if not. The number may have a finite or infinite number of digits.

Proof of Theorem 2: The existence of such an M implies the solvability of the Halting Problem
by a proof similar to that for Theorem 1. In fact, it is not necessary to give M the number of
instructions in M1 and M2, since that is easily determinable by a machine.

Plausible Assertion: It is not necessarily the case that one or more human beings, given the com-
plete text of two programs, will be able to prove, with or without the aid of computers, within a
pre-specified time, whether or not the two programs compute the same number. The number may

1. The Halting Problem asks if there exists a Turing machine U which, given as input any machine M and
any input S to M, will return 1 if M eventually halts in computing S, and 0 if not. Alan Turing (after whom
Turing machines are named) proved around 1936 that no such machine exists.
11

Occam’s Razor and Program Proof by Test
have a finite or an infinite number of digits.

Argument for Plausible Assertion:
Let P be a program which returns 1 if any given conjecture, e.g., the Riemann Conjecture, is

true, and 0 otherwise. Let P be a program which always returns 1.
For each conjecture, P is given:
  a representation of all the axioms considered sufficient to prove the conjecture;
  a representation of first-order predicate logic;
  whatever additional logical rules are considered sufficient to prove the conjecture.
Considering these representations as a formal grammar, P then generates all strings that can be

generated in one step (replacement of variable in the grammar by another string as specified by
the grammar), then all possible strings that can be generated in two steps, then all possible strings
that can be generated in three steps, etc. After each step, P checks to see if the result is a repre-
sentation of the specified conjecture. If so, then P halts with 1. If the result is a negation of the
conjecture, then P halts with 0.

Now since neither the conjecture nor its negation may be provable, clearly there does not exist
an algorithm to determine if the number computed by P equals the number computed by P. (We
assume that at the time the programs are run, it has not been proved that the conjecture or its
negation is provable. If so, we can use any other conjecture for which this has not been proved.)

(End of argument for plausible assertion)

Reason 2 — Unpredictability of outputs for large inputs
This argument is often expressed along the lines of, “Even if your program tests correct for all

‘small’ inputs, you can never know, through testing, what the program will do for large inputs.”

Reason 3 — A paper by Tsichritzis
Perhaps the most serious reason for doubting that the Desired Class of program contains many

programs of interest is a 1970 paper [16.8] by Tsichritzis. That paper says, in essence, that a sub-
class of the class of program called “Loop programs” that compute all and only the primitive
recursive functions, can only have the desired testing property if the programs in the subclass
have at most one loop.Here is the definition of a Loop program from Meyer and Ritchie’s original
paper [13.05]. It will be referred to under “Reply to Reason 3 — A paper by Tsichritzis” on
page 13:

“A Loop program is a finite sequence of instructions for changing non-negative integers
stored in registers. There is no limit to the size of the integer which may be stored in a register,
nor any limit to the number of registers to which a program may refer, although any given pro-
gram will refer to only a fixed number of registers.

“Instructions are of five types: (1) X = Y, (2) X = X + 1, (3) X = 0, (4) LOOP X, (5) END,
where ‘X’ and ‘Y’ may be replaced by any names for registers.

“The first three types of instructions have the same interpretation as in several common lan-
guages for programming digital computers. ‘X = Y’ means that the integer contained in Y is to be
copied into X; previous contents of X disappear, but the contents of Y remain unchanged. ‘X = X
+ 1’ means that the integer in X is to be incremented by one. ‘X = 0’ means that the contents of X
are to be set to zero. These are the only instructions which affect the registers.

“A sequence of instructions is a Loop program providing that type (4) and type (5) instruc-
tions are matched like left and right parentheses. The instructions in a Loop program are normally
12

Occam’s Razor and Program Proof by Test
executed sequentially in the order in which they occur in the program. Type (4) and (5) instruc-
tions affect the normal order by indicating that a block of instructions is to be repeated. Specifi-
cally if P is a Loop program, and the integer in X is x, then ‘LOOP X, P, END’ means that P is to
be performed x times in succession before the next instruction, if any, after the END is executed;
changes in the contents of X while P is being repeated to not alter the number of times P is to be
repeated. The final clause is needed to ensure that executions of Loop programs always termi-
nate. For example, the program

 LOOP X
 X=X + 1
 END

is a program for doubling the contents of X, rather than an infinite loop. Note that when X ini-
tially contains zero, the second instruction is not executed.” .

