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relevant concepts; once this is accomplished the job may be more than half done.”1

Readers can safely assume, initially, that all referenced lemmas are true, since their proofs 
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A proof of the 3x + 1 Conjecture is given in our paper, “A Solution to the 3x + 1 Problem” on 
occampress.com.   A promising approach to another proof is given in the section, “Strategy of 
Proving There Is No Minimum Counterexample”, in the first part of our paper, “The Structure of 
the 3x + 1 Functionn: An Introduction”, on occampress.com.
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Are We Near a Solution to the 3x + 1 Problem?
Abstract
 We present several possible strategies for solving the 3x + 1 Problem.  The Problem asks if 

repeated iterations of the function C(x) = (3x + 1)/(2a) always terminate in 1  Here x is an odd, 
positive integer, and a is the largest positive integer such that the denominator divides the numer-
ator.  The strategies are based on two structures underlying C: tuple-sets, which is the structure of 
the function in the “forward” direction, and recursive “spiral”s, which is the structure of the func-
tion in the “backward” or inverse direction.

Tuple-sets are a partition of the set of all finite sequences of iterations of C , each sequence 
being represented by a tuple. If a tuple is associated with the sequence A = {a2, a3, ..., ai} of expo-
nents of 2, where i  2, that is, if the tuple is generated by the sequence, then the tuple is an ele-
ment of the tuple-set TA. Each i-level tuple-set, where i  2, has exactly one first i-level tuple, 
which is called the anchor tuple.  The difference between the values of elements of successive 
tuples in each tuple-set is given by a set of simple functions called the distance functions  
(“Lemma 1.0” on page 11).

We show that if counterexamples exist, each tuple-set contains an infinity of counterexample 
tuples and an infinity of non-counterexample tuples (“Lemma 5.0” on page 15).  We also show 
that each range element of C, including, for example, 1, is mapped to by every finite exponent 
sequence (“Lemma 18.0: Statement and Proof” on page 84 ). 

 Recursive “spiral”s are  a representation of the function C in the “backward” or inverse direc-
tion. A fact that arises from our investigation of this structure is that exactly one set, J, of odd, 
positive integers maps to 1 regardless if counterexamples exist or not (“Lemma 8.8” on page 26).

These results then give rise to several strategies.
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Introduction
Statement of Problem

For x an odd, positive integer, set

where ord2(3x + 1) is the largest exponent of 2 such that the denominator divides the numerator.  
Thus, for example, C(17) = 13, C(13) = 5, C(5) = 1. The 3x + 1 Problem, also known as the 3n + 
1 Problem, the Syracuse Problem, Ulam’s Problem, the Collatz Conjecture, Kakutani’s Problem, 
and Hasse’s Algorithm, asks if repeated iterations of C  always terminate at 1. The conjecture that 
they do is hereafter called the 3x + 1 Conjecture. We call C the 3x + 1 function; note that C(x) is 
by definition odd.

Other equivalent formulations of the 3x + 1 problem are given in the literature; we base our 
formulation on the C function (following Crandall) because, as we shall see, it brings out certain 
structures that are not otherwise evident.

Summary of Research on the Problem
As stated in [Lagarias 1985], “The exact origin of the 3x + 1 problem is obscure.  It has circu-

lated by word of mouth in the mathematical community for many years.  The problem is tradition-
ally credited to Lothar Collatz, at the University of Hamburg.  In his student days in the 1930’s, 
stimulated by the lectures of Edmund Landau, Oskar Petron, and Issai Schur, he became inter-
ested in number-theoretic functions.  His interest in graph theory led him to the idea of represent-
ing such number-theoretic functions as directed graphs, and questions about the structure of such 
graphs are tied to the behavior of iterates of such functions...  In the last ten years [that is, 1975-
1985] the problem has forsaken its underground existence by appearing in various forms as a 
problem in books and journals...”

As far as we have been able to determine, our approach to a solution of the Problem via the 
two structures, tuple-sets and recursive “spiral”s, is original.  

Summary of Solution Strategies
A summary of solution strategies is given below under “Strategies to Prove the 3x + 1 Conjec-

ture” on page 34. . 

C x( )
3x 1+

2ord2 3x 1+( )
--------------------------=
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Are We Near a Solution to the 3x + 1 Problem?
Why Is the 3x + 1 Problem So Difficult?
At the time of this writing (May, 2016) the 3x + 1 Problem is about 85 years old.  Some of the 

world’s best mathematicians have tackled it, including Paul Erdös, who remarked, “Mathematics 
is not yet ready for problems of this difficulty.”  We know of at least one veteran researcher who 
discourages graduate students from working on the Problem because “it is a waste of time”.

We believe that one reason the Problem is so difficult is that (informally) the structure of 
counterexamples to the 3x + 1 Conjecture, and the structure of non-counterexamples, are so simi-
lar.  For example, the inverse of each range element y of the 3x + 1 function, be that range element 
a counterexample or a non-counterexample, is an infinitary tree with y as root.  (See “Recursive 
“Spiral”s: The Structure of the 3x + 1 Function in the “Backward”, or Inverse, Direction” on 
page 25.).  Furthermore, all the properties of these trees that we are aware of, are the same regard-
less whether the root is a counterexample or a non-counterexample.

Other results that we have obtained likewise apply to both counterexamples and non-counter-
examples.  Among these are Lemmas 1.0, 5.0, 6.0, 7.0, 11.0, 12.0, 13.0, 15.0, 18.0.  Many, if not 
most, of the results in the literature seem to us equally applicable to both counterexamples and 
non-counterexamples.  We have come to believe that, at the very least, future results about the 
3x + 1 function should be accompanied by clear statements as to whether the results apply to both 
types of integer.

A related reason why the Problem is so difficult is that the structure of the 3x + 1 function is 
apparently the same as the structure of other functions in which counterexamples are known to 
exist.  These functions include the 3x –1, 3x + 5, and 3x + 13 functions. (See “Appendix C — “3x 
+ 1 - like” Functions” on page 90.)  

Not to be overlooked is the fact that the 3x + 1 Problem is what we might call a global prob-
lem, unlike, for example, the problem of finding a proof of Fermat’s Last Theorem (FLT), which 
we might call a local problem.  Here is what we mean.  Given the expression xk + yk – zk, where, 
x, y, z, k are specific positive integers, and k  3, we can decide via a simple calculation if it rep-
resents a counterexample to FLT — if the expression = 0, then it is a counterexample.  If not, it 
isn’t. On the other hand, if we are given an odd, positive integer x, and are asked if it is a counter-
example to the 3x + 1 Conjecture, we cannot tell, unless (1) we have the 3x + 1 function perform a 
calculation  that may not halt — either because x is in fact a counterexample, or because, although 
it is a non-counterexample, our computing resources may be exhausted before the computation 
ends, or (2) unless we know from a prior calculation that it is a non-counterexample, or (3) an 
existing lemma states that it is a non-counterexample,  So we say that FLT is a local problem, 
whereas the 3x + 1 Problem is a global problem.

Finally, there is 
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Are We Near a Solution to the 3x + 1 Problem?
Tuple-Sets: The Structure of the 3x + 1 Function in the “Forward” 
Direction

In the first part of this paper, we describe a structure called tuple-sets that underlies all finite 
sequences of iterations of the 3x + 1 function, C.  We have placed virtually all definitions in this 
first part of the paper because the terms defined are used repeatedly in the lemmas and proofs 
given later.  

A tuple-set can be briefly, and informally, described as follows.  (A formal definition is given 
under “Tuple-set” on page 7.)  Consider the sequence of two iterations of C:  C(17) = 13 (via the 
exponent 2 in the definition of C) followed by C(13) = 5 (via the exponent 3 in the definition of 
C). This sequence of iterations can be represented by the tuple <17, 13, 5>. The tuple-set TA  
defined by the 2-level exponent sequence A = {2, 3} contains the tuple <17, 13, 5>.  But in addi-
tion it contains all other tuples that are determined by the exponent sequence {2} but not by {2, 3}  
— in other words, all other tuples that are determined by “approximations” to, or prefixes of,  A.  
For example, the tuples <33, 25> and <81, 61, 23> are in TA, because <33, 25> is associated with 
the exponent sequence {2} but 25 does not map to another odd positive integer via the exponent 
3, and <81, 61, 23> is associated with the exponent sequence {2, 3}.

We then show that each i-level tuple-set, where  i  2,  has a unique first i-level tuple (called 
an anchor tuple) that (like all tuples) must be either a non-counterexample tuple or a counterex-
ample tuple, but cannot be both.

We now proceed with our definitions.

Iteration
An iteration takes an odd, positive integer, x, to another odd, positive integer, y, via one appli-

cation of the 3x + 1 function, C. Thus, in one iteration C takes 17 to 13 because C(17) = 13.

Trajectory 
A trajectory (sometimes called an orbit) is a sequence of one or more successive iterations of 

C, that is, if the sequence is finite,

or, if the sequence is infinite,

 
The last element of the finite sequence need not be 1 and it need not be an infinity of succes-

sive 1’s in the case of an infinite sequence.
A trajectory or orbit is the same as a tuple, which is defined below. 

Ck x  k 0 x C x( ) C2 x  C
k

x    =

C x   x C x( ) C2 x     =
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Are We Near a Solution to the 3x + 1 Problem?
Non-Counterexample and Counterexample 
If x is the first element of an infinite tuple <x, ..., 1, 1, 1, ... > , then x is called a non-counter-

example.  Otherwise, x is called a counterexample.  Thus, a counterexample never yields 1 under 
repeated iterations of the 3x + 1 function.

Exponent
If C(x) = y, with y = (3x + 1)/2a,  we say that x maps under iteration to y (or x maps directly to 

y) via the exponent a, and that a is the exponent associated with x. By abuse of language, we 
sometimes speak of a as mapping directly to y.  We sometimes omit the word directly when con-
text makes clear that it is implied. The sequence {a2, a3, ..., ai}, where a2, a3, ..., ai are the expo-
nents associated with x, C(x), ..., C(i - 1)(x) respectively, is called an admissible vector in 
(Wirsching 1998).  We call the sequence an exponent sequence. We define the function e(x) to be 
the exponent associated with x. We sometimes refer to y as a range element.  It is easily shown 
that y cannot be a multiple of 3 (see “Lemma 10.0: Statement and Proof” on page 78).  An ele-
ment x of the domain of the 3x + 1 function, whether multiple of 3 or not, we sometimes refer to 
as a domain element.

I Clearly, an exponent is a positive integer.

Tuple
A tuple is a sequence of one or more successive iterations of C, that is, if the sequence is 

finite,

or, if the sequence is infinite,

 
A finite sequence is not required to end with a 1, and an infinite sequence is not required to 

end with an infinity of successive 1's. If an infinite sequence does not end with an infinity of suc-
cessive 1’s, then it consists of counterexamples to the 3x + 1 Conjecture.

A finite tuple is denoted1 <x, y, yy(n).  We say that x maps to y(n).  For example, <5, 1> 
and <11, 17, 13> are finite tuples.  An infinite tuple, which represents an infinite trajectory,  is 
denoted <x, y, yFor example, <5, 1, 1, 1, ... > and  <11, 17, 13, 5, 1, 1, 1, ... > are infinite 
tuples.

Let t = <x, y, yy(n)be a finite tuple.  Then the tuple t = <x, y, yy(n)y(n + 1)is an 
extension of t.  An extension of an extension of t we likewise call an extension of t, etc.  By defi-
nition of the function C, every finite tuple has an infinite number of extensions.  In the case of a 
sequence of iterations of C that eventually yield 1, the corresponding infinite tuple is <x, y, y
1, 1, 1,A tuple consisting of an infinite number of extensions is an infinite tuple.  We denote 
an infinite tuple by  t. 

1. In a tuple, “x(n)”, “y(n)”, etc., denotes x with n primes, y with n primes, etc.

Ck x  k 0 x C x( ) C2 x  C
k

x    =

C x   x C x( ) C2 x     =
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Are We Near a Solution to the 3x + 1 Problem?
Clearly, since the domain of C consists of the odd, positive integers, every odd, positive inte-
ger is the first element of an infinite tuple. 

If t is an infinite tuple, we denote the first i levels of  t  (that is, the first i elements of  t ), by
  t (i), and we call  t (i) a prefix of  t .  For example, if  t  = <17, 13, 5, 1, 1, 1, ... >, then  t (1) = 17, 
and  t (4) = <17, 13, 5, 1>.  Thus every finite tuple is a prefix of an infinite tuple and every prefix 
of an infinite tuple is a finite tuple.  The term tuple standing alone, without the qualifier “infinite”, 
denotes a finite tuple, that is, the prefix of an infinite tuple, unless context clearly indicates the ref-
erence is to an infinite tuple.

In the literature on the 3x + 1 Problem, tuples are sometimes called “trajectories” or “orbits”.
Each tuple element except, possibly, the first, is an odd, positive integer that is not a multiple 

of 3.  The element is odd by definition of the 3x + 1 function, C, and is not a multiple of 3 by 
“Lemma 10.0: Statement and Proof” on page 78.

Exponent Sequence Associated With a Tuple
As we established under “Exponent” on page 6, associated with every non-empty finite 

sequence of iterations of the function C — hence with every tuple — is an exponent sequence.  
We speak of the exponent sequence associated with a finite tuple.  If t is a tuple, then we denote 
the exponent sequence associated with t by A(t).  Thus, for example, if t = <17, 13, 5, 1> then A(t) 
= {2, 3, 4} because 17 maps directly to 13 via the exponent 2, 13 maps directly to 5 via the expo-
nent 3, and 5 maps directly to 1 via the exponent 4.

Extension of an Exponent Sequence
Let A = {a2, a3, ..., ai} be a finite sequence of exponents, where i 2.  Then an exponent 

sequence A = {a2, a3, ..., ai, ai+1}is an extension of A.  An extension of Ais also an extension of 
A, etc. 

Tuple-set
(The reader might find it helpful to refer to Fig. 1 in this sub-section while reading the follow-

ing.)

Let A = {a2, a3, ..., ai} be a finite sequence of exponents, where i 2The tuple-set TA  con-
sists of all and only the following tuples:

all tuples <x> such that x does not map to an odd, positive integer via a2;

all tuples <x, y> such that x maps to y via a2 (that is, e(x) = a2) but y does not map to an odd, 
positive integer via a3;

all tuples <x, y, y> such that x maps to y via a2 (that is, e(x) = a2) and y maps to y via a3 (that 
is, e(y) = a3) , but  y does not map to an odd, positive integer via a4; 

...
7



Are We Near a Solution to the 3x + 1 Problem?
all tuples <x, y, yy(i – 3)y(i – 2)> such that x maps to y via a2 (that is, e(x) = a2) and y maps 
to y via a3 (that is, e(y) = a3) and ... and y(i – 3) maps to y(i – 2) via the exponent ai (that is, e(y(i – 3)) 
= ai).  (The longest tuple in an i-level tuple-set has i elements.)

In other words, for each i-level exponent sequence A:

there are tuples <x> whose associated exponent sequence is a prefix of A for no exponent of A, 
and

there are other tuples <x, y> whose associated exponent sequence is a prefix of A for the first 
exponent of A, and 

there are other tuples <x, y, y> whose associated exponent sequence is a prefix of A for the 
first two exponents of A, and

...
there are other tuples <x, y, z, ..., y(i – 2)> whose associated exponent sequence is a prefix of A 

for all i – 1 exponents of A.  

Tuples are ordered in the natural way by their first elements.
The set of first elements of all tuples in a tuple-set is the set of odd, positive integers (see proof 

under “The Structure of Tuple-sets” on page 8). Thus, there is a countable infinity of tuples in 
each tuple-set.

For each i 2, tuple-sets are a partition of the set of all i-level tuples. 

The Structure of Tuple-sets
It is important for the reader to understand that the structure of each tuple-set is unchanged by 

the presence or absence of counterexample tuples.  Regardless if counterexample tuples exist or 
not, the set of first elements of all tuples in each tuple-set is always the same, namely, the set of 
odd, positive integers.  Proof: Let x be any odd, positive integer and let A = {a2, a3, ..., ai}, where 
i 2,  be any exponent sequence.  Then there are exactly two possibilities:

(1) x maps to a y in a single iteration of the 3x + 1 function, C, via the exponent a2, or 
(2) x does not map to a y in a single iteration of C via the exponent a2.