Reasons for Believing the Desired Class Does, in Fact, Exist
Reply to Reason 1 — Non-existence of machine...

The theorems and the plausible argument in no way exclude “useful” programs from being in
the Desired Class, if it exists. It may be possible to show that, for any two programs in the Class
that each generate a number, it can be determined by testing whether or not they generate the
same number.

Reply to Reason 2 — Unpredictability of outputs...
The argument is true in the general case if for no other reason than that we can never know —

or, rather, we can never write a program to determine — if the program even halts for all inputs.
The question here is, are the outputs unpredictable if the program has no if statements of the type
discussed under ““Elusive” Errors” on page 8?

Reply to Reason 3 — A paper by Tsichritzis
What is not clear from the definition of Loop programs, but what can be easily shown (see

definition of Loop programs under “Reason 3 — A paper by Tsichritzis” on page 12), is that
recursive functions, hence Loop programs, allow elusive errors! In other words, recursive func-
tions include functions with if statements of the type described under ““Elusive” Errors” on
page 8.

 A Trivial Example of the Desired Class
Consider the following class F of programs:
Program f0 in F computes the factorial function via the recursive program f0(n) = {if n = 1

then 1 else n f0(n-1)}. (This function cannot be computed by a finite-state machine).
Program f1 in F is exactly the same as f0 except that in addition it contains the statement, “If

input = 1 then output 0 and terminate execution”.
Program f2 in F is exactly the same as f0 except that in addition it contains the statement, “If

input = 2 then output 0 and terminate execution”.
 ...
 etc.
Clearly, the function computed by each fk, k > 0, differs from the factorial function in exactly

one output.
13

Occam’s Razor and Program Proof by Test
Now if we are given any two programs, f, f, in the class F, then an upper bound on the size of
the input we need to test is given by the number of bits in the larger of the two programs because
the exception input specified by the if statement (if it is present) must have fewer bits than this
total number of bits.

Attempts at a Definition of the Desired Class
The Fundamental Importance of Program Length, i.e., Number of Instructions

The insight that we are convinced is essential for any progress in answering the Basic Ques-
tions is that, if a program has x instructions, then over any successive x + 1 instruction executions,
or steps, the execution of at least one instruction must occur twice. Informally, “necessary repeti-
tion of instructions implies lack of arbitrariness of behavior in a program.” This necessary repe-
tition of instructions over a sufficiently long sequence of steps also seems to us to be a link to
algorithmic information theory (see, e.g., works by Chaitin under “References and Bibliography”
on page 22).

The Wheel Model of the Desired Class
We can model the above insight as follows. (This sub-section is excerpted from [16.7].)
 Consider a class of wheel such that each wheel has a strip of evenly-spaced characters

wrapped around its circumference. If the wheel is rolled in a straight line across a piece of paper,
the sequence of characters will be printed. The distance between characters is the same on all
wheels. A starting point, i.e., a starting character, as well as a direction of rotation, is indicated on
each wheel. We shall speak of the ith character in a printed sequence, i  1.

Assume a wheel has k  1 characters on its printing strip. We make the following observa-
tions.

If we do not know what the actual characters on the printing-strip are, we must wait until the
wheel has made one revolution across the paper before we can predict what the ith character in a
printed sequence will be.

In particular, if, during the printing of the first i characters, 1 i < k, we observe a pattern,
e.g., “...0 1 0 1 0 1” we cannot assume that the pattern will persist through any arbitrarily long
sequence until k characters have been printed.

In the case of two wheels of different diameters such that the smaller wheel has a printing-
strip of length k characters and the larger wheel a strip of length m characters, k < m, the larger
wheel must print more characters (namely, m) before we can predict with certainty what the ith
character of any sequence printed by that wheel may be, i  1.

Assume we are testing two wheels of different diameters to see if they print the same
sequence as that of a third wheel. Assume each of the two wheels contains a single error, i.e.,
erroneous character relative to the test wheel’s sequence. Then the smaller wheel’s error will
appear more often in any sufficiently long sequence than will the error in the larger wheel’s.
Hence if we examine the ith character in the sequences printed by the two wheels, where i  1 is
chosen at random from a sufficiently large, finite, range of i’s, this character is more likely to be
the erroneous character in the case of the smaller wheel’s sequence.

All Programs In the Class Must Be “Like” Those for Multiplication and Factorial
In studying the following attempts at a definition of the desired class, the reader should keep
14

Occam’s Razor and Program Proof by Test
in mind that our goal is a class of programs that are “like” the standard recursive programs for
multiplication and for the factorial function. These programs can be written without explicit if
statements. For example, the factorial function can be written:

fact(n) = {fact(1) = 1; fact n = n fact(n-1)}

Furthermore such programs have a property that can be expressed informally as: computa-
tions of large numbers repeat computations of smaller numbers. Thus, for example, the last 10
recursions of fact (12) are the same as the last 10 recursions of fact (100).

Attempts at a Definition of the Desired Class
A number of definitions have presented themselves in the course of our attempts to define the

desired class of program. We review the most significant ones here.

(1) Definition of the Class by Pairs of Programs Having a Certain Property
A seriously flawed version of this definition appeared in [16.5] and [16.7]. The class of pro-

gram so defined was there called O1-Class, “O” denoting Occam's Razor, and 1 denoting that this
was the first of a possible sequence of classes, each more general than the previous. We give a
brief, improved version of the definition here.

Let p, p,be programs that implement algorithms, i.e., programs that halt for all inputs. Let
the number of instructions in p, p,be x, y, respectively, x, y . Without loss of generality, we
assume that p and p always conclude a computation with the execution of the same instruction,
or, more precisely, if inp(j), inp(h), j, h are different inputs, then the last instruction
inst(j,last) executed by p in the computation of inp(j) = the last instruction inst(h, last) executed
by p in the computation of inp(h). And similarly for p

We now define the process for determining if p, pconstitute an O1-Class pair. A pair of pro-
grams must be an O1-Class pair before they can be tested to see if they both compute the same
function. Informally, each program in an O1-Class pair executes at least once in the computation
of at least one input in the set of inputs of length 1, 2, 3, ..., x + 1)y + 1), every instruction it
“can” execute in the computation of any input.

The definition of an O1-Class pair is as follows.

Let inp(j) denote the jth input, j in the lexicographical ordering of inputs, 0, 1, 00, 01, 10,
11, ...

Now for each input in the set {inp(j) | 1  inp(j) |x + 1)y + 1) }, form the following
list of ordered pairs <inst(p, j, k>, inst(p, j, k)>, k 

inst(p, j, 0) is the instruction in p that is executed last in the computation of inp(j);
inst(p, j, 1) is the instruction in p that is executed next to last in the computation of inp(j);
inst(p, j, 2) is the instruction in p that is executed third from last in the computation of inp(j);
...
and similarly for inst(p, j, k);

Each list terminates when k represents the first instruction executed by either or both
 programs in the computation of inp(j).
15

Occam’s Razor and Program Proof by Test
Call the set of the above lists for all inputs in the set {inp(j) | 1  inp(j) |x + 1)y + 1)},
AP (“Actual Pairs”).

Now since p, pare assumed to implement algorithms, every possible sequence of instruction
executions by p (and similarly for p) can be represented as a tree, in which the root is the last
instruction executed in a computation. (This instruction is always the same, as stipulated above.)
Denote this tree T(p) in the case of p, and T(p) in the case of p.

We can now form ordered pairs of instructions as follows.

<inst(p, 0), inst(p, 0)> is the ordered pair of instructions that are the last instructions executed
in every computation by p, p, respectively. We say that this pair is at the 0, or root, level.