But if (1) is true, then a tuple containing at least two elements, with x as the first, is in TA; if (2) 
is true, then the tuple <x> is in TA.. There is no third possibility.

For each tuple-set, the first element of the first tuple is 1, the first element of the second tuple 
is 3, the first element of the third tuple is 5, etc.

It can never be the case that, if counterexample tuples exist, then somehow there are “more” 
tuples in a tuple-set than if there are no counterexample tuples1.  

Furthermore, the distance functions defined in “Lemma 1.0” on page 11 are the same regard-
less if counterexample tuples exist or not.  

1. To make this statement more precise: in no tuple-set does there ever exist a first element of a tuple, regard-
less how large that first element is, such that there are more tuples in that tuple-set having smaller first ele-
ments if counterexamples exist, than if counterexamples do not exist.
8



Are We Near a Solution to the 3x + 1 Problem?
If A = {a2, a3, ..., ai} is a finite exponent sequence, then of an i-level tuple t in the tuple-set TA, 
we say that t is generated by the exponent sequence A and that A is associated with t. Finally, we 
say that the tuple-set TA  is generated by the sequence A. To review: for each tuple, we speak of 
the exponent sequence associated with it; for each exponent sequence, we speak of the tuple or 
tuple-set it generates.

As an example of (part of) a tuple-set: in Fig. 1, where A = {a2, a3, a4} =  {1, 1, 2} and where 
we adopt the convention of orienting tuples vertically on the page, the tuple-set TA includes:

 the tuple <1>, because e(1) a2;  
 the tuple <3, 5> , because e(3) = a2 = 1, but e(5) = 4  a3 = 1; 
 the tuple <15, 23, 35>, because e(15) = a2 = 1, and e(23) = a3 = 1, but e(35) = 1  a4 = 2.

Fig. 1.  Part of the tuple-set TA associated with the sequence A = {1, 1, 2}

The numbers 18 and 4 between the arrows are values of the distance functions established by 
Lemma 1.0 (see “Lemma 1.0” on page 11). 

In each i-level tuple-set TA, where i 2, for each odd, positive integer x there exists a tuple 
whose first element is x.  The tuple may be one-level (<x>), or two-level (<x, y>), or ... or i-level
 (<x, y, yy(i – 3)y(i – 2)>).  Thus each tuple-set is non-empty.

Lemma 4.0 (see “Lemma 4.0: Statement and Proof” on page 75) establishes that a tuple-set TA 
exists for each exponent sequence A.

Note: our proofs will almost always involve only i-level tuples in i-level tuple-sets.  We have 
included j-level tuples, where 2  j  i, in our definition of tuple-set because we feel that these 
tuples are necessary to fully describe the structure of tuple-sets.  If the level of a tuple in an i-level 
tuple-set is not specified, the reader should assume that the tuple is i-level.

1 3 5 7 9 11 13 15 17 19 21 23 25 27

5 11 17 23 29 35 41

...

...

17

13

35 53
18

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

...

...

1

2

3

4

level

tuple
no.
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Ordering of Tuples in a Tuple-set
Tuples in a tuple-set TA are linearly ordered by the natural order of their first elements.  We 

denote a specific tuple in a tuple-set by t(r), where r  1.  If TA  is an i-level tuple-set, where i  2, 
we denote the jth element of t(r) (if it exists in TA ) by t(r)(j), where 1  j  i .

The reader may find it helpful to imagine an i-level tuple-set, where  i   2, as a “picket fence” 
infinite to the right, with the tuples serving as the pickets, as suggested by Fig. 1 under “Tuple-
set” on page 7. 

Level in a Tuple-set
A level j in a tuple-set is defined as follows.  If A = {a2, a3, ..., ai}, where i 2, is a finite 

sequence of exponents, the subscript j in aj, 2 j idenotes the  level j in the sequence, that is, 
in the tuple-set TA.  Subscripts of exponents in an exponent sequence are numbered beginning 
with 2 instead of with 1 so that the last subscript then indicates the number of levels in the corre-
sponding tuple-set.  Thus, for example, if A = {a2}, then TA is a 2-level tuple-set; if A = {a2, a3}, 
TA is a 3-level tuple-set, etc. Level 1 is then the level containing the set of all possible tuple first 
elements {1, 3, 5, 7, ... } in  TA, that is, the set of odd, positive integers.  Thus, for example in the 
tuple <17, 13, 5, 1>, 17 is at level 1, 13 is at level 2, 5 is at level 3, and 1 is at level 4.  We denote 
the element at level j in the nth tuple in a i-level tuple-set, where i  2, by t(n)(j), where 1  j   i. 
(The element at level j is the jth element in the tuple.)

If a tuple has an element at level j, but none at level j + 1, we refer to the tuple as a j-level 
tuple. If the tuple also has an element at level j + 1, we sometimes refer to the tuple as a ( j)-level 
tuple. The longest tuple in a tuple-set generated by an i-level exponent sequence is an i-level 
tuple.  

In the case that A = {a2, a3, ..., ai}, where i 2we refer to A as an i-level exponent sequence.  
An i-level exponent sequence consists of (i - 1) exponents. 

Tuples Consecutive at Level j
Tuples consecutive at level j,  j  2, are defined as follows.  Let tk, tn be ( j)-tuples in some i-

level  TA, where  i 2.  If there is no ( j)-tuple between tk and tn, we say that tk and tn are tuples 
consecutive at level j.  Here, “between” means relative to the natural linear ordering of tuples 
based on their first elements. 

Thus, for example, in Fig. 1, the tuples numbered 4 and 8 are consecutive at level 3.

Extension of a Tuple-set
Let TA  be a tuple-set, where A = {a2, a3, ..., ai}.  Then a tuple-set TA, where A = {a2, a3, ..., 

ai, ai+1} is an extension of TA.  A proof that there exists such an extension for each exponent ai+1 
is given in Lemma 3.0 (see “Lemma 3.0: Statement and Proof” on page 73). 

Tuple-sets and Infinite Tuples
Tuples in a tuple-set are oriented vertically in accordance with our convention (see “Tuple-

set” on page 7).  Each tuple is a prefix of an infinite tuple (see “Tuple” on page 6). Therefore the 
infinite tuples whose prefixes constitute the finite tuples in a tuple-set, are likewise oriented verti-
cally.

The infinite tuples having prefixes in a tuple-set thus occupy a single, vertical plane PA  that is 
infinite in the upward direction and to the right.  
10



Are We Near a Solution to the 3x + 1 Problem?
If TA is an i-level tuple-set, where i 2, then each tuple-set that is an extension of TA  is con-
tained, as a set of prefixes, in the set of infinite tuples whose i-level prefixes constitute the tuples in 
TA.  Putting it another way, each tuple-set that is an extension of TA — each tuple in each such 
tuple-set — is contained in the single, vertical plane PA . 

Tuple-sets: Infinities of Arbitrarily Long Tuples
What one might call the grandeur of the 3x + 1 function is represented by the fact that, for 

each arbitrarily long but finite sequence of positive integers (exponents) there exists a tuple-set 
containing a countable infinity of 1-level tuples, plus a countable infinity of 2-level tuples, plus 
...,, plus a countable infinity of i-level tuples, where i – 1 is the number of exponents in the 
sequence.  

Thus, for example, given an exponent sequence of length, say, 10,000,000,000, there never-
theless exists a countable infinity of 10,000,000,001-level tuples in the tuple-set defined by that 
exponent sequence, in addition to a countable infinity of each shorter tuple.  Furthermore, as we 
shall prove in “Lemma 5.0” on page 15, if counterexamples exist, there also exists a countable 
infinity of counterexample tuples in the same tuple-set.

Distance Functions on Tuple-sets
Lemma 1.0
 (a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  tk, tn be tuples con-
secutive at level i in TA.  Then d(i, i), the distance between tk and tn at level i, is defined to be the 
absolute value of the difference between the level i elements of  tk and tn, that is, it is defined to be 
|tk(i) - tn(i)|, and is given by: 

(b) Let tk, tn be tuples consecutive at level i in TA.  Then  d(1, i), the distance between tk and tn 
at level 1, is defined to be the absolute value of the difference between the level 1 elements of tk 
and tn, that is, it is defined to be |tk(1) - tn(1)|, and is given by:

Thus, in Fig. 1 under “Tuple-set” on page 7, the distance d(3, 3) between t8(3) = 35 and t4(3) = 
17 is 2 ꞏ 3(3-1) = 18.  The distance d(1, 2) between t12(1) = 23 and t10(1) = 19 is 2 ꞏ 21 = 4.

Proof: see “Lemma 1.0: Statement and Proof” on page 68.

Remarks About the Distance Functions
(1) Strictly speaking, we should include the sequence A of exponents as arguments of d(1, i), 

d(i, i), but this notation would be cumbersome and, since typically this sequence is known, unnec-
essary.

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =
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(2) The distance functions make clear that, for each finite sequence of exponents, there exists 
an infinity of tuples produced by that sequence.   (The equivalent of this statement is made in 
[Wirsching 1998] (p. 48).)  The following table shows the distance relationships for (i – j)-level 
elements of tuples consecutive at level (i – j) in an i-level tuple-set, where 0 j (i – 1). The dis-
tances are easily proved using Lemma 1.0. (An example is given following the table.) We only 
use the distances at levels 1 and i in this paper.

For example, let x be an element at level (i – 1) of an i-level tuple.  Then, by the table, the ele-
ment at level (i – 1) in the next i-level tuple (that is, in the next tuple consecutive at level (i – 1)) = 

(x +  ), and so it must be the case that

which, as the reader can check, is indeed the case.

(3) Lemma 1.0 makes clear that no two i-level tuples in an i-level tuple-set have the same last 
element.  In fact, the values of the last elements of i-level tuples in an i-level tuple-set always 
increase as one proceeds along the sequence of i-level tuples.

(4) For each i  2, the set of all i-level elements of all i-level tuple-sets is the set of all odd, 
positive integers mod 2 • 3i – 1.  That is, each i-level element is an element of a reduced residue 
class mod 2 • 3i – 1.  (A reduced residue class is one having no multiples of 2 or multiples of 3.)

There are  2 • 3i – 2 such classes.  If we think of the positive integers mod 2 • 3i – 1 in accor-
dance with our “lines-and-circles” model1, then the first three levels (circles) become the first 

Table 1: Distances between elements of tuples consecutive at level i

Level
Distance between (i – j)-level elements 

of tuples consecutive at level (i – j), 
where 0 j (i – 1)

i

i  1

i  2

i  3

... ...

2

1 ...  

2 3i 1–

2 3i 2– 2ai 

2 3i 3– 2ai 1– 2ai 

2 3i 4– 2ai 2– 2ai 1– 2ai 

2 3 2a32ai 1– 2ai 

2 2a2 2a3 2ai 1– 2ai

2 3i 2– 2ai 

3 x 2 3
i 2–

2
ai +  1+

2
ai

-------------------------------------------------------- 3x 1+

2
ai

--------------- 2 3
i 1–+=
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level (circle) mod 2 • 3(i – 1) + 1, the second three levels (circles) become the second level  (circle) 
mod 2 • 3(i – 1) + 1, etc. 

We now state the two lemmas that are required for our proof that tuple-sets exist as defined.

Every Possible 2-Level Tuple-set Exists
Lemma 2.0
 For each exponent a2, a tuple-set TA, where A = {a2}, exists.

Proof: See “Lemma 2.0: Statement and Proof” on page 73.

Every Possible Extension of Each i-Level Tuple-set Exists
Lemma 3.0
Each i-level tuple-set TA, where  A = {a2, a3, ..., ai} and  i 2has an extension via each odd or 
even exponent ai +1,

Proof: See “Lemma 3.0: Statement and Proof” on page 73.

How Tuple-sets “Work”
Each i-level tuple-set, where i  2,  can be extended by any positive integer, m (Lemma 3.0).  

For each m, there is a countable infinity of i-level tuples in the tuple-set that are extended by m.  If 
m is that by which the first i-level tuple is extended, then the extended tuple remains the first (i + 
1) - level tuple in the resulting (i + 1) - level tuple-set.  If not, then the first tuple in the (i + 1) level 
tuple-set is the first one, in the linear ordering of i-level tuples in the i-level tuple-set, that is 
extended by m.  An infinite tuple results from infinite extensions of a tuple, each of which estab-
lishes the tuple-set that the tuple is in.  The “distance” between (i + 1)-level elements in succes-
sive (i + 1)-level tuples in each (i + 1)-level tuple-set, is 2 • 3i +1 - 1 (part (a) of Lemma 1.0).

Proof That Tuple-sets Exist as Defined
Lemma 4.0 
For each exponent sequence A = {a2, a3, a4,  ..., ai}, where i  2, there exists a tuple-set TA. 

Proof: See “Lemma 4.0: Statement and Proof” on page 75.

Lemmas 2.0, 3.0 and 4.0 establish, as part of their proofs, that there are an infinite number of 
tuples in each tuple-set.  A plausible question at this point is: Why should there be? The answer is 
given in the next section.

1. See Part (4) of the paper, “Is There a ‘Simple’ Proof of Fermat’s Last Theorem?” , on occampress.com.
13
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On the Number of Tuple-sets
 

Lemma 4.5
(a) For each i 2, the number of i-level tuple-sets is countably infinite.
(b) The number of all tuple-sets is countably infinite.

Proof of (a): See “Lemma 4.5: Statement and Proof” on page 75.
Proof of (b): A countable infinity of countable infinities is a countable infinity. 

On the Set of All i-Level Elements of All i-Level Tuple-sets

Lemma 4.75  
For each i 2, the set of all i-level elements of all i-level tuples in all i-level tuple-sets is the 

set of all range elements of the 3x + 1 function.

Proof: See “Lemma 4.75: Statement and Proof” on page 75.

A Recursive Description of Any Tuple-set
Let x denote the set of odd, positive integers. Let y = C{a2 mod 2 • 3(1  1)}(x) denote the set 

of  range elements of the 3x + 1 function produced by the exponent a2 mod 2 • 3(1  1) operating on 
all the elements of x.  As we know from Lemma 1.0, y is one of two sets, namely, the set of all y  
1 mod 2 • 3(1  1) (if a2 is even) or the set of all y  5 mod 2 • 3(1  1) (if a2 is odd).

We can repeat the process recursively, so that, if A = {a2, a3, ..., ai}, then

(1)
TA = C{ai mod 2 • 3((i  1) )(... C{a3 mod 2 • 3(2  1)}(C{a2 mod 2 • 3(1  1)}(x))...).

The reason that this is a recursive description of the tuple-set TA is that it is precisely the 
sequence of tuple-set extensions,  

The reason we only need to consider the indicated finite set of exponents at each level is estab-
lished by Lemmas 7.0 and 7.1 in the first part of the second file of the paper, “The Structure of the 
3x + 1 Function: An Introduction” on the web site occampress.com. 

We remind the reader that if y... is a set mapped to by C{ai...}(y...), then we know by 
“Lemma 1.0” on page 11 that y... is a reduced residue class mod 2 • 3((i + 1) 1). 

Equation (1) describes the behavior of the 3x + 1 function over its entire domain, namely, the 
set of all odd, positive integers, regardless if counterexamples exist or not.

Why There Are An Infinite Number of Tuples in Each Tuple-set
Every finite exponent sequence — that is, every finite sequence of positive integers — gener-

ates an i-level tuple-set (“Lemma 4.0: Statement and Proof” on page 75), where i   2.  The last 

T a2  T a2 a3  T a2 a3 a4    T a2 a3 a4 ai      
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element (that is, the i-level element) of each tuple maps directly to one and only one odd, positive 
integer via one and only one exponent.  Consider the tuple-set TA  generated by the exponent 
sequence A = {a2, a3, a4, ..., ai} where i   2.  TA  has an extension for each positive integer ai+1 
(“Lemma 3.0: Statement and Proof” on page 73).  But since the last element of each tuple in TA 
maps directly to one and only one odd positive integer, and since by Lemma 2.0 (see “Lemma 3.0: 
Statement and Proof” on page 73) each tuple-set TA, A = {a0, a1, a2, ..., ai, ai+1}, likewise has an 
extension for each positive integer ai + 2 , etc., it follows that, for each ai, there exists an infinity of 
tuples in TA whose last elements directly map to their respective odd, positive integers via ai. In 
short, the reason there are an infinite number of tuples in each i-level tuple-set is that (1) each i-
level tuple-set has an infinity of extensions, namely, one for each exponent ai+1, but (2) each tuple 
maps directly to one and only one odd, positive integer via one and only one exponent.  