We now proceed recursively. For each ordered pair of instructions at level k, k  0, form every
ordered pair of instructions <inst(p,(k + 1)), inst(p, (k + 1))> such that:

 inst(p,(k + 1)) can immediately precede an instruction inst(p,(k)) in an ordered pair
 <inst(p,(k)), inst(p, (k))>,
 and such that
 inst(p, (k + 1)) can immediately precede the instruction inst(p, (k))> in the same
 ordered pair,
where “can immediately precede” means on the basis of the program of p (or p).

We halt this recursive process when every ordered pair at some level has already appeared at
an earlier level. We are guaranteed that this will occur because (1) there are only a finite number
of instructions in the programs of p and p, and (2) p, p are both assumed to be algorithms, hence
contain no infinite loops.

Call the resulting set of ordered pairs (at all levels), PP (“Actual Pairs”).

Then if the set of ordered pairs in AP = the set of ordered pairs in PP, the pair of programs p,
p is an O1-Class pair.

It is easy to see that if p, p form an O1-Class pair, then we can tell directly from AP if the two
programs compute the same function.

(2) Definition of the Class by Nested Finite-State Machines
We can define the Class by having each program consist of nested finite state machines. For

example:
for i1 := 1 to input1 do
 begin
 <finite state machine 1>
 for i2 := 1 to input2 do
 begin
 <finite state machine 2>
 for i3 := 1 to input3 do
 begin
16

Occam’s Razor and Program Proof by Test
 <finite state machine 3>
 for i4 := 1 to input4 do
 begin
 <finite state machine 4>
 end
 end
 end
 end

In this program, the inputi, 1 i 4,are the inputs; <...> denotes a comment, i.e., text that is not
executed. But regardless of the number of nested finite-state machines, the program is neverthe-
less a finite-state machine, hence does not meet the requirements of the Desired Class.

(3) Definition of the Class by Requring Every Instruction Be Executed Over a Certain Finite
Range of Inputs

Our first attempt along these lines was as follows: Let p be a program in the Class, and let p
consists of x instructions, x 1. Let I denote the set {inp(j) | inp(j) is the jth input, j  in the
lexicographical ordering of inputs 0, 1, 00, 01, 10, 11, 000, 001, ..., and 1 inp(j)x where
inp(j) denotes the length, i.e., number of digits, in inp(j)Then for each instruction inst in p, inst
is executed at least once in the computation of the inputs in I.

This definition is not satisfactory because it permits programs to be in the Class that consist
merely of tables (see“The Two Extremes: Programs as Tables and Programs as General Rules” on
page 10), and hence are undefined for an infinity of inputs.

Our current attempt is as follows: Let p be a program in the Class and let p consists of x
instructions, x 1. Then:

each instruction is executed at least once in the computation of all strings of length x + 1, and
each instruction is executed at least once in the computation of all strings of length x + 2, and
each instruction is executed at least once in the computation of all strings of length x + 3, and
...

Plausibility Argument that the Class Contains No Elusive Errors:
Assume the contrary, namely, that there exists a program of length x that does not reveal an

error until an input n of length x + k is tested, where k >> 1. Without loss of generality, we can
require that n be the (numerically) smallest such input.

But this assumption implies that at least one instruction in the program is wrong, i.e., writes an
erroneous symbol on the machine’s tape. But then if that instruction is wrong in the test of the
input n of length x + k, it must have been wrong in the computation of an input of length < x + k.
But this contradicts our assumption that the program does not reveal an error until an input n of
length x + k is tested, where k >> 1 (End of plausibility argument)

Remark: Observe that our Definition prevents the argument being made that one or more
instructions might be executed for the first time in the set of computations of all inputs of length x
+ k, k >> 1, and that if these instructions were changed appropriately, then the program would be
correct. Perhaps it would be, but such a program would clearly allow the presence of elusive
errors.
17

Occam’s Razor and Program Proof by Test
Does the Class Defined in (3) Answer the Basic Questions?
Let us see if the Class we have just defined, answers the Basic Questions we set forth under

“Motivation” on page 2. These questions are:

 (1) Is there any theoretical basis for programmers’ confidence that testing will reveal signifi-
cant bugs (errors) in a program?

and
(2) Can the validity of Occam's Razor be proved in a program context?

Naively, it would appear that the answer to both these questions is yes. For, in reply to Ques-
tion (1), we might say, “For any program p in the Class, after all inputs of length x + 1 have been
tested, where x is the number of instructions in the program, we will know if p is correct or not.”
And in reply to Question (2), we might say, “Clearly, if program p has x instructions, and program
p’ has y, and x < y, then if p, p both contain an error we will know that this is so for p in fewer
tests (namely, in tests of at most all inputs of length 1, 2, 3, ..., x + 1) than we will for p (which
may require tests of all inputs of length 1, 2, 3, ..., y + 1).

But we are neglecting what we said under “What Is An Error?” on page 5, namely, that we
assume that the functions that programs in the Desired Class will be tested against are limited to
functions computed by programs in the Class. So we must ask what the length z of the minimal
length program p is that p and p are being tested against.

Clearly, further investigation is necessary to determine exactly what the requirements are of
the function — hence the programs computing it — that one or more programs in the Desired
Class are being tested against.

The “Usefulness” of the Desired Class as Defined in Definition (3)
As stated under “Possible Benefits of This Research” on page 5, by the Desired Class being

“useful” we mean that the Class contains, at the very least, programs to do addition, subtraction,
multiplication, division, exponentiation, and extraction of roots. But we hope that the Class
includes many other programs besides, e.g., programs that compute functions that are constructed
from programs that compute these basic arithmetic functions. In this section, we consider a few
possibilities.

The Desired Class and Traditional Categories of Computable Functions
Clearly, a question that must be answered is: what is the relationship between the Desired

Class and primitive recursive, general recursive and partial recursive functions?

The Desired Class and Fermat’s Last Theorem
Fermat’s Last Theorem asserts that, for all integers x, y, z  1 and for all integers n  2:

[1] xn + yn  zn

The Theorem was finally proved by Andrew Wiles in the mid-1990s, some 300 years after
Fermat first set forth the conjecture that it was true (and claimed to have a proof of that fact,
although none was ever found among his papers). Interest remains, in a small segment of the
mathematical community, as to whether Fermat really did have a proof, and, whether he did or did
not, if there is a “simple” proof of the Theorem.
18

Occam’s Razor and Program Proof by Test
It might be possible to prove the Theorem as follows. Create a program p1(x, y, z, n) that, for
each x, y, z, n, computes the left-hand side and the right-hand side of [1] and then, if the two sides
are unequal, returns a 1, otherwise returns a 0. Create another program p2(x, y, z, n) that returns 1
for all inputs x, y, z, n. Now if these programs are in the Desired Class, it should be possible, in a
finite number of tests, to determine if the programs p1 and p2 both compute the same function,
namely, the function which returns 1 for all inputs x, y, z, n. If the programs both compute this
function, then we have another proof of Fermat’s Last Theorem.

Additional Thoughts

Topology and Testability
In point-set topology, topological spaces are defined by what are known as “separation axi-

oms”. Very roughly speaking, these axioms establish how “separated” any two points in the space
are — or, more precisely, how separated each point and its neighborhoods is separated from each
neighboring point and its neighborhoods. Thus (very intuitively) the points in some topological
spaces may be likened to droplets of mist (“hardly separable”), the points in other spaces to grains
of sand (“somewhat separable”), and the points in other spaces to gravel stones (“clearly separa-
ble”).

It is possible to define topological spaces each of whose points is a function, e.g., a comput-
able function. The value of topology in the theory of computation became clear in the late sixties
through the work of Dana Scott and Christopher Strachey on the mathematical semantics of pro-
gramming languages. Scott’s ideas included a definition of continuous programs — programs
having the characteristic that, (informally) if the amount of information in the input increases,
then the amount of information in the output must increase also.