Thus, in each i-level tuple-set TA , where i   2, the countable infinity of i-level non-counterex-
ample tuples consists of:

an infinity that have an extension via the exponent 1, and
an infinity that have an extension via the exponent 2, and
an infinity that have an extension via the exponent 3, and
...  
If counterexamples exist, the same is true for i-level counterexample tuples.

The Merging of All Tuple-sets into a Single Row of Tuples
For each odd, positive integer, an infinite tuple is generated by endlessly repeated iterations of 

the 3x + 1 function.  So we can order these infinite tuples by the natural order of their first ele-
ments.  As with tuple-sets, we adopt the convention that the tuples are vertical relative to the hor-
izontal axis containing the first elements.

For each i, where i  2, and for each infinite tuple t, we connect, via a square bracket, the i-
level element of t to the i-level element of the next infinite tuple t´ such that the i-level prefixes of 
both tuples are associated with the same exponent sequence. The bracket is not meant to enclose a 
set of tuples, we merely want the two ends of the bracket, which are perpendicular to the i-level 
elements we have just described, to indicate that the two i-level prefixes are associated with the 
same exponent sequence.

Of course, we must make sure that the line parts of brackets are not on top of each other.  
The result is a compression of all tuple-sets to a single row of (infinite) tuples.
.

On Non-Counterexample and Counterexample Tuples in a Tuple-set
Lemma 5.0
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity of i-
level counterexample tuples and an infinity of i-level non-counterexample tuples.

Proof:  see “Lemma 5.0: Statement and Proof” on page 76.

Remark 1
This lemma establishes that there is no way to distinguish counterexamples from non-counter-

examples on the basis of the finite exponent sequences associated with each. Of course, if a non-
15
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trivial cycle exists, then an infinite tuple <x1, x2, ..., x1, x2, ..., x1, x2, ... > exists, and thus the finite 
tuple <x1, x2, ..., x1> immediately tells us that a counterexample exists.  But there is no require-
ment that a counterexample be the source of a non-trivial cycle.  A counterexample can simply 
give rise to an infinite tuple in which no element recurs, and which has no element = 1.

To repeat: there is no way of telling from a finite exponent sequence that it is associated with a 
counterexample.  For example, the sequence {a2, a3, ..., a2, a3, ..., a2, a3, ... }, in which {a2, a3, ..., 
a2} is repeated, say, a trillion times, does not imply the existence of a counterexample cycle.

Remark 2
Lemma 5.0 implies that the set of all i-level non-counterexample tuples, where i  2, is associ-

ated with the set of all i-level exponent sequences and, if counterexamples exist, then the set of all 
i-level counterexample tuples is likewise associated with the set of all i-level exponent sequences.

Lemma 9.7
(a) If counterexamples do not exist, then for all i-level tuple-sets A = {a2, a3, ..., ai}, where i  

2, if x is the first element of an i-level (necessarily non-counterexample) tuple in TA, then the first 
element of the next i-level (necessarily non-counterexample) tuple is

 (1)

(b) If counterexamples exist, then in each i-level tuple-set A = {a2, a3, ..., ai}, where i  2, 
there exists an x which is the first element of an i-level non-counterexample tuple in TA such that 
the first element of the next i-level non-counterexample tuple in TA is greater than the value in (1).

Proof:
Part (a) follows directly from part (b) of  the distance function lemma, namely,“Lemma 1.0” 

on page 11.  Part (b) follows from the fact that, if counterexamples exist, then, by “Lemma 5.0” 
on page 15, each tuple-set contains an infinity of counterexample tuples and an infinity of non-
counterexample tuples.  Hence there must exist at least one non-counterexample tuple that is fol-
lowed by at least one counterexample tuple.  Hence the distance to the next non-counterexample 
tuple is greater than (1).

Remark: The Lemma shows that, informally, if counterexamples exist, non-counterexamples 
are “farther apart” from each other than if counterexamples do not exist.

Effect of the Existence of Counterexamples on the Set of All Tuple-sets
Consider the set of all tuple-sets in the two cases that (1) there are no counterexamples and (2) 

that counterexamples exist.  It is natural to say that there are “no differences”, because if x is an 
element of a tuple, then x maps to a certain y in one iteration of the 3x + 1 function, and this y is 
the same whether or not counterexamples exist.  If (contrary to fact) counterexamples and only 
counterexamples were negative numbers, then the set of all tuple-sets if no counterexamnples 

x 2 2a2  2a3  2ai  + 
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existed would be different (no negative numbers in tuples) from the set of all sets of tuple-sets if 
counterexamples existed (negative numbers in some tuples).

As we have pointed out on several occasions in this paper, there is no way of distinguishing 
counterexamples locally, meaning, by examining a single odd, positive integer, or even by exam-
ining the odd, positive integers produced by several iterations of the 3x + 1 function (it is known 
that the shortest cycle, if a cycle exists, would be thousands of elements long). 

When we consider the structure of the inverse of the 3x + 1 function (see “Section 2. Recur-
sive ‘Spiral’s”, in the first file of our paper “The Structure of the 3x + 1 Function: an Introduction” 
(www.occampress.com)) we see that there definitely is a difference in this structure if counterex-
amples exist as opposed to if counterexamples do not exist.  Specifically, if counterexamples do 
not exist, then there is no infinite set of “spiral”s whose set of elements is disjoint from the set of 
elements in the infinite set of  “spiral”s having base element 1. If counterexamples exist, on the 
other hand, then there exists at least one infinite set of “spiral”s whose set of elements is disjoint 
from the set of elements in the infinite set of “spiral”s having base element 1.

For a long time, we did not realize that exactly the same kind of difference holds for the set of 
all tuple-sets, namely, that if counterexamples do not exist, then the elements of all tuples in all 
tuple-sets are connected in the sense that for each element in each tuple, we can proceed through 
extensions of that tuple until we arrive at 1, and then from 1 we can proceed “backwards” through 
some other tuple until we arrive at any pre-selected element in another tuple.

If counterexamples exist, this is not possible.  In that case, we can partition the set of tuples in 
the set of all tuple-sets into a set of (partial) tuple-sets whose tuples contain only non-counterex-
amples, and one or more other (partial) tuple-sets whose tuples contain only counterexamples.i

Infinite Exponent Sequences Not Associated With Counterexamples
 Lemma 5.5. 

Let a be a finite exponent sequence such that if x maps to y via a, then y > x.  Then there does 
not exist a counterexample x such that the infinite tuple <x, ... > is associated with the exponent 
sequence {a, a, a, ... }.

Proof: See “Lemma 5.5: Statement and Proof” on page 76.

Lemma 5.6
No 3x + 1 infinite counterexample tuple can be associated with the same exponent sequence 

as the negative of the 3x – 1 infinite counterexample tuple.

Proof: We can extend each 3x + 1 tuple-set into the odd, negative integers.  The result is the 
negative of the 3x – 1 function. Since each infinite tuple would have a fixed first element, they 
would reach a length that would cause a violation of the Distance Function defined in part (b) of 
“Lemma 1.0” on page 11 .

Examples
 Examples of infinitely-repeating exponent sequences in the odd, negative integers are {1, 1, ... }, 
{1, 2, 1, 2, ..., } and {1, 1, 1, 2, 1, 1, 4,1, 1, 1, 2, 1, 1, 4,...}.
17
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For details, see Lemma 1.5 in the first part of our paper, “The Structure of the 3x + 1 Function: 
An Introduction” on occampress.com.

Anchor and Anchor Tuple
Since tuples in a tuple-set are linearly ordered by the natural order of their first elements, in 

every i-level tuple-set, where i  2, there is a unique first i-level tuple, which we call the anchor 
tuple of the tuple-set.  The last element, that is, the i-level element, of the anchor tuple we call the 
anchor of the anchor tuple, sometimes referring to it as the i-level anchor.

Each anchor tuple element (like the elements of all tuples) is an odd, positive integer that is 
not a multiple of 3.  The element is odd by definition of the 3x + 1 function, C, and is not a multi-
ple of 3 by “Lemma 10.0: Statement and Proof” on page 78.

Lemma 6.0
Let t be the i-level anchor tuple in an i-level tuple-set, where i 2. Then the last element y of t, 

that is, the i-level element of t (which is the anchor), is a number less than 2 ꞏ 3(i  1). 

Proof: see “Lemma 6.0: Statement and Proof” on page 77.

Definition of “Reduced Residue Class” and of “Complete Set of Reduced Residue 
Classes”

If a residue class mod m is such that each element of the class is relatively prime to m, then we 
call the class a reduced residue class mod m.  Thus, for example, the residue class mod 6 whose 
minimum element is 5 is a reduced residue class mod 6.  The set of all reduced residue classes 
mod m we call a complete set of reduced residue classes mod m.

Lemma 7.0
(a) For each i-level tuple-set TA, where A = {a2, a3, ..., ai}, the set of all i-level elements of all 

i-level tuples is a reduced residue class mod 2 • 3(i – 1). 

 (b) The set of all such reduced residue classes, over all i-level tuple-sets TA, is a complete set 
of reduced residue classes mod 2 • 3(i – 1).

Proof: see “Lemma 7.0: Statement and Proof” on page 77.

Anchors and Reduced Residue Classes
For each i  2, there are  2 • 3i – 2 reduced classes.  If we think of the positive integers mod 2 • 

3i – 1 in accordance with our “lines-and-circles” model1, then the the first level (circle) consists of 
the set of all i-level anchors. (This level contains all range elements less than 2 • 3i – 1.) The first 
three levels (circles) become the first level (circle) mod 2 • 3(i – 1) + 1 (that is, the set of all (i + 1)-
level anchors), the second three levels (circles) become the second level  (circle) mod 2 • 3(i – 1) + 

1, etc. 

1. See Part (4) of the paper, “Is There a ‘Simple’ Proof of Fermat’s Last Theorem?” , on occampress.com.
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Mark
Lemma 8.0
For each odd, positive integer x there exists a minimum i = i0  such that for each i  i0, x is the 
first element of the first i-level tuple in some i-level tuple-set, that is, x is the first element of an i-
level anchor tuple in some i-level tuple-set.  In terms of infinite tuples, this lemma states: if x is an 
odd, positive integer, then in the infinite tuple t = <x, y, y, ... >,  there exists a minimum level i0 
such that:

 t(i0) is the i0-level anchor tuple in an  i0-level tuple-set;
 t(i0 + 1) is the (i0 + 1)-level anchor tuple in an (i0 + 1)-level tuple-set;
 t(i0 + 2) is the (i0 + 2)-level anchor tuple in an (i0 + 2)-level tuple-set;
etc.

 (Of course, the (i0 + k + 1)-level tuple-set, where k  0, must be an extension of the (i0 + k)-
level tuple-set by the same exponent by which the anchor tuple is extended.)

Proof: see “Lemma 8.0: Statement and Proof” on page 78.

Remark
To describe the infinite sequence of anchor tuples in the lemma, we sometimes say, infor-

mally, “Once an anchor tuple, always an anchor tuple”.

Definition of “Mark”
We call the level i0 in Lemma 8.0 the mark of the infinite tuple  t.  We denote the mark  i0 by 

m.  We write m(t) to denote the mark of  t , and we write t(m) to denote the prefix (that is, finite 
tuple) corresponding to the mark m.  This prefix is an anchor tuple.

For example, the mark of the infinite tuple <3, 5, 1, 1, 1, 1, ... > is at level 2 (namely, at 5)  
because 5 is the first element of the tuple that is less than 2 • 3(i  1 ) for some i  2.  Specifically, 
for i = 2, 2 • 3(i  1 ) = 6, and 5 < 6.   As another example, consider the infinite tuple <433, 325, 61, 
23, 35, ..., 1, 1, 1, 1, ... >.  The mark is not at 325 (level 2) because for level 2,  2 ꞏ 3(i  1 ) = 6 and 
325 is not less than 6.  The mark is not at 61 (level 3) because for level 3, 2 ꞏ 3(i  1 ) = 18 and 61 
is not less than 18.  The mark is at 23 (level 4) because for level 4, 2 ꞏ 3(i  1 ) = 54 and 23 is less 
than 54. 

Infinite Tuples, Marks, and Tuple-sets
We here summarize the pertinent facts concerning infinite tuples, marks, and tuple-sets, 

because it is crucial that the reader understand these facts and their relationships.  
By definition, an i-level tuple-set TA, where i 2, includes all i-level tuples t such that A(t) = 

A, that is, such that the exponent sequence associated with t is A. We emphasize includes because, 
by definition of  “tuple-set”, the tuple-set also includes 1-level, 2-level, 3-level, ..., (i –1)-level 
tuples (see “Tuple-set” on page 7).   Another way of saying what we have just said regarding i-
level tuples is: a tuple-set TA, where i 2, includes all prefixes t(i) of infinite tuples t such that 
A(t(i)) = A.  Thus by abuse of language we may say that a tuple-set consists of a set of infinite 
tuples.  
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At this point it is appropriate that we describe the relationship between successive prefixes of 
an infinite tuple t (counterexample or non-counterexample) and the tuple-sets in which the pre-
fixes appear.  Let t = <x1, x2, x3, x4, ... > and let {a2, a3, a4, a5, ... } be the associated exponents. 
That is, 

x1 maps to x2 in one iteration of the 3x + 1 function via a2; 
x2 maps to x3 via one iteration of the 3x + 1 function via a3; 
etc.

Then, by definition of tuple-set:
in each tuple-set TA determined by the exponent sequence A = {b2, b3, b4, b5, ... bi} such that 

b2  a2, the tuple <x1> is an element;
in each tuple-set TA determined by the exponent sequence A = {b2, b3, b4, b5, ... bi} such that 

b2 = a2, but b3  a3, the tuple <x1, x2> is an element;
in each tuple-set TA determined by the exponent sequence A = {b2, b3, b4, b5, ... bi} such that 

b2 = a2, b3 = a3, but b4  a4 the tuple <x1, x2, x3> is an element;
...
in the one tuple-set TA determined by the exponent sequence A = {b2, b3, b4, b5, ... bi}such that 

b2 = a2, b3 = a3, b4  a4, ..., bi = ai the tuple <x1, x2, x3, ..., xi> is an element;

Let t  be an infinite tuple.  It has a mark, m.  Each prefix t (m + j) of  t , where j 0is an 
anchor tuple.  But then, by abuse of language, we allow ourselves to say that each prefix  t (i), 
where i 2, is a prefix of an anchor tuple (namely, the anchor tuple  t (m + j)).  Thus each prefix   
t (i), where i 2, is a prefix of an infinity of anchor tuples. 

Each infinite tuple t is an independent entity. By this we mean that an infinite tuple t  is deter-
mined solely by its first element. Thus, informally, an infinite tuple does not somehow “acquire” 
properties depending on the tuple-set in which it has a prefix.  

In an i-level tuple-set there is exactly one infinite tuple with a mark that is less than or equal to 
i , namely, the infinite tuple whose prefix is the anchor tuple. All other infinite tuples having i-
level prefixes in the tuple-set must have marks greater than i (otherwise there would be two or 
more anchor tuples in a tuple-set, which is impossible). It may well be the case, however, that an 
(i – j)-level tuple (prefix), where 1  j   (i – 1), in the tuple-set has a mark!  The following is an 
example:

The infinite tuple t = <7, 11, 17, 13, 5, 1, 1, 1, ... > has its mark at level 3 (namely at 17) 
because 17 is the first element of the tuple that is less than 2 • 3(i  1 ) for some i  2.  Here,  i = 3, 
so 2 • 3(i  1 ) = 18, and 17 < 18.  So <7, 11, 17> = t(3) is an anchor tuple: specifically, it is the 
anchor tuple of the tuple-set TA, where A = {1, 1} (7 maps to 11 via the exponent 1; 11 maps to 17 
via the exponent 1).  By our rule (see under “Mark” on page 19) expressed informally as “once an 
anchor tuple, always an anchor tuple”, we know that <7, 11, 17, 13> = t(4) is also an anchor tuple: 
specifically, it is the anchor tuple of the 4-level tuple-set TA, where A = {1, 1, 2} (7 maps to 11 
via the exponent 1, 11 maps to 17 via the exponent 1, 17 maps to 13 via the exponent 2).