We believe that this is the correct point of view from which to approach the question of test-
ability. Basically, our goal is to find a space of computable functions (hence programs) which, on
the one hand, will guarantee that we will always be able to determine in a finite number of tests
which function a given program computes, while on the other hand will be general enough for us
to accomplish the computation tasks at hand. More precisely, let P be a class of program and let p,
pbe programs in P. We would like to be able to answer the question, “How far is p from p?”, or,
at the least, given a third program p in P, we would like to be able to answer the question,
“Which is farther from p: p or p?”

Some Ways that Programs Can Differ
In its greatest generality, our question can be informally stated as follows: “How different

from each other are the computable functions?” Specifically, “Are there non-trivial subsets of the
computable functions such that, if we test two programs that are known to compute functions in
the set, we will know in ‘very few’ tests whether the programs compute the same function?”

Let us begin by simply listing some ways that programs can differ.
Two programs can differ:
In their outputs (in other words, in the functions they compute). The problem is that
 knowing that p and p differ in k outputs, k , or in an infinity of outputs, does not in
 itself tell us how far apart the differing outputs occur over the sequence of lexicographically
 ordered inputs, nor does it tell us for which input the first differing outputs occur.
 In the number of their instructions. As the number of instructions increases, so
19

Occam’s Razor and Program Proof by Test
 does the potential number of programs having a given number of instructions.
 In the computational complexity of the algorithms they embody.
 In the number of instructions in the programs of minimal length that compute the same
 functions as the programs in question.
 In accordance with the Scott topology.

Continuity of Syntax and Semantics
Suppose a programming language, hence a set of programs, existed which had the property

that syntax and semantics were “continuous”. By this we mean that, given a program p, and
knowing the function f (p) that p computes, and then given a “slightly different” program p, one
could then be confident that the function f computed by p would also be only “slightly different”
from f. An analogy would be a natural language in which the meanings of words in the dictionary
varied in accordance with the words themselves. Thus, for example, the meanings of all the
words beginning with “b” and differing in only a letter or two, would be very similar. An example
of — not a programming language per se, but a formal grammar — in which syntax and semantics
can be said to be “continuous” is the set of sequences of finite binary strings in the symbols 0, 1.
Here, each such string can be interpreted as defining a path through an infinite binary tree, where
0 denotes “take the right-hand branch from the current node” and 1 denotes “take the left-hand
branch from the current node”. Thus the string 01101 denotes the path beginning at the root and
then proceeding down the right-hand branch to the next node, then down the left-hand branch to
the next node, then down the left-hand branch ... etc. Given two strings of length n that differ in,
say, only the i’th symbol, 1  i  n, then it may be reasonable to say that the paths they define
are only “slightly different”. But if we view the semantics of the strings as being binary numbers,
then it is not reasonable to say that two strings of length n that differ in, say, only the i’th symbol,
1  i  n, define numbers that are only “slightly different”, as the reader can see by considering,
e.g., 01101 and 01100 (the corresponding numbers differ by 1) vs. 01101 and 11101 (the corre-
sponding numbers differ by 32).

“Prickly” Spaces
If a function known as a homeomorphism exists between two objects in a topological space,

then, topologically speaking, the objects are equivalent. Either one of the objects can be thought
of as being continuously deformable into the other (i.e., without tearing or gluing). To use a pop-
ular example, a typical coffee cup is topologically equivalent to a donut because a coffee cup can
be continuously deformed into a donut shape. But for testing purposes, we want function spaces
in which, if functions differ at all, they differ a lot. We want to do as little testing as possible to
determine if two programs compute the same function. We can call such topological spaces,
“prickly”. To use our table analogy: if all input-output pairs in a program are implemented as sep-
arate rows in a table, then we can infer nothing about other rows in the table if we know a single
row in the table. All are independent. Such programs define a topological space which is not
prickly at all. Two programs can differ “as little as possible”, namely, by just one input-output
pair (over the finite domain of the program’s inputs). At the other extreme are programs in which,
say, every instruction is executed in the computation of every input, over all inputs 0, 1, 00, 01,
10, 11, 000, 001, ... Such programs are prickly indeed, because if two programs differ at all, they
differ “a lot”! We believe that the class of program described under “(3) Definition of the Class
by Requring Every Instruction Be Executed Over a Certain Finite Range of Inputs” on page 17, is
sufficient prickly to accomplish the basic testing goal, while yet still permitting useful programs
20

Occam’s Razor and Program Proof by Test
— e.g., those that do multiplication, division, exponentiation, finding of roots — to be in the
Class. But it must be pointed out that we have been making an assumption here, namely, that
the “prickly” property we desire can, in fact, be established by a topology. If anything, we want
just the opposite of what a homeomorphism guarantees. We do not want it to be possible to con-
tinuously deform one function into another. We do not want functions to be that “close”, that sim-
ilar! So research is needed to determine if a topology is the structure we are seeking.
21

Occam’s Razor and Program Proof by Test
References and Bibliography

[1] W. Richard Adrion, Martha A. Branstad, and John C. Cherniavsky, “Validation, Verifica-
tion, and Testing of Computer Software”, National Bureau of Standards Special Publication 500-
75, U.S. Government Printing Office, Washington, D.C., (1980).

[2] Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward, “The Design of a Prototype
Mutation System for Program Testing”, Proceedings of 1978 National Computer Conference,
(1978).

[3] Arthur W. Burks, Chance, Cause, Reason, Univ. of Chicago Press, Chicago, Ill., (1977).

[4] Gregory Chaitin, “On the Difficulty of Computations”, IEEE Transactions on Information
Theory, IT-16, No. 1, 5-9, (1970).

[5] Gregory Chaitin, “Information-Theoretic Limitations of Formal Systems” JACM, 21, 403-
424, (1974).

[6] Gregory Chaitin, Algorithmic Information Theory, IBM J. Res. Develop., 350-359, (July
1977).

[7] Richard A. De Millo, Richard J. Lipton, Alan J. Perlis, “Social Processes and Proofs of
Theorems and Programs”, CACM, 22, 271-280, (1979).

[8] Edsger W. Dijkstra, “The Humble Programmer”, CACM, 15, 859-866, (1972).

[9] William Feller, An Introduction to Probability Theory and its Applications, 1, John Wiley
and Sons, New York, (1968).

[10] A. Fremantle, The Age of Belief, New American Library, New York, (1954).

[11] John E. Hopcroft, Jeffrey D. Ullman, Formal Languages and their Relation to Automata,
Addison-Wesley Publishing Co., Menlo Park, California, (1969).

[12] J. C. Huang, “An Approach to Program Testing”, ACM Computing Surveys, 7, 113-128,
(1975).

[13] Ernst Mach, “The Economy of Science”, in The World of Mathematics, ed. James R.
Newman, 3, Simon and Schuster, New York, 1787-1795, (1956).

[13.05] Meyer, Albert R., and Ritchie, Dennis M., “The complexity of loop programs”, Pro-
ceedings A.C.M. National Meeting, 1967

[13.1] Gerald Oster and Yasunori Nishijima, “Moire Patterns”, Scientific American, May,
1963, pp. 54-63.
22

Occam’s Razor and Program Proof by Test
[14] Karl R. Popper, The Logic of Scientific Discovery, Harper and Row, New York, (1968).

[15] Hartley Rogers, Theory of Recursive Functions and Effective Computation, McGraw-
Hill, New York, (1967).

[16] Bertrand Russell, A History of Western Philosophy, Simon and Schuster, New York,
(1972), p. 472.

[16.5] Peter Schorer, “On ‘O1-Class’ Computer Programs”, International Journal of Comput-
ers & Software Engineering, Vol. 11, No. 2/3, 1984, pp. 109-114.

[16.7] _____, Shaving With Occam's Razor, Occam Press, San Jose, Calif., 1985.

[16.8] D. Tsichritzis, “The Equivalence Problem of Simple Programs”, Journal of the Associ-
ation for Computing Machinery, Vol. 17, No. 4, Oct. 1970, pp. 729-738.