But <7, 11, 17> = t(3) is also present in the 4-level tuple-set TA, where A = {1, 1, 1}  The 
reason is that, since 17 maps to 13 via the exponent 2, not via the exponent 1, the tuple <7, 11, 17> 
is associated with merely an “approximation”, namely {1, 1}, to the exponent sequence {1, 1, 1}.  
But therefore, by definition of “tuple-set” (see under “Tuple-set” on page 7), it belongs in the 
tuple-set TA.
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We conclude our preparation for a possible proof of the 3x + 1 Conjecture with the definition 
of “sufficiently long extension of a tuple” and “sufficiently long extension of an exponent 
sequence”.

“Sufficiently Long” Extensions of Tuples and Exponent Sequences
“Bottom Up” Sufficiently Long Extensions

We  begin with two definitions.  First we recall that each infinite tuple has a mark m that 
denotes the smallest prefix of the tuple that is an anchor tuple (see “Mark” on page 19). 

Definition of “Sufficiently Long” Extension of a Tuple
Definition:  Let t be an infinite tuple with mark m.  Let  t(i) be a prefix of  t,  where i < m.  

Then there exists an extension  t(i + j) of  t(i), where m = i + j. We say that  t(i + j) is a sufficiently 
long extension of  t(i) that is an anchor tuple.  (All longer extensions are likewise anchor tuples, 
by our rule, “once an anchor tuple, always an anchor tuple”.)

It follows (trivially) that:  

For each tuple (that is, for each prefix of an infinite tuple) there exists a sufficiently long 
extension of the tuple that is an anchor tuple.                                                                                   

Definition of a “Sufficiently Long” Extension of an Exponent Sequence
Definition:  Let t be a non-counterexample infinite tuple with mark m.  Let  t(i) be a prefix of  

t,  where i < m.  Let A(t(i)) denote the exponent sequence associated with t(i). Let the extension  
t(i + j) of  t(i) be a sufficiently long extension of t(i) that is an anchor tuple.  Then we say that
A(t(i + j)) is an extension of A(t(i)) that is sufficiently long to be associated with a non-counterex-
ample anchor tuple.

An Erroneous Objection to the Definition
Several readers have challenged the definition of a “sufficiently long” extension of an expo-

nent sequence with the following argument.  Let us imagine, they say,  a “demon” who presents us 
with an i-level exponent sequence, A, where i  2. The demon has before him all the non-counter-
example infinite tuples tnc having i-level prefixes that are associated with the exponent sequence 
A.  In other words, he has before him all the non-counterexample infinite tuples tnc whose prefixes 
constitute all the i-level non-counterexample tuples in the tuple-set TA.  He now proceeds to con-
catenate exponents onto A, taking care that, as soon as the resulting exponent sequence equals 
A( tnc + (m – 1)) for some infinite non-counterexample tuple tnc whose mark is m, the next expo-
nent in his sequence will make the resulting exponent sequence not equal to A( tnc (m)).  He 
repeats this indefinitely.  It is clear, then, that his exponent sequence will never be that of a non-
counterexample anchor tuple.

The error in this objection is that the demon is not creating a sequence of exponent sequences 
that are associated with a sequence of extensions of a single tuple.  Rather, he is in effect switch-
ing tuples in order to create his sequence of exponent sequences.
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Complete Sets of Tuples
Definition of a “Complete” Set of Tuples

Let S  be a set of i-level tuples, where i  2.  Then we say that S is complete if S is associated 
with the set of all i-level exponent sequences.  Otherwise, we say that S is incomplete.

Lemma 8.5
Assume counterexamples exist.  Let tnc, tc be non-counterexample and counterexample infinite 
tuples, respectively, with marks mnc, mc respectively.
Then for all levels i   max(mnc, mc) = i0, A(tnc(i)) A(tc(i)), where max(u, v) denotes the maxi-
mum of u, v, and A(t) denotes the exponent sequence associated with the tuple t. 

Proof: Assume the contrary.  Then for some i i0, A(tnc(i)) A(tc(i)), which implies that a 
tuple-set exists having both a non-counterexample and a counterexample anchor tuple, which is 
impossible.

Lemma 8.7
If counterexamples do not exist, then 
(a) For each  i   2, the set of i-level non-counterexample anchor tuples is complete. 

(b) Each non-counterexample infinite tuple has a prefix, namely, that determined by its mark, such 
that that prefix, and all larger prefixes, are elements of complete sets of non-counterexample 
anchor tuples.

If counterexamples exist, then

(c) For each i   some i0, the set of i-level non-counterexample anchor tuples is incomplete, so 
that a complete set of i-level non-counterexample tuples must include tuples other than anchor 
tuples.
(d) Each non-counterexample infinite tuple has a prefix, namely, that determined by its mark, such 
that that prefix, and all larger prefixes, are elements of incomplete sets of non-counterexample 
anchor tuples.

Proof 
(a) Follows trivially from the fact that if counterexamples do not exist, all tuples in all tuple-

sets are non-counterexample tuples. 
(b) Follows trivially from the fact that the mark determines the smallest prefix of an infinite 

tuple that is an anchor tuple.
(c) By “Lemma 8.5” on page 22, if counterexamples exist, then for all  i   max(mnc, mc) = i0, 

there exist i-level exponent sequences with which  i-level anchor tuples are not associated.  These 
are the exponent sequences with which i-level counterexample anchor tuples are associated. But 
by “Lemma 5.0” on page 15, each i-level tuple-set, regardless whether the anchor tuple is non-
counterexample or counterexample, contains an infinity of non-counterexample tuples and an 
infinity of counterexample tuples.  Thus to obtain a complete set of i-level non-counterexample 
tuples, it is necessary to include a non-counterexample tuple from each tuple-set having a counter-
example anchor tuple. 

(d) Follows directly from “Lemma 8.5” on page 22.
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Challenging Questions About Anchor Tuples and Tuple-sets
Regardless of the success of the proof strategies described in this paper, and of the implemen-

tations of some of these strategies that are given in the paper, “A Solution to the 3x + 1 Problem” 
on the website www.occampress.com, this research will not be completed until the questions 
described in this section are satisfactorily answered.  They lie at the heart of the tantalizing diffi-
culty of  discovering  valid proofs of the 3x + 1 Conjecture.

Question 1:  “Why Are There an Infinite Number of Tuples in Each Tuple-set?”
This question we believe has been satifactorily answered in the section “Why There Are An 

Infinite Number of Tuples in Each Tuple-set” on page 14.

Question 2 “What Is the Difference Between Anchor Tuple Extensions and Oth-
ers?”

This question arises from an error in one of our early attempts at a proof of the 3x + 1 Conjec-
ture.  We had made the following argument: if counterexamples exist, then beginning at some 
level i0   2, there must be both non-counterexample and counterexample anchor tuples.  But 
since for all i    2 the set of all i-level anchor tuples must be associated with the set of all i-level 
exponent sequences,  this means that some i-level exponent sequences, where i    i0,  will not be 
associated with non-counterexample anchor tuples (these exponent sequences will be “missing” 
from the set of exponent sequences associated with i-level non-counterexample anchor tuples), 
and similarly for counterexample anchor tuples.  Furthermore this fact holds for all levels greater 
than i .  But then, we argued, this contradicts “Lemma 5.0” on page 15, hence we have our proof.  

Readers pointed out that Lemma 5.0 states that, if counterexamples exist,  each tuple-set con-
tains a countable infinity of non-counterexample and a countable infinity of counterexample  
tuples, so the “missing” exponent sequences are not really missing.  An infinity of non-counterex-
ample tuples are associated with them, and similarly for the “missing” exponent sequences for 
counterexample tuples.

 So our question is: “What is the difference between the sequence of exponent sequences asso-
ciated with the sequence of extensions of an anchor tuple, and the sequence of exponent 
sequences associated with other tuples in the corresponding sequence of tuple-set extensions?”  

One answer is the following: the sequence of exponent sequences associated with the 
sequence of extensions of an anchor tuple are all associated with extensions of one tuple, namely, 
the anchor tuple.  But the sequence of exponent sequences associated with other tuples in the cor-
responding sequence of tuple-set extensions are not all associated with extensions of one tuple. 
That is, in order for the tuples in a sequence of tuple-set extensions always to be associated with 
the sequence of anchor tuple extensions, it is necessary that some tuples “fall away” and that the 
remaining ones have the required extensions.  In some of our papers, we refer to this phenomenon 
as the “pushing away” phenomenon, because tuples whose exponent sequence matches that of the 
anchor tuple, are always farther and farther away (as measured by the difference between first ele-
ments) from the anchor tuple.

Thus, an arbitrarily long exponent sequence can only be associated with the arbitrarily long 
extension of one anchor tuple, not with arbitrarily long extensions of more than one tuple (anchor 
or non-anchor).
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Question 3: “What Would Happen If We Removed Just One Non-Counterexample 
Anchor Tuple from All Tuple-sets?”

In Question 2, we pointed out that, if counterexamples exist, then for all levels greater than or 
equal to some minimum level i0, there will be both non-counterexample and counterexample 
anchor tuples.  We would like to get a clearer understanding of the implications of this fact.  

We begin with the case that counterexamples do not exist.  We ask (and this is Question 3), 
“What would happen if we removed just one anchor tuple (necessarily a non-counterexample 
anchor tuple) from the set of all tuple-sets?”  (We know from our discussion in Question 2 that at 
least one non-counterexample anchor tuple (in fact an infinity) would be removed from the set of 
all tuple-sets if counterexamples existed.)

To remove one non-counterexample anchor tuple is to remove one non-counterexample 
infinite tuple tnc.  But since each element of each infinite tuple except possibly the first element is 
a range element, then by “Lemma 13.0: Statement and Proof” on page 80 each element is mapped 
to by an infinity of odd, positive integers, and so on, recursively.  And indeed, as the reader can 
confirm by checking Fig. 4 in “Section 2. Recursive ‘Spiral’” in the first file of our paper, “The 
Structure of the 3x + 1 Function: An Introduction” on the web site www.occampress.com, it 
appears that if we remove just one non-counterexample infinite tuple, and all tuples having a last 
element that is a range element in tnc, and all tuples having a last element that is a range element 
in each of these tuples, and ...,  we remove all non-counterexample tuples,  because one of the ele-
ments in each non-counterexample infinite tuple is 1.

If the reader argues that we are not justified in removing all tuples having a last element that is 
a range element in tnc, then we must ask what becomes of these tuples if tnc is replaced by a coun-
terexample infinite tuple?

Of course, if, in fact, the removal of just one non-counterexample anchor tuple would consti-
tute the removal of all non-counterexample anchor tuples, then it would seem that we have a proof 
of the 3x + 1 Conjecture, since the removal of all those tuples would contradict “Lemma 5.0” on 
page 15.

Another way of answering our question is this: if counterexamples exist, there are neverthe-
less non-counterexample infinite tuples having prefixes that are anchor tuples.  Each non-counter-
example ultimately contains 1.  Therefore the set of all odd, positive integers that map to 1 must 
be present, eventually, as anchors.  But this is precisely the case if no counterexamples exist.  In 
short, it does not seem possible for there to be counterexample anchor tuples. 

Question 4: “Why, In the 3x– 1 Function, Is the Set of All Non-Counterexample 
Anchor Tuples Inomplete, When This Is Not the Case in the 3x + 1 Function?”

This question is simple but so far tantalizingly difficult to answer.  It is: “Why, in the 3x – 1 
function,  for all levels i  2, is the set of all i-level non-counterexample anchor tuples incomplete, 
whereas for at least the first 35 levels of the 3x + 1 function, the set of non-counterexample anchor 
tuples at each of these levels is complete?”

An answer to this question would be an inductive proof of the 3x + 1 Conjecture based on the 
completeness of the set of non-counterexample anchor tuples for each of these first 35 levels.

Question 5: “What Is the Relationship Between Tuple-sets and Recursive ‘Spi-
ral’s?” 

 See “Relating Tuple-sets and Recursive “Spiral”s” on page 32. 
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Recursive “Spiral”s: The Structure of the 3x + 1 Function in the “Back-
ward”, or Inverse, Direction

Recursive “spiral”s are a graphical description of the inverse of the 3x + 1 function. They are 
defined and described in “Section 2. Recursive ‘Spiral’s” in the first file of the paper, “The Struc-
ture of the 3x + 1 Function: An Introduction”, on the website www.occampress.com.  The proof 
of the following Lemma will provide an introduction to them. 

Graphical Representation of the Set J as Recursive “Spiral”s
The set J (which we sometimes refer to as the 1-tree) is an infinite set of recursive “spiral”s 

whose base element is 1.  These infinite sets are defined in “Section 2. Recursive ‘Spiral’s” in the 
first file of the paper “The Structure of the 3x + 1 Function: An Introduction” on the web site 
www.occampress.com.  The following is a diagram of part of J :

     

 Fig. 4.  Recursive “spirals” structure of odd, positive integers that map to 1.
  Bold-faced numbers are range elements (21 and 453 are multiples of 3, hence not range ele-

ments).  Partial “spirals” surrounding the base elements 1 and 85 are shown.  The line connecting 
1813 to 85 is marked with a 26  because (3 • 181326 = 85.  The line connecting 453 to 1813 
is marked  85  • 24  because 453 +  85  • 24 = 1813. The exponents of 2 are not even in all “spi-
ral”s, of course. For example, the “spiral” of numbers (not shown) mapping to 341 has odd expo-
nents.

In the above-mentioned Section it is shown that:
If x is an element of a “spiral”, then 4x + 1 is the next element; thus {odd, positive integers y | 

y maps to 1 in one iteration of the 3x + 1 function} =  {1, 5, 21, 85, 341, ... }.  

...
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The “spiral”  contains a countable infinity of multiples of 3.  These cannot be range elements 
of the 3x + 1 function (by “Lemma 10.0: Statement and Proof” on page 78), that is, cannot be 
mapped to;

The “spiral” also contains a countable infinity of range elements of the function: each in turn 
is mapped to by another “spiral”, which yields, recursively, the set of odd, positive integers that 
map to 1 in two, three, four, ... iterations.

It is therefore clear that no odd, positive integer can be added to or removed from a “spiral”.  
Hence the set J is unique, regardless whether counterexamples exist or not. 

Counterexample Trees
Unlike the 1-tree, no counterexample tree has a single root like 1, from which all other subor-

dinate trees are descended. Consider, for example, the tree containing the minimum counterexam-
ple, yc, which maps to an infinity of successive tuple elements, none of which can be less than yc.  
Each such element that is a range element, is the root of a tree that has the same properties as the 
tree having a non-counterexample range element as its root.  These properties include the exis-
tence of the “spiral” containing all odd, positive integers that map, in one iteration of the 3x + 1 
function, to the range element that is the root.  If x, y are successive elements of the “spiral”, and y 
> x, then y = 4x + 1.

Lemma 8.8
Motivation

The odd, positive integer 13 maps to 1, as the reader can verify.  We ask: if the 3x + 1 Conjec-
ture were proved false tomorrow, would 13 map to 1 thereafter?  We reply yes.  Let y be any odd, 
positve integer that is known to map to 1.  We ask: if the 3x + 1 Conjecture were proved false 
tomorrow, would y map to 1 thereafter?  Again we reply yes.  So it seem plausible that exactly one 
set J of odd, positive integers maps to 1, regardless whether counterexamples exist or not.  This is 
the gist of Lemma 8.8  It is certainly a counter-intuitive statement, but not, we believe, a false one

. (One reason that some readers regard Lemma 8.8 as false seems to be that they confuse the 
statement of this Lemma with the statement, “The range of the 3x + 1 function is the same regard-
less whether counterexamples exist or not..”  Now this statement is clearly false, because if coun-
terexamples do not exist, then the range of the 3x + 1 function is {1}.  If they do exist, then the 
range is a larger set that contains 1.)

  Lemma 8.8 means that the 3x + 1 Conjecture can be expressed as: Are there any odd, positive 
integers besides those that map to 1?  If the answer is yes, then counterexamples exist.  If the 
answer is no, then counterexamples do not exist.  The following should make the matter even 
clearer:

(1) There is exactly one set, J, of odd, positive integers that map to 1, regardless whether 
counterexamples exist or not.

(2) Let S1 denote the singleton set containing the set of all odd, positive integers.  Let S2 
denote the set containing all proper subsets of the odd, positive integers.  Then if counterexamples 
do not exist, J S1; if counterexamples exist, then J S2.  

We can express in a similar way the question whether there are any odd perfect numbers.  Let 
P denote the set of perfect numbers.  (These are numbers that are equal to the sum of their proper 
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factors.  Thus, for example, 6 = 3 + 2 + 1 is a perfect number, as is 28 = 14 + 7 + 4  + 2 + 1.)  Let 
PE denote the subset of P consisting of even perfect numbers, and let PO denote the subset of P 
consisting of odd perfect numbers.  Then the question, Do odd, perfect numbers exist? (the 
answer is not yet known) can be expressed as, Are there any perfect numbers besides those that 
are in PE?  If the answer is yes, then odd, perfect numbers exist.  If the answer is no, then odd, per-
fect numbers do not exist.  In either case, observe that the following statement is true: There is 
exactly one set of even, perfect numbers, regardless whether odd, perfect numbers exist or not.  

(The equivalent of the 3x + 1 function in the perfect number case is a function  f  that, for the 
positive integer n, returns “yes” if n is a perfect number, “no” otherwise.  It is sufficient if the pro-
gram that implements f does so by simply determining the proper factors of n, then adding them 
and determining if the result is n.  Clearly, f cannot be Euler’s well-known formula for even per-
fect numbers, 2k–1(2k – 1), where 2k – 1 is a Mersenne prime, because the formula returns only 
even perfect numbers.)

Lemma 8.8: Statement and Proof
Exactly one set J of odd, positive integers maps to 1, whether or not counterexamples exist.

Proof: 

The set J =

{odd, positive integers y | y maps to 1 in one iteration of the 3x + 1 function} 
{odd, positive integers y | y maps to 1 in two iterations of the 3x + 1 function} 
{odd, positive integers y | y maps to 1 in three iterations of the 3x + 1 function} 
...

The set of odd, positive integers that map to 1 in one iteration of the 3x + 1 function is {1, 5, 
21, 85, 341, ...}.  This set is called a “spiral” in “Section 2. Recursive ‘Spiral’s” in the first file of 
the paper “The Structure of the 3x + 1 Function: An Introduction” on the web site www.occam-
press.com.  In that Section it is shown that:

If x is an element of the “spiral”, then 4x + 1 is the next element;

The “spiral”  contains a countable infinity of multiples of 3.  These cannot be range elements 
of the 3x + 1 function (by “Lemma 10.0: Statement and Proof” on page 78), that is, cannot be 
mapped to;

The “spiral” also contains a countable infinity of range elements of the function: each in turn 
is mapped to by another “spiral”, which yields, recursively, the set of odd, positive integers that 
map to 1 in two, three, four, ... iterations.

It is therefore clear that no odd, positive integer can be added to or removed from a “spiral”.  
Hence the set J is unique, regardless whether counterexamples exist or not.  .

Definition of “Fixed-Set”
27



Are We Near a Solution to the 3x + 1 Problem?
We call the set J the Fixed-Set because it is the set of all odd, positive integers each of whose 
values (namely, 1), under the 3x + 1 function, is the same regardless if counterexamples exist or 
not.  Thus, for example, 13 maps to 1 today, and it will map to 1 if the 3x + 1 Conjecture is proved 
true tomorrow, and it will still map to 1 if the Conjecture is proved false tomorrow. (Clearly, no 
counterexample can be an element of the Fixed-Set.)  We will at times speak of proper sub-sets of 
the Fixed-Set, and, by abuse of language, the tuples of which they are elements.  Thus, for exam-
ple, in a specified tuple-set, the set of all tuples whose first elements are in the set of consecutive 
odd positive integers, beginning with 1, that are known to map to 1 — this set of tuples we will 
say is in the Fixed-Set.  At the time of this writing, all consecutive odd, positive integers begin-
ning with 1 and less than a quadrillion (1015) are known by computer test to be non-counterexam-
ples.

Ways of Understanding the Meaning of Lemma 8.8
 Readers who have difficulty believing that Lemma 8.8 is valid might be helped by consider-

ing that, e.g., 13 maps to 1 today, and if the Conjecture is proved true tomorrow, it will map to 1, 
and if the Conjecture is proved false tomorrow it will still map to 1.  The same holds for each odd, 
positive integer that maps to 1.

The 1-tree described under “Recursive “Spiral”s: The Structure of the 3x + 1 Function in the 
“Backward”, or Inverse, Direction” on page 25 is the tree of all odd, positive integers that map to 
1.  It should be clear that the set of all such integers is not affected by the existence or non-exis-
tence of counterexamples.

Another possible aid to readers’ understanding is the following:

 Let S1 denote the set whose only element is the set of all odd, positive integers.  Let S2 denote 
the set containing all proper subsets of the odd, positive integers.  Then if counterexamples do not 
exist, J S1; if counterexamples exist, then J S2.

We can think of the 3x + 1 Problem as asking if J is an element of S1 or of S2, and the 3x + 1 
Conjecture as asserting that J is an element of S1.

The following analogy might be of help to readers.  

Assume there is a board with n holes, and a bag, J´, containing  n marbles.  Each hole in the 
board can contain exactly one marble.  The number of marbles in the bag J´ is fixed.  Then the 
equivalent of the question, “Do all odd, positive integers map to 1 via the 3x + 1 function?”  is, 
“Will all the marbles in the bag occupy all the holes in the board?” 

How to Avoid Faulty Proofs Based on Lemma 8.8
It is all-too-easy to create faulty proofs based on Lemma 8.8.  Here is how those proofs can 

arise.
Consider the 3x – 1 Conjecture, which we know is false, 5 and 7 being the smallest counterex-

amples.  Let us reason as follows.

1. Assume counterexamples exist.  (They do.)

2. Then J must be a proper subset of the odd, positive integers. (It is.)
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3. Now assume that counterexamples do not exist.  By Lemma 8.8, J is still a proper subset of 
the odd, positive integers. But that is a contradiction, since if counterexamples do not exist, J must 
obviously be the entire set of odd, positive integers.

4. If we now infer from this contradiction  that our initial assumption – that counterexamples 
exist –  must have been wrong, we are clearly contradicting the fact that counterexamples do 
exist.

What the contradiction in step 3 tells us is that our assumption that counterexamples do not 
exist is false.  That is all.  And similarly for cases where we begin with the assumption that coun-
terexamples do not exist when we do not know that for a fact.  

Our error really arose from our violating the protocol of the Comparison Strategy (see 
“Description of the Comparison Strategy” on page 39).  That protocol consists of three parts:

1.  We begin with a line of reasoning that starts from the assumption that p is true.  The line of 
rasoning must not contain any phrase that is equivalent to "if p is false".  At a point of our choos-
ing, we end the line of reasoning.

2. We begin with a line of reasoning that starts from the assumption that not- p is true.  The 
line of rasoning must not contain any phrase that is equivalent to "if not-p is false".  At a point of 
our choosing, we end the line of reasoning.

(It doesn’t matter if we begin with step 2, and then proceed to step 1.)

3. We then compare (if possible) a statement in the first line of reasoning, with a statement in 
the second line of reasoning, that gives us a statement that yields our desired concluding state-
ment.

In the case of the above proof errors, we began with p (counterexamples exist), but then, in 
step 3, we interjected “if not-p” (counterexamples do not exist) which is not allowed by the proto-
col.

Meaning of “Same” When Referring to the Set J
We occasionally say that the set J of odd, positive integers that are non-counterexamples is the 

same whether or not counterexamples exist.  Our justification for using the word same in this con-
text is given in the section, “Meaning of the Word “Same” When Applied to Sets in a Compari-
son” on page 40.

Statement of 3x + 1 Problem in Terms of the Set J
We see, therefore, that the 3x + 1 Problem can be expressed as follows: a set J of odd, positive 

integers maps to 1, regardless whether counterexamples exist or not.  Obviously, the set of odd, 
positive integers is the same, regardless whether counterexamples exist or not. So the question is: 
Are there any other odd, positive integers (namely, counterexamples) in the set of odd, positive 
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integers besides those that map to 1?  This is certainly a counter-intuitive expression of the Prob-
lem.  Initially, at least, it is natural for us to assume that, if counterexamples exist, then some of 
the odd, positive integers that map to 1 if counterexamples do not exist, “become” counterexam-
ples if counterexamples exist.  But that is not correct.

We can express the 3x + 1 Problem in terms of the set J as follows  Let S1 denote the singleton 
set containing the set of all odd, positive integers.  Let S2 denote the set containing all proper sub-
sets of the odd, positive integers.  Then the 3x + 1 Problem asks whether J is an element of S1 or 
of S2. 

Lemma 8.9: Statement and Proof
Each element of the 1-tree  is the first element of an anchor tuple.

Proof:

Let y be an element of the 1-tree, where y  1.  Then  y is the first element of a tuple t whose 
last element is 1.  This tuple t is associated with an i-level exponent sequence A = {a2, a3, a4, ..., 
ai}, where i  2.  Since the last element of the tuple is 1, and since 1 is the anchor of each i-level 
tuple-set in which it occurs, t is the anchor tuple of the tuple-set TA., and hence y is the first ele-
ment of an anchor tuple. 

Corollary
Let y be the first element of a spiral s.  Then y maps to 1 via an  i-level exponent sequence A = 

{a2, a3, a4, ..., ai}, where i  2.  And hence successive elements y, y, y, .... of s map to 1 via the 
exponent sequences A = {a2, a3, a4, ..., ai}, A = {a2, a3, a4, ..., ai}, A = {a2, a3, a4, ..., ai}, 
..., respectively, where a2 = a2 + 2, a2 = a2 + 2, a2 = a2 + 2, ... By Lemma 8.9, each of  y, 
y, y, ... is the first element of an i-level anchor tuple. 

Proof: 
Follows from Lemma 13.0 (see “Lemma 13.0: Statement and Proof” on page 80).

Remark 1
We call to the reader’s attention “Lemma 18.0: Statement and Proof” on page 84.  This 

Lemma states that for each range element y (counterexample or non-counterexample), each possi-
ble finite exponent sequence maps to y, although the exponent sequence might be followed by an 
additional “buffer” exponent.  Obviously, 1 is a range element.

Remark 2
By “Lemma 5.0” on page 15, if counterexamples exist, there exists an infinity of counterex-

ample tuples in each tuple-set having an element y of the 1-tree as the first element of its anchor 
tuple.  Since each tuple-set has exactly one anchor tuple, Lemma 8.9 and its Corollary, plus what 
we have said in Remark 1, suggest that there exist counterexamples  that are never anchors.  If this 
can be shown to be true, then we have a proof of the 3x + 1 Conjecture, for ever range element 
must eventually be an anchor, and each counterexample in each tuple in each tuple-set is a range 
element except, possibly, in the case that the counterexample is the first element of a tuple.
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Computer Tests of the 3x + 1 Conjecture
As a result of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html, all 

odd, positive integers up to at least 20 • 258  5.76 ꞏ 1018 are known to be non-counterexamples. If 
the reader solves 2 • 3i – 1 =  5.76 ꞏ 1018, he or she will find that i > 39.  This means that all 39-
level anchors, hence all 39-level anchor tuples, are non-counterexamples.  (In this and our other 
3x + 1 papers, we have said, conservatively, that all 35-level anchors, hence all 35-level anchor 
tuples, are non-counterexamples.)  The reader can also confirm that, since the distance between 
level-2 elements of successive 2-level tuples in any 2-level tuple-set is, by part (a) of “Lemma 
1.0” on page 11,  2 • 32 – 1 = 6, the number of consecutive 2-level tuples in any 2-level tuple-set 
that are non-counterexamples is at least 333.

The set J (the 1-tree) in the previous section gives rise to a question: why test all those odd, 
positive integers when the set J tells us all odd, positive integers that map to 1?  We cannot believe 
that Prof. Oliveira e Silva is unaware of the 1-tree or its equivalent.  Yet we can’t help wondering 
why he didn’t simply proceed through the 1-tree, using the computer to give closed-form repre-
sentations of infinite sets (for example, all elements of a “spiral” whose first element is known to 
be a non-counterexample1). (We remind the reader that if y is a non-counterexample range ele-
ment then we immediately know a countable infinity of non-counterexamples, namely, the ele-
ments of the “spiral” that map to y.  Furthermore, each “spiral” contains an infinity of other range 
elements, etc.)  The computer could be programmed to specify all candidates for counterexamples 
as of the current depth of penetration of the 1-tree.  

Perhaps the changes in the set of candidates as the depth of 1-tree penetration increases, might 
give an insight as to whether counterexamples can really exist.  For example, if the smallest coun-
terexample candidate keeps increasing, then if we can prove that this increase is inevitable, we 
would have a proof of the 3x + 1 Conjecture.

1. Such a closed form representation is possible because, as we state in the previous section, if x , x are suc-
cessive elements of a “spiral”, then x = 4x + 1.  
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Relating Tuple-sets and Recursive “Spiral”s
A fundamentally important question is the following: “What is the relationship between the 

two structures underlying the 3x + 1 function, namely, tuple-sets and recursive ‘spiral’s?”  By “the 
relationship” we mean a closed-form function that takes an i-level non-counterexample tuple as 
input, and shows where this tuple is located in (a)  its i-level tuple-set (easy),  and (b) where it is 
located in the infinite set of recursive “spiral”s with base element 1 or with base element some 
counterexample (hard). 

Relevant Facts
Let J  be the set of odd, positive integers that map to 1,  structured as described under “Lemma 

8.8: Statement and Proof” on page 27.  Then the following is equivalent to the 3x + 1 Conjecture:

Conjecture: If x is an element of a tuple in a tuple-set, then x is an element of J.

(Note: we occasionally refer to J as the 1-tree.)

Relating the set of all tuple-sets to the set J has been very difficult, but we now believe we 
have figured out how to do it.  See below under “Mechanism of the Relationship Finally Discov-
ered” on page 33.   In this section we will merely point out some facts.

Each non-counterexample tuple in each tuple-set represents a path in J.

 In each i-level tuple-set TA, where i  2, and A is an exponent sequence that maps to 1 — that 
is, the exponent sequence of a tuple whose last element is 1, in other words, a tuple in the set J — 
1 is an anchor, that is, 1 is the last element of the anchor tuple, which is the first i-level tuple in the 
tuple-set. So for each i, the set of all i-level tuple-sets contains the set of all i-level tuples that map 
to 1.  (There are, of course, exponent sequences that do not map to 1.)

 In each tuple-set, each of the countable infinity of tuples that map to 1, is a tuple in the set J.

We can say more:

It is easily shown that, for all i  2,  the set of all i-level elements in all i-level tuples in all i-
level tuple-sets is the set of range elements of the 3x + 1 function, C.  In fact, the set of all these 
elements consists of the union of the reduced residue classes mod 23i – 1, by part (a) of “Lemma 
1.0” on page 11.

Let y be an i-level element in an i-level tuple t in an i-level tuple-set.  If the first element x of t 
is not a multiple of 3 — in other words, if the first element of t is a range element —  then x is the 
i-level element of an i-level tuple t´ in an i-level tuple-set.  This process continues without end 
unless a first level element is arrived at that is a multiple of 3.  We call this process the down, up, 
down... process.