 [17] Steven J. Zeil, Lee J. White, “Sufficient Test Sets for Path Analysis Testing Strategies”,
Proceedings of 5th International Conference on Software Engineering, (1981).
23

Occam’s Razor and Program Proof by Test
Index

A
algorithm

definition of
algorithmic information theory 5

B
Busy Beaver Problem, the 9

C
Class of machine -- see "Desired Class of machine"
computation

definition of 6
"continuity" of syntax and semantics in a programming language 19
"correct" vs. "incorrect" programs

the distinction is not inherent in the programs themselves 5

D
Desire Class of program

definition of 4
Desired Class of machine

is assumed to halt for all inputs, i.e., is assumed to be an algorithm 8
Dijkstra, Edsger

on program testing being inadequate to detect all bugs (errors) 2

E
"elusive" error

definition of 8
error

definition of 5
execute (an instruction)

definition of 6

F
fact function 3, 10
factorial function 3, 10, 13
falsifiability, Popper’s criterion of 5
Fermat’s Last Theorem

possibility of proving using the Desired Class 18
finite descriptions of infinite sets 4, 5
24

Occam’s Razor and Program Proof by Test
finite-control state
definition of 6

finite-state machine
definition of 6
its behavior (function it computes) can be determined by a finite number of tests 6
wheel model of a 14

finite-state machines
Occam's Razor applies to 6
testing of 6

G
Graham’s Number 9

I
input

definition of 7
instruction in a Turing machine

definition of 7

L
last-pass problem 10
length of an input

definition of 7
Loop program

definition of 12

M
machine state

definition of 7
mult function 2
multiplication function 2

O
O1-Class pair

definition of 15
Occam's Razor

definition of 2
output

definition of 7
25

Occam’s Razor and Program Proof by Test
P
Popper’s criterion of falsifiability 5
"prickly" topologies 20
program

definition of 7
sometimes refers to a Turing machine 8

program state
definition of 7

programs
as general rules 9
as tables 9

S
statement in a Turing machine context

definition of 7
step in a Turing machine computation

definition of 7

T
tables

programs as 9
topology

"prickly" 20
Turing machine

definition of 7

U
"useful" program

definition of 5, 20

W
"what lies near to what" 20
wheel model of a finite-state machine 14
26

	Introduction
	Motivation
	Examples to Motivate Interest in the Basic Questions
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Other Ways of Stating the Basic Questions

	Possible Benefits of This Research
	Preliminaries
	What Is An Error?
	Definitions

	“Elusive” Errors
	Definition of “Elusive” Error
	Types of Elusive Error
	The Busy Beaver Problem
	The Two Extremes: Programs as Tables and Programs as General Rules
	The Last-Pass Problem

	Reasons for Believing the Desired Class of Program Doesn’t Exist
	Reason 1 — Non-existence of machine to tell if two programs produce the same number
	Reason 2 — Unpredictability of outputs for large inputs
	Reason 3 — A paper by Tsichritzis

	Reasons for Believing the Desired Class Does, in Fact, Exist
	Reply to Reason 1 — Non-existence of machine...
	Reply to Reason 2 — Unpredictability of outputs...
	Reply to Reason 3 — A paper by Tsichritzis
	A Trivial Example of the Desired Class

	Attempts at a Definition of the Desired Class
	The Fundamental Importance of Program Length, i.e., Number of Instructions
	The Wheel Model of the Desired Class
	All Programs In the Class Must Be “Like” Those for Multiplication and Factorial
	Attempts at a Definition of the Desired Class
	(1) Definition of the Class by Pairs of Programs Having a Certain Property
	(2) Definition of the Class by Nested Finite-State Machines
	(3) Definition of the Class by Requring Every Instruction Be Executed Over a Certain Finite Range of Inputs
	Does the Class Defined in (3) Answer the Basic Questions?

	The “Usefulness” of the Desired Class as Defined in Definition (3)
	The Desired Class and Traditional Categories of Computable Functions
	The Desired Class and Fermat’s Last Theorem

	Additional Thoughts
	Topology and Testability
	Continuity of Syntax and Semantics

	References and Bibliography
	Index