The down, up, down... process allows us to state the following:

There is nothing in the set of all i-level tuple-sets, where i  2, that is not in the set of all 2-
level tuple-sets.
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Proof: 
Let t = <x, y,  y´, ..., y´...´, z> be an i-level tuple in an i-level tuple-set.  Then in the set of all 2-

level tuple-sets there is a tuple <x, y>, and a tuple <y,  y´>, and ... and a tuple <y´...´, z>.  

Thus, for example, the 5-level tuple <11, 17, 13, 5, 1> in the 5-level tuple-set TA, where A = 
{1, 2, 3, 4} is composed of the following sequence of 2-level tuples in 2-level tuple-sets: <11, 
17>, <17, 13>, <13, 5>, <5, 1>.  

Let y be an i-level element in an i-level tuple t in an i-level tuple-set.  Then y is the base ele-
ment of an infinite set of recursive “spiral”s.

Mechanism of the Relationship Finally Discovered
After a great deal of effort, we believe we have finally discovered the mechanism of the rela-

tionship between tuple-sets and recursive “spiral”s — in particular, between tuple-sets and the 
infinite set of recursive “spiral”s representing the set J (the 1-tree)1.  It is based on the down, up, 
down... process described in the previous sub-section, and is as follows:

Let TA  be any i-level tuple-set, where i  2, having 1 as an anchor.  (That is, such that 1 is the 
i-level element of the first i-level tuple.)  Let x be the first element of the anchor tuple.  Then if x 
is a range element (that is, not a multiple-of-3) then x is an i-level element in some i-level tuple-
set in the set of all i-level tuple-sets (by “Lemma 4.75” on page 14).  We now repeat the process 
for x.  That is, for each i-level tuple having x as last element, let x be the first element of the tuple.  
Then if x is a range element (that is, not a multiple-of-3) then x is an i-level element in some i-
level tuple in the set of all i-level tuple-sets.  Etc.

For each i, there is a countable infinity of i-level tuple-sets having 1 as anchor.  The set of all 
infinitely long tuples mapping to all the 1 anchors via the mechanism we have just described, is 
the set of all paths to 1 in the 1-tree.  Thus we  see how the 1-tree is contained in the set of all 
tuple-sets.

We should emphasize that we can start with an arbitrarily large (though finite) i.  In any case, 
we always obtain all upward paths in the 1-tree in concatenations of i-level tuples. 

The tantalizing question is, “Can this relationship, and the fact that all range elements less 
than 2 • 335 – 1 — that is, all anchors for all 35-level tuple-sets — are known, by computer test, to 
be non-counterexamples, give us a proof of the 3x + 1 Conjecture?”  

We seem, inevitably, to find ourselves confronting the idea that, because all successive odd, 
positive integers up to a large number — at least 2 • 335 – 1 — are non-counterexamples, there is 
no difference between non-counterexamples and counterexamples.  The reader is urged to read 
“First Proof” and “Second Proof” in the paper, “A Solution to the 3x + 1 Problem” on occam-
press.com.

1. At present, we have not figured out how to make this mechanism give us the closed-form function 
described in the first paragraph of this section.
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Strategies to Prove the 3x + 1 Conjecture
Preliminary Remarks

To properly understand our approaches to a possible proof of the Conjecture, it is essential 
that the reader be aware of:

 (1) a common misconception about the nature of the 3x + 1 function, and 

(2) a common misconception about “3x + 1-like function” tests, and 

(3) common misconceptions about the nature of comparison of mutually-exclusive cases

Furthermore, in order for the proofs to be evaluated with minimum chance for misunderstand-
ings, it is essential that they be read one sentence at a time, with the reader asking each time, “Is 
this sentence clear?” and “Is this sentence correct?”  If the answer to either question is no, the 
reader is urged to stop reading and contact the author, so that he can try to repair the problem 
before the reader proceeds.  

If a proof is incorrect, then there is a first sentence in it that is incorrect.

We now provide a few details on points (1) through (3).

(1) A Common Misconception About the Nature of the 3x + 1 Function
We will use an analogy to explain this misconception.
Suppose there is a black box that contains a marble.  The marble is either white or black.  The 

Marble Conjecture states that the marble is white.   It is clear that, in a proposed proof of the Mar-
ble Conjecture, any comparison of the case that the marble is white with the case that the marble 
is black would almost certainly be illegitimate (but in any case fruitless).

Some readers imagine that the 3x + 1 function is like what we can call the “marble function”.  
That is, they imagine that either all odd, positive integers map to 1, or none of them do, and fur-
thermore that at present we do not know which case is true.

However, the 3x + 1 function is fundamentally different from the marble function.  The reason 
is that, by “Lemma 8.8” on page 26, if an odd, positive integer maps to 1, then it does so regard-
less if counterexamples exist or not.  It is an element of what we are calling the Fixed-Set (see 
“Definition of “Fixed-Set”” on page 27). Computer tests have shown that all odd, positive inte-
gers up to at least 1015 map to 1.  These integers are elements of the Fixed-Set.  In fact it is easy to 
show, using the 1-tree described in “Lemma 8.8: Statement and Proof” on page 27, and the fact, 
also easily shown, that a countable infinity of odd, positive integers map to each range element of 
the 3x + 1 function, hence that a countable infinity of odd, positive integers map to 1.  These con-
stitute all the elements of the Fixed-Set.

The fact that a large number (indeed an infinity) of integers map to 1 regardless if counterex-
amples exist or not, makes the 3x + 1 function fundamentally different from the marble function 
(which has only one domain element (the marble) and one value (black or white)) . The marble 
function is a trivial example of a function that has no Fixed-Set, that is, a function such that no 
domain element has a fixed value, regardless if counterexamples exist or not.  Our proofs of the 
3x + 1 Conjecture in this paper cannot be applied to such a function.  On the basis of our commu-
nications with readers, it seems clear that many readers imagine that the 3x + 1 function is a func-
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tion without a Fixed-Set.  Many of their objections to our proofs would make perfect sense if that 
were the case.  But it is not. 

(2) A Common Misconception About “3x + 1-Like Function” Tests
The 3x – 1 Test is the application of a proposed proof of the 3x + 1 Conjecture to the 

3x – 1 function.  If the proposed proof also proves the 3x – 1 Conjecture, then the proof may be 
faulty, because counterexamples to the 3x – 1 Conjecture are known (5 and 7 are two of them).  
We say “may be faulty” rather than “is faulty” because in order for the Test to be valid, it must be 
the case that all the lemmas supporting the 3x + 1 proof are also valid in the 3x – 1 case. 

There is an infinite class of what we have called “3x + 1-like functions” (they are defined in 
Appendix C of our paper, “Are We Near a Solution to the 3x + 1 Problem?” on occampress.com), 
and include the 3x – 1, 3x + 5 and 3x + 29 functions).  Some readers have felt that a proof of the 
3x + 1 Conjecture is not valid unless it can be shown not to apply to the 3x + 5 function as well as 
to the 3x – 1 function.  Upon being convinced that the 3x + 1 proof passes the 3x + 5 Test, some of 
these readers have felt that the proof must pass the 3x + 29 Test as well (counterexamples to the 
3x + 29 Conjecture are known), before the 3x + 1 proof can be considered valid.

Since there is an infinite number of 3x + 1-like functions, and since at present there is no 
known property of all of them such that if a 3x + 1 proof passes the Test for one of them, it passes 
the test for all, this demand that a 3x + 1 proof pass successive 3x + 1-like function Tests, amounts 
to a declaration that the 3x + 1 Conjecture is undecidable.  

In any case, a proof must stand or fall on its own.  We feel that if a reader believes our proof 
has failed a Test, then he or she must show the error in our proof. 

  In reply, some readers have gone so far as to claim that, even if all steps of a proof are cor-
rect, the proof as a whole can nevertheless be invalid.  Our reply to this is that if the reader can get 
a paper published that proves the validity of that statement, then he or she will become world 
famous, because the statement contradicts one of the fundamental theorems of foundations of 
mathematics, namely, that if a proof is correct, then the correctness can be confirmed by machine 
(computer program). 

In fact, that fundamental theorem gives us another rebuttal to those who claim that our proof 
of the 3x + 1 Conjecture cannot be considered valid unless we can show that it does not also apply 
to the possible countable infinity of similar conjectures that contain counterexamples, namely, the 
conjectures associated with 3x + 1-like functions (and possibly others!).  For no program at pres-
ent can (1) determine all “similar” conjectures, and (2) for each one, determine if a counterexam-
ple exists, and then (3) verify that our proof does not also apply to a proof of the (false) 
conjecture.

(Full details on 3x + 1-like functions, and our arguments against the demand for unlimited 
Tests, and against excessive reliance on even one or two of the Tests, are contained in the above-
mentioned Appendix C.)

(3) Common Misconceptions About the Nature of Comparison of Mutually-Exclusive Cases

We Do Not Claim That the Existence of a Large Number of Consecutive Non-Counterexam-
ples Implies No Counterexamples!

Despite the simplicity of “First Proof” and  “Second Proof”, below, we have found that there 
are readers who believe that the proofs argue that because a very large number of odd, positive 
integers map to 1, therefore all odd, positive integers map to 1, or that somehow the distance func-
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tions (“Lemma 1.0” on page 11) are able to discriminate between counterexamples and non-coun-
terexamples.  These beliefs are false.  Our proof is based on a comparison of two 2-level tuple-
sets: one under the assumption that counterexamples do not exist, and the other (defined by the 
same exponent sequence as the first) under the assumption that counterexamples exist. An ele-
mentary inductive argument yields the fact that both tuple-sets have exactly the same contents, 
which in turn implies that counterexamples do not exist.

Comparison of Mutually-Exclusive Cases Is Made Frequently Inside of And Outside of 
Mathematics

Some readers claim that the comparison implies that the two possibilities somehow exist 
simultaneously, which, of course, would be absurd.  In fact, such comparisons are made every 
day, both inside of, and outside of, the mathematical culture.  For example, 

“If the Yankees win the pennant this year, then ... but if they don’t, then ...”, or

“If the stadium is built on the north side of campus, then ... but if it is built on the south side of 
campus, then ..”, or.

“If the abc-conjecture is true, then ... but if it is not, then ...”, or

“If an odd, perfect number exists, then ... but if an odd, perfect number does not exist, then...” 
or,  

“If a counterexample to the 3x + 1 Conjecture exists that results from an infinitely-repeating 
cycle of odd, positive integers, then there is a computer program that, in principle, will find the 
counterexample and halt.  But if there is no such counterexample, then the program will run for-
ever,” or, 

(Prior to the confirmation of the existence of the Higgs boson), “If the Higgs boson exists, 
then ... but if it does not exist, then ...”

Another refutation of the claim that comparison implies simultaneous existence,  is the fol-
lowing:  suppose an architect designs a skyscraper.  His client looks at the plans, then suggests a 
change, though one that does not affect the basic structure of the building.  The architect prepares 
a second set of plans, this set showing the change.  He places both sets of plans side by side on a 
table so that the client can compare them. 

Surely something like this process takes place routinely in the field of architecture!  We are 
confident that neither the architect nor the client ever says words to the effect, “Our comparing the 
two sets of plans unfortunately implies that the change both exists and does not exist, which of 
course is a contradiction, and therefore the comparison cannot be made.”

(The unchanged drawings are analogous to the set of all tuple-sets if counterexamples do not 
exist ; the changed drawings are analogous to the set of all tuple-sets if counterexamples exist.)

The analogy of the claim that two mutually-exclusive possibilities cannot be compared 
because only one of them actually exists, would be the claim that, when the architect’s client 
wanted to look at the drawings showing the changes, the architect would be required to remove 
from the room the drawings without the changes , and only then bring in the drawings with the 
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changes.  If the client later wanted to view the drawings without the changes, the architect would 
be required to remove from the room the drawings with the changes, then bring in the drawings 
with the changes.

A variation of the claim that comparison of mutually-exclusive cases implies that both cases 
exist simultaneously, is the following (I quote the words of the critic):

When you refer to “the set of non-counterexample tuples if counterexamples exist” and “the 
set of non-counterexample tuples if counterexamples do not exist”, you are assuming that 
there is a well-defined such set in each case; in other words, unique completions to the state-
ments “If counterexamples do not exist, then the set of non-counterexample tuples is  —” and 
“If counterexamples exist, then the set of non-counterexample tuples is  —”.

But I maintain that though one of those statements (the one whose hypothesis is true, which-
ever that is) does have a well-defined completion (i.e., a unique set) the other does not.  

This criticism betrays a complete misunderstanding of the nature of a comparison.  When we 
compare two possibilities, we are not concerned with questions of existence!  We are concerned 
solely with the properties of the entities being compared.  As we said above, we can compare two 
entities both of which exist, only one of which exists, or neither of which exists.

The above critic continues:

“If” sometimes means “In those cases where”.  Then a statement of the form “If p is true, then 
the value of X is Y” can be true for a unique  Y  if there are some cases where  p is true, and if 
in all those cases,  X  has the same value  Y.

(But if the value of  X  is different in different cases where p is true, or at the opposite extreme, 
if there are no cases where p  is true, then there is not a unique value one can assign to Y  that 
makes the statement true.)

We reply as follows.  First, in the context of the Comparison Strategy, “if” always means “in 
those cases where”.  Second, it is entirely possible, in a given application of the Comparison Strat-
egy, that a Y may have several possible values.  It is then up to the writer to decide if that blocks 
the application of the Strategy in this particular instance, or if one of the values will, along with 
statements from the “if not-p, then ...” side, lead to the desired proof.  But the fact that there are no 
guarantees in the Comparison Strategy in no way nullifies its legitimacy any more than the fact 
that there are no guarantees in the use of inductive proof or proof by contradiction nullifies the 
legitimacy of these proof methods!

The above critic seems not to understand implications like the following.

Suppose we write:

(1)
If Fermat's Last Theorem (FLT) is false, then there exists a computer program that, in princi-
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ple, will find the counterexample.

Proof:
1.  Place in lexicographical order all expressions of the form, ak + bk – ck, where a, b, c, k are 

positive integers, and k > 2.

2. Starting at the beginning ot the order, compute each ak + bk – ck.  Eventually, one will be 
reached having the value 0, which will mark it as a counterexample. 

Now, the critic would no doubt argue that the antecedent of (1) is now known to be false, and 
since false implies anything the statement is meaningless.  But that overlooks the fact that if I pre-
cede (1) with: “Statement (1) was true before Wiles proved FLT”, then the critic’s objection is 
removed.   Or, we could simply replace  “is” in the antecedent with “were”, and “then there 
exists” in the consequent with “then there would exist”.

Fundamentally, the critic seems unable to understand the meaning of “if”.

A Truth-Table Argument
We now believe that the claim, “Comparison implies simultaneous existence”, is in fact a log-

ical fallacy.  Apart from the informal refutations of the claim given above, there is one that fol-
lows directly from a truth-table argument.

Let p denote “Counterexamples to Conjecture X exist”.  Now consider:

(1)
(p  r) and (~p  s)  (p and ~p),

where “” denotes “implies”,
“~” denotes “not”, 
 r is a true statement describing properties that exist if p is true, and 
s is a true statement describing properties that exist if ~p is true.

The truth table for (1) yields (true  false), which is a false implication.  So it is false that the 
comparison of the two cases, p and ~p, implies that both exist simultaneously.

Another Purely Logical Argument
 Some readers feel that it is only legitimate to “consider” one case at a time, because to con-

sider both implies both cases exist simultaneously.  In other words, one must somehow blot out 
from one’s mind, all thought of the case not being considered (a task not greatly different from 
that of not thinking of a white bear all day), just as the architect’s client, in the above analogy, 
could require the architect to show only one set of drawings at a time. But these readers are 
wrong. The truth of the following sentence confirms the validity of our Comparison Strategy.  

If a mathematician writes, on a sheet of paper, “If p, then ...” and below that, on the same sheet 
of paper, he then writes, “If not-p, then ...” he has not thereby written a contradiction.
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Description of the Comparison Strategy
The Strategy is applicable only when p is a statement about a set X, for example, the set X = J 

of all non-counterexamples. Thus, attempts to dismiss the Strategy by arguing that p might be 2 + 
2 = 5, are illegitimate.   It is necessary that there be a Fixed-Set1 which includes a large initial 
proper subset of X (“initial” under some appropriate ordering of elements in the set X) that con-
tains the same elements whether or not p is true.  In the case of the 3x + 1 Problem, this large ini-
tial proper subset is the set of all odd, positive integers from 1 to at least 1015 – 1, since all these 
integers are known, by computer test, to be non-counterexamples.

In an implementation of the Strategy, one reasons in the first case from the assumption that p 
is true (“if p, then ...”) to a certain statement s1, and in the second case from the assumption that 
not-p is true (“if not-p, then ...”)  to a certain statement s2, such that s1 and s2 can then be used to 
show that p is true.  We do not aim for s1 or s2 being the conclusion of a proof of the 3x + 1 Con-
jecture!  We aim for these two statements taken together to lead to a proof.

It is crucial in any application of the Strategy, that in the line of reasoning beginning with “If 
p”, no expression equivalent to “If p is false” appear.  And similarly, it is crucial in any application 
of the Strategy, that in the line of reasoning beginning with “If not-p”, no expression equivalent to 
“If not-p is false” appear. 

And yet a few readers have argued that in “If p, then ...” , it is necessary to consider the case 
not-p.  And since, if p is true, not-p is false, and since “false implies anything”, the reasoning must 
always be meaningless.  The argument is, of course, absurd.  A common technique for proving 
statements of the form, “If p, then q” is to begin with the assumption that p is true and then use 
known facts (lemmas and theorems) to arrive at a proof that q is true. The readers’ argument 
would nullify all these proofs, and hence would nullify countless proofs in the body of mathemat-
ics.

But some readers still insist that in “If p, then ...” it is necessary to consider the case not-p, and 
similarly in “If not-p, then ...” it is necessary to consider the case p.  A counterargument to their 
claim is the following:

1. Suppose that, in one classroom on campus, a mathematician begins a sequence of deduc-
tions beginning “If p, then ...”.   The deductions begin with the assumption that p is true. Further-
more, suppose he nowhere mentions the possibility not-p.  This is perfectly legitimate.  To deny it, 
is to call into question numerous proofs in mathematics that follow the rule that is taught in 
courses on symbolic logic as one way to prove statements of the form, “If p, then q”.  The rule 
says, “Assume p is true, and then use known facts (lemmas, theorems) to construct a proof that q 
is true.”  The rule nowhere mentions that the possibility that not-p is true must somehow be con-
sidered.

2. Now suppose that in another classroom on campus, another  mathematician begins another  
sequence of deductions.  This sequence begins “If not-p, then ... “  The deductions begin with the 
assumption that not-p is true. Furthermore, suppose he nowhere mentions the possibility p.  This 
is perfectly legitimate for the reason given in step 1.

3. We can assume that neither mathematician knows what the other is doing.  To deny that that 

1. See “Definition of “Fixed-Set”” on page 27.
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is legitimate is to claim that any mathematician wanting to carry out deductions beginning “If p, 
then ...” (or “If not-p, then ...”) must somehow first contact all mathematicians in the world and 
find out which ones are about to carry out deductions based on the negation of the antecedent that 
the mathematician wants to carry out deductions from.  

4.  Suppose, now,  that each mathematician’s sequence of deductions has been recorded on 
video.  The next day, in another classroom, the video of the first mathematician’s deductions is 
played for persons in a different classroom from that in which the previous day’s deductions took 
place.  There is nothing illegitimate about this.

5.  Suppose, next, that, following that video, the second video is played in the same classroom 
before the same audience.  There is nothing illegitimate about this.

6.  Finally, suppose that one of the mathematicians, or a member of the audience, compares 
the final statements in each video, and makes an observation based on the comparison.  There is 
nothing illegitimate about this.

We hope this scenario will convince skeptics that it is perfectly legitimate for the two 
sequences of deductions to exist in “two universes”, and not the one universe as skeptics demand.

.
 For our proofs of the 3x + 1 Conjecture, the Fixed-Set1 (see “Definition of “Fixed-Set”” on 

page 27)  consists of all odd, positive integers   1015 – 1, these having all been determined by 
computer test to be non-counterexamples.  Our proofs most certainly are not based on the invalid 
argument that because this large subset exists, therefore all odd, positive integers are non-counter-
examples.  The large subset is just the point of departure for our proofs.

Meaning of the Word “Same” When Applied to Sets in a Comparison
We sometimes say that the set J of non-counterexamples is the same whether or not counter-

examples exist.  The meaning of the same in this context is as follows.

If, in the previous sub-section, our mathematician writes,

“If p,  then...  the set of elements having property q we denote by A...”, and then, below this, 
on the same sheet of paper, he writes, “if not-p, then ... the set of elements having property q we 
denote by B...”, he has not thereby written a contradiction.

Furthermore, it is perfectly legitimate for him (or us) to compare sets A and B.   There are two 
possibilities: (1) A = B or (2) A  B.

We can express possibility (1) in language such as “The set of elements having property q is 
the same whether or not p”. This the case with the set J, above.  In that case, p is “counterexam-
ples exist” and “not-p is “counterexamples do not exist”.  Of course, strictly speaking, we are 
abusing language when we say “the set J is the same whether or not counterexamples exist”. We 
should say words to the effect, “Let Jnc denote the set of odd, positive integers if counterexamples 

1. This is actually a proper subset of the Fixed-Set, which is the set of all non-counterexamples.
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do not exist, and let Jc denote the set of odd, positive integers if counterexamples exist. Then, Jnc 
= Jc = J”.

Comparison of Mutually-Exclusive Cases Does Not Necessarily Involve Questions of Exis-
tence

We must point out that comparison of two entities does not require that even one of them 
exists!  Recall Kant's refutation of the ontological proof for the existence of God.  That proof 
asserted that a perfect Being that does not exist is less perfect than a perfect Being that does exist, 
therefore God exists.  Kant's reply was “Existence is not a predicate!”  That is, existence is not a 
property.

Thus, we can compare two unicorns in a painting or cartoon film (as to, say, size), or we can 
compare two characters in a novel, or two different sets of drawings for a proposed building (nei-
ther plan might represent a future building, or only one might, or both might, if separate buildings 
are built). In short, we can compare two things: both of which exist, or only one of which exists, 
or neither of which exists.

On the Phrase, “Whether or Not Counterexamples Exist”
Some readers question the validity of statements of the form, “Whether or not counterexam-

ples exist, q.” They argue (correctly) that such statements are equivalent to the two statements, 

(A)
“If counterexamples exist, then q” and 
“If counterexamples do not exist, then q”.

But some readers then argue (1) that the two statements are logically ambiguous, hence mean-
ingless, or (2) that because the antecedent in one of these statements is false, and “false implies 
anything”, the statements, hence the original statement, “Whether or not counterexamples exist, 
then q”,  are meaningless.  We will now reply to these arguments.

Reply to (1):  If q could be true or false, then the readers’ argument would be correct, because, 
on the one hand,  if q is true, then the two statements are true, by the truth-table for implication.  
But if q is false, then one of the two statements is false, again, by the truth-table.  So the two state-
ments are logically ambiguous, hence meaningless.

However, in this paper, q is always true because it is the statement of a lemma, and so the two 
statements are always true, by the truth-table for implication, and hence there is no ambiguity.

Reply to (2):  Argument (2) ultimately rests upon a fundamental misunderstanding of, or fail-
ure to accept, the Comparison Strategy.  We try to clear up at least the misunderstanding in the 
next section.

On Informational Implication: it is important for the reader to understand that the two 
implications, “if counterexamples exist, then q” and “if counterexamples do not exist, then q”, are 
cases of what has been called “informational implication”.  For example, prior to the confirmation 
of the existence of the Higgs boson, statements of the form,  “Whether or not the Higgs boson 
exists, the law [name of accepted physical law} will continue to hold” must have been made fre-
quently.  This statement is equivalent to “If the Higgs boson exists, then the law ... will continue to 
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hold; if the Higgs boson does not exist, then the law... will continue to hold.”
These implications provide information about the relationship between the existence of the 

Higgs boson and a certain law.  It is highly unlikely that a physicist ever made the (illegitimate) 
reply “But the antecedent in one of the implications is false, and since false implies anything, the 
original statement is meaningless.” 

An informational implication has the property: the antecedent is true and the consequent is 
true.  Thus the consequent provides information about the antecedent.  Therefore, “if counterex-
amples exist, then 2 + 2 = 4” is not an informational implication, because the consequent does not 
provide information about the antecedent.  And, of course, the same distinction applies to state-
ments of the form, “whether or not p, q”, where p, q are statements.  If q does not provide infor-
mation about p, then “whether or not p, q” is not informational.

We can place all this on a rigorous logical basis.  Recall that, as we stated above, “whether or 
not p, q” is the equivalent of 

(I)
(if p then q) and (if not-p then q)

In all the cases that we are concerned with in this paper, q is true — that is,  q is a fact that pro-
vides information in a certain context, namely, the context of p being true or of not-p  being true. 
And so, as the reader can easily verify by examining the truth-table for (I) when p is true, (I) is 
true. It is not “meaningless”. 

We must emphasize that, since informational implication is the only kind of implication that is 
found in this paper,  the statements (A) above should be written:

(A´)
“If it is true that counterexamples exist, then q” and 
“If it is true that counterexamples do not exist, then q”.

The phrase “whether or not” occurs in and outside of mathematics.  For example, in mathe-
matics: “Whether X is orientable or not, [a certain cap product between Hp(X; Z/2) and Hn–p(X; Z/
2)] is an isomorphism1”. Outside of mathematics, for example in everyday life:

“Whether or not it rains tomorrow, we will leave for San Diego.”
[Professor to student]: “Whether or not you pass this course, you will not be able to graduate 

in June.”
“Whether or not state taxes are increased, the extension of the stadium will be completed.”
“Whether or not a Democrat is elected president in the 2016 election, the U.S. will continue to 

have a national debt.” 

Some readers have argued that, because “whether or not counterexamples exist, 2 + 2 = 4” is 
trivially true and therefore unimportant, all statements “whether or not counterexamples exist, q”, 
where q is any true statement, are trivially true and therefore unimportant.  But these readers are 

1. Munkres, James R., Elements of Algebraic Topology, Addison-Wesley Publishing Company, Menlo Park, 
California, 1984, p. 394. Our word-processor does not have all the symbols used to represent the cap product 
in the actual text, hence the phrase in brackets.
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ignorant of the difference between trivial (true) implications and informational (true) implica-
tions. The statement, “whether or not counterexamples exist, each tuple-set contains an infinity of 
non-counterexample tuples”, is an informational (true) statement.  It is by no means obvious, in 
the way that 2 + 2 = 4 is obvious, that each tuple-set should contain an infinity of non-counterex-
ample tuples.  It would be perfectly reasonable if a person just beginning his or her study of this 
paper, wondered if the existence of counterexamples might reduce the number of non-counterex-
ample tuples in at least one tuple-set to a finite number.

Possible Explanation for Readers’ Difficulty With Comparison of These Cases
Some readers nevertheless continue to believe that comparison of mutually-exclusive cases 

implies simultaneous existence of the cases.  Through patient questioning, we have come to the 
conclusion that there are two reasons for this belief: (A) the readers’ belief that the 3x + 1 function 
is a function without a Fixed-Set (see “(1) A Common Misconception About the Nature of the 3x 
+ 1 Function” on page 34), and (B) the readers’ imagining that there is a “realm” in which the 
cases are to be discussed or written about.  This realm, they feel, only has room for one case at a 
time.  So if we want to discuss or write statements about the case that counterexamples exist, then 
we must first remove from this realm the case that counterexamples do not exist.  And if we want 
to discuss or write statements about the case that counterexamples do not exist, then we must 
remove from this realm, the case that counterexamples exist.  To compare the two cases is to place 
both of them in the one realm at one time, and that results in contradictions.

However, it is perfectly legitimate to imagine the realm as being big enough to hold the two 
cases simultaneously — “side-by-side”.  There are then no contradictions in saying, for example, 
“assume x in the one case is a counterexample, and that x in the other case is a non-counterexam-
ple.”  (The realm that is big enough to hold the two cases simultaneously is an example of the use 
of increased logical “space” to avoid contradictions.) 

So we encourage the reader who is skeptical about the validity of the Comparison Strategy to 
get a piece of paper, draw a few lines descending from a point (the root of the tree representing the 
set of all tuple-sets) and below the top of the paper to write, “Set of All Tuple-Sets if Counterex-
amples Exist.)  We then ask the reader to get a second piece of paper, and do the same, with the 
title at the top reading “Set of All Tuple-Sets if Counterexamples Do Not Exist.”  

We hope that it is clear that if the reader were to write, somewhere on the first sheet, “Let x be 
a counterexample,” and somewhere on the second sheet, “Let x be a non-counterexample”, there 
would be no contradiction!

Other refutations of the claim that comparison implies simultaneous existence, are given in 
our short paper, “Is It Legitimate to Begin a Sentence With ‘If Counterexamples Exist, Then...’ ”, 
on occampress.com.

The Most Important Fact About the 3x + 1 Function
After a great deal of struggle, and many failed proofs, we now believe that the single most 

important fact about the 3x + 1 function as far as a proof of the 3x + 1 Conjecture is concerned, is 
that for at least the first 35 levels, all anchor tuples are non-counterexample tuples (see “Computer 
Tests of the 3x + 1 Conjecture” on page 31).  

By contrast, in the case of the 3x – 1 function not even at level 2 are all anchor tuples non-
counterexample tuples.  (See the next sub-section.)
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The Most Important Test of Possible Strategies
The most important test of a possible strategy is: Does it also apply to other 3x + 1-like func-

tions — in particular, to 3x + 1-like functions in which counterexamples are known.  These func-
tions are defined in “Appendix C — “3x + 1 - like” Functions” on page 90.  The 3x – 1 function is 
such a function, and the most important one to date.  Clearly, if the strategy also applies to such a 
function that has a known counterexample, then the strategy has a flaw.

The test is all the more important because many of the 3x + 1 lemmas also hold for these func-
tions.  For example, in the 3x + 13 function, which is a 3x + 1-like function, the following are suc-
cessive 3-level tuples in the 3-level tuple-set TA, where A = {2, 2}:  <13, 13, 13>, <45, 37, 31>.  
(Thus 13 is a counterexample to the 3x + 13 Conjecture because 13 gives rise to an infinite cycle.)  
Observe that 13 + 2 • 33– 1 = 13 + 18 = 31, and that 13 + 2 • 22 • 22 = 13 + 32 = 45.  Thus the dis-
tance, 18, from 13 to 31 is exactly as specified by part (a) of “Lemma 1.0” on page 11 and the dis-
tance, 32, from 13 to 45 is exactly as specified by part (b) of the Lemma.

A way of increasing the chances that a possible strategy will pass the test is to concentrate on 
strategies that employ unique properties of the 3x + 1 function, that is, properties that are not 
shared by other 3x + 1-like functions.  These properties include: (1) the 3x + 1 term itself in calcu-
lations; (2) the distance function between successive elements, x, x´ of a “spiral”, namely x´  = 4x 
+ 1 (if a 3x + C function is a 3x + 1-like function, then this distance function is x´= 4x + C ); and 
(3)  the fact that a very large number of consecutive odd, positive integers are known (as a result 
of computer tests) to be non-counterexamples for the 3x + 1 Conjecture.  The number is at least 
2 • 335– 1.  In the 3x + 1-like functions known to have counterexamples (for example, the 3x – 1, 
3x + 5 and 3x + 13 functions) counterexamples appear in the first 18 odd, positive integers.

Complete List of All Our Results
A complete list of all results (lemmas) we have obtained so far in our 3x + 1 research is con-

tained in “Appendix A — Statement and Proof of Each Lemma” on page 68, amd in the first part 
of the second file of our paper, “The Structure of the 3x + 1 Function: An Introduction”  on the 
web site occampress.com.

Strategies Based on Tuple-sets
(See also, “Possible Strategies for Proving the 3x + 1 Conjecture Using Tuple-sets” in the first 

part of our paper, “The Structure of the 3x + 1 Function: An Introduction”, on occampress.com.)
Tuple-sets have one important advantage over recursive “spiral”s, namely, that if a counterex-

ample exists, then by “Lemma 5.0” on page 15, each tuple-set contains a countable infinity of 
counterexample tuples, as well as a countable infinity of non-counterexample tuples.  On the 
other hand, an infinite set of recursive “spiral”s with base element 1 cannot contain any counter-
example tuples, and an infinite set of recursive “spiral”s with base element a counterexample, 
cannot contain any non-counterexample tuples.

The “Pushing Away” Strategy
In the “Pushing Away” Strategy we attempt to show that every tuple containing an assumed 

counterexample is “pushed away” from tuples whose elements map to 1, i.e., every tuple contain-
ing a counterexample must always be the second, or third, or fourth, or ... tuple in any tuple-set, 
but never the first.  Thus counterexample tuples never become anchor tuples, hence counterexam-
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ple tuples do not exist, because if an odd, positive integer exists, it must eventually be an element 
of an anchor tuple. 

For further details, see “The ‘Pushing Away’ Strategy In Brief”, and following sections, in the 
first part of oru paper, “The Structure of the 3x + 1 Function: An Introduction”, on occam-
press.com.

The Tantalizing Strategy: Induction on Non-Counterexample Anchor Tuples
Certainly one of the most obvious strategies, and yet so far at least the most tantalizingly diffi-

cult to implement, is induction on non-counterexample anchor tuples.  It begins with the observa-
tion that, as a result of computer tests, we know that for all levels i, where 2  i  35, all i-level 
anchor tuples are non-counterexample tuples.  So why is an inductive proof so difficult?  At pres-
ent we do not know, although we are convinced that the fact that all anchor tuples up to at least 
level 35 are non-counterexample tuples, and the equivalent fact in the case of tuple-sets, is of fun-
damental importance.  Perhaps we can obtain some insight by investigating why the first counter-
example anchor tuple in the case of the 3x – 1 function, occurs already at level 2.

An Implementation Derived from the Induction Strategy
1. It is easily shown that, for each i  2, the set Ei of i-level elements in first i-level tuples in 

all i-level tuple-sets is the set of odd, positive integers less than 2 • 3(i – 1)  that are not divisible by 
3 (by part (a) of “Lemma 1.0” on page 11).  Thus, for example, E2 is the set of all the odd, positive 
integers less than  2 • 3(2 – 1) = 6,, that are not divisible by 3, and these integers are 1 and 5. 

2. By computer test, it is known that E2, E3, E4,…, up to at least E35 each consists solely of 
non-counterexamples1. 

3.
(1) For each 35-level tuple-set TA, the sequence S of 35-level elements in the sequence of 35-

level tuples  is given by x + n(2 • 3(35 – 1)), where n  0 and x is the 35-level element of the first 
35-level tuple in the tuple-set TA.  The sequence S is the  sequence if counterexamples do not 
exsit, and it is also the sequence if counterexamples exist. As we stated in step 2, x is a non-coun-
terexample element, 

Proof: Follows from part (a) of “Lemma 1.0” on page 11.  The Distance Functions are not 
themselves functions of the truth or falsity of the 3x + 1 Conjecture.

Note: the fact that all elements of E35 are non-counterexamples is emphatically not the case 
for the 3x – 1 function, where one of the elements, 5, of E2 is already a counterexample,. Thus 
there exists a first 2-level tuple, namely <7, 5>, in a 2-level tuple-set that is a counterexample 
tuple.  Each subsequent Ei  contains counterexamples, each of which is the i-level element of the 
first i-level tuple in an i-level tuple-set.  Each of these tuples is therefore a counterexample tuple.  
So our proof  cannot be used to prove the false 3x – 1 Conjecture.

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All consecutive 
odd, positive integers to at least 20  • 258  5.76  •  1018, which is greater than 3.33  • 1016  2 • 3(35 - 1)  – 1,  
have been tested and found to be non-counterexamples.  .
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4. We infer from (1) that if counterexamples exist in S, then some elements of S are both non-
counterexamples and counterexamples, which is absurd.  

5.We must now ask if counterexamples can exist in TA in j-level tuples, where j < 35.  The 
answer is No, because each j-level tuple in TA is a 35-level tuple in some other 35-level tuple-set, 
and TA  is any 35-level tuple-set.  

So we must conclude, from the contradiction in step 4, that counterexamples do not exist..

Remark
The reason why we say the above possible proof is derived from the Induction Strategy, is that 

originally, we argued that the fact that the sequence S is precisely the sequence that would exist if 
counterexamples did not exist, allows us to assert that each extension of the tuple-set TA  and 
there is an extension for each of the exponents 1, 2, 3, ... allows us to say that the 36-level 
tuple-sets resulting in each case, also have the property that S is precisely the sequence if coun-
trexamples do not exist, and so on, and from that conclude that counterexamples do not exist.  But 
then we realized the above proof, which is limited to the original S, suffices.

Strategy Based on Idea There is “Not Enough Room” for Counterexamples
Description of Strategy

Our strategy is to show that, if counterexamples exist, there is (informally) not enough “room” 
for all the non-counterexample anchor tuples and for all the counterexample anchor tuples that are 
required by “Lemma 5.0: Statement and Proof” on page 76.   

Most Promising Implementation of the Strategy At Present
1. Regardless if counterexamples exist or not, the structure of all tuple-sets remains the same, 

in accordance with the definition.  In particular, if counterexamples exist, some tuple-sets do not 
somehow acquire an “extra” anchor tuple that is a counterexample tuple.

2. We know from “Lemma 8.8: Statement and Proof” on page 27  that exactly one set of odd, 
positive integers (all those contained in the 1-tree) maps to 1 whether or not counterexamples 
exist.  So if counterexamples exist, it is definitely not the case that some elements of the 1-tree 
“disappear” because they have become counterexamples.

Therefore, exactly the same set of non-counterexample tuples (anchor and non-anchor) exists 
whether or not counterexamples exist.

3. We know, as a result of computer tests, that for each i, 2  i  35, all i-level anchor tuples 
are non-counterexample tuples.  

If counterexamples do not exist, then each tuple-set of level greater than 35 (as well as level  
35) has a non-counterexample anchor tuple.  

We now ask about the case that counterexamples exist.  If that is so, then we know, by 
“Lemma 5.0” on page 15, that each i-level tuple-set, where i  2, contains an infinity of non-coun-
terexample tuples.  
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Each infinite tuple having a counterexample as first element has a mark that denotes the first 
level i at which a prefix tc of the infinite tuple is an i-level anchor tuple in an i-level tuple-set TA.   
But then there is no non-counterexample i-level anchor tuple tnc associated with the exponent 
sequence A, because that would imply that two different tuple-sets are determined by the same 
exponent sequence, which is impossible.

Now if counterexamples do not exist, then, for all i  2, each i-level anchor tuple is a non-
counterexample tuple. But if counterexamples exist, then some i-level anchor tuples are counter-
example tuples.  

By “Lemma 8.8: Statement and Proof” on page 27, know that there is exactly one set J of non-
counterexamples whether or not counterexamples exist.  This set J is the set of nodes of the 1-tree 
(see “Graphical Representation of the Set J as Recursive “Spiral”s” on page 25).  Hence there is 
exactly one set of non-counterexample tuples, whether or not counterexamples exist.

So we must ask where the i-level non-counterexample anchor tuples “went” that were 
replaced by i-level counterexample anchor tuples?  The answer is, by Lemma 8.8, that they didn’t 
go anywhere, and thus we have the contradiction of two i-level anchor tuples being associated 
with the same i-level exponent sequence, which is impossible.  If our reasoning is correct, this 
contradiction gives us a proof of the 3x + 1 Conjecture.

Other Possible Implementations of the Strategy
A Fact That We Must Keep In Mind

Lemma 5.0 states that if counterexamples exist, then each tuple-set contains an infinity of 
counterexample tuples and an infinity of non-counterexample tuples.  (The proof of the Lemma 
has been checked and deemed correct by several mathematicians.)  The 3x – 1 function is the neg-
ative of the 3x + 1 function over the negative integers (see “Definition of 3x – 1 Function” on 
page 95), and so is represented by the extension of each 3x + 1 tuple-set into the negative integers.  
There are counterexamples to the 3x – 1 Conjecture (5 and 7 are two of them), and yet we have no 
reason to doubt that counterexamples and non-counterexample tuples  exist in each tuple-set rep-
resenting the 3x – 1 function exactly as Lemma 5.0 requires.  So we must always keep in mind 
what we have called the 3x – 1 Test when considering any implementation.  Note that “Most 
Promising Implementation of the Strategy At Present” on page 46 passes this Test.

Show That There Are No Finite Marks In Counterexample Infinite Tuples, An Impossibility
That is, show that, by an iterative argument, counterexample marks are “pushed up” without 

limit.  (In other papers, we have sometimes expressed this as: counterexample tuples are “pushed 
away” from the set of anchor tuples for all i-level tuple-sets, as i increases.)  This is equivalent to 
showing that counterexample tuples are always tuples in tuple-sets having non-counterexample 
anchor tuples.  But if no counterexample is an element of a counterexample anchor tuple, then no 
counterexample is less than 2 • 3(i – 1) for any i. Hence there are no counterexamples.   

This is a particularly tantalizing implementation.  We know that, by “Lemma 5.0” on page 15, 
and by the section, “Infinite Tuples, Marks, and Tuple-sets” on page 19, for each i-level exponent 
sequence A, where i  2, the set of i-level prefixes of all non-counterexample infinite tuples is 
complete.  Furthermore, each non-counterexample infinite tuple is an infinity of successive 
anchor tuples. 
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Let tc be a counterexample infinite tuple. It has a mark mc.  Let  tnc be a non-counterexample 
infinite tuple. It has a mark mnc. Assume mnc < mc.  (This is a legitimate assumption, since we 
know, as a result of computer tests, that an infinity of non-counterexample infinite tuples have 
marks less than 2 • 3(35 – 1), whereas no counterexample infinite tuples do.)  Let A(t(j)) denote the 
exponent sequence associated with the prefix t(j) of an infinite tuple t. 

Then for each j  0,  if A(tnc(mnc + j) = A( tc(mnc + j), mc must be greater than mnc + j.  Other-
wise there would be two anchor tuples in the same tuple-set, an impossibility. Here mc is pushed 
up for all j.  Hence mc is not finite, which implies tc does not exist.  .

The problem with this implementation is that mnc < mc only applies at the highest level at 
which the set of non-counterexample anchor tuples is complete.  (By computer test, we know that 
that level is greater than 35.)  At higher levels, we must deal with the possibility that mc < mnc.

Show That Non-counterexample and Counterexample Infinite Tuples Have the Same Expo-
nent Sequences, An Impossibility
The reason for the impossibility is  that two identical infinite sequences imply that for an 

infinity of consecutive levels, namely all those greater than the maximum of the marks of the two 
infinite tuples, there are two anchor tuples in the same tuple-set, a contradiction. See “Lemma 
5.6” on page 17.

A Crucially Important Fact About the Exponent Sequences of Infinite Tuples
  A fact that we have attempted to exploit in various ways is: if the exponent sequences of two 

different infinite tuples differ, then there is a first level at which the exponent sequences differ.  
All longer sequences therefore must differ as well, even if, after the level at which they differ, 
they are once again the same.  

Our idea has been to derive a contradiction from the fact that the exponent sequences associ-
ated with counterexample infinite tuples must differ from the exponent sequences associated with 
non-counterexample infinite tuples.  (No exponent sequence associated with a counterexample 
infinite tuple can terminate with an infinite sequence of 2’s (1 maps to 1 via the exponent 2).)

However, we have overlooked the crucially important fact that the exponent sequences of 
every pair of infinite tuples must differ, regardless if one tuple is non-counterexample and the 
other is counterexample, or if both tuples are non-counterexamples, or both tuples are counterex-
amples!  The reason is that if the exponent sequences are the same, then in the infinite sequence of 
extensions of the corresponding tuple-sets, eventually the distance between first elements of the 
corresponding tuples would violate part (b) of “Lemma 1.0” on page 11. 

Show That The Existence Of Counterexamples Implies That No Prefix Of A Non-counter-
example Infinite Tuple Is Associated With A Certain Finite Exponent Sequence
This is a contradiction to “Lemma 5.0” on page 15.  
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Show That a Certain “Completeness” Property of Infinite Tuples Makes Counterexamples 
Impossible
(Note: we now believe that this implementation will not work.  The reason is that it assumes 

that “Lemma 5.0” on page 15 makes it impossible for counterexample and non-counterexample 
anchor tuples to exist at any level or succession of levels.  But this is disproved by the fact that 
this occurs in the 3x – 1 function (which is equivalent to the negative of the 3x + 1 function over 
the odd, negative integers).  For details, see “Definition of 3x – 1 Function” on page 95.

We describe the implementation just in case a reader might see a way to overcome the faulty 
assumption.

Let tc be a counterexample infinite tuple, and let tnc be a non-counterexample infinite tuple. 
Definition: a set of j-level prefixes of infinite tuples is complete if the set is associated with the set 
of all j-level exponent sequences.  Then by “Lemma 5.0” on page 15 we know that:

 
(1) 

The set {tc(2)} of all 2-level prefixes of all infinite tuples in {tc}is complete.
The set{tc(3)} of all 3-level prefixes of all infinite tuples in {tc} is complete.
The set{tc(4)} of all 4-level prefixes of all infinite tuples in {tc} is complete.
...

(2) 

The set {tnc(2)} of all 2-level prefixes of all infinite tuples in {tnc}is complete.
The set{tnc(3)} of all 3-level prefixes of all infinite tuples in {tnc} is complete.
The set{tnc(4)} of all 4-level prefixes of all infinite tuples in {tnc} is complete.
...

We emphasize that the statements in (1) and (2) concern prefixes of infinite tuples.  A prefix of 
an infinite tuple is not necessarily an anchor tuple, although it is a prefix of an infinity of succes-
sive anchor tuples.

We offer the following thoughts, which might lead to other proofs.

Recall that if t is a prefix of an infinite tuple (that is, if t is a finite tuple), then we denote the 
exponent sequence associated with t  by A(t). We can now make the following statements:

Let  tnc be a fixed  non-counterexample infinite tuple with mark mnc.  We now consider all 
pairs < tnc, tc >, where tc  is any counterexample infinite tuple. The following statements hold:

If A(tnc(2)) = A(tc(2)),  and mnc > 2, and A(tnc(3)) A(tc(3), then mc can have any value.
If A(tnc(3)) = A(tc(3)),  and mnc > 3, and A(tnc(4)) A(tc(4), then mc can have any value.
If A(tnc(4)) = A(tc(4)),  and mnc > 4, and A(tnc(5)) A(tc(5), then mc can have any value.
...
If A(tnc(mnc)) = A(tc(mnc)), then mc must be > mnc.
If A(tnc(mnc + 1)) = A(tc(mnc + 1)),  then mc must be > mnc + 1.
...
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A corresponding set of statements holds if we fix tc and then consider all pairs < tc, tnc >, 
where where tnc  is any counterexample infinite tuple.  

Does this give us the basis for a contradiction?
Another approach based on (1) and (2) is the following: raise the level i, beginning at i = 2, 

through successive levels 2, 3, 4, ... and consider the properties of {tc(i)} and of {tnc(i)}, keeping  
in mind: 

(3) that each of these sets is an (infinite) set of prefixes of anchor tuples.  In other words, each 
of these sets is an (infinite) set of prefixes of first tuples in tuple-sets, and

(4) that each of these sets is complete, and
(5) that each i-level tuple-set has exactly one first i-level tuple (the anchor tuple), and
(6) that beyond a minimum level i0 there are both non-counterexample and counterexample 

anchor tuples, and that the set of each of these is incomplete (otherwise, there would be two 
anchor tuples in some tuple-set).

One conclusion we can draw from these facts can be expressed informally as: each non-coun-
terexample infinite tuple tnc is eventually an element of an incomplete set, and similarly for each 
counterexample infinite tuple tc.  Formally: for each pair < tnc,  tc> there exists a level which is 
equal to the maximum of the marks of tnc,  tc such that, for all greater levels i, A(tnc(i))  A(tc(i)). 

However, this fact does not contradict (1) or (2), because as i increases, there is always, by 
“Lemma 5.0” on page 15, a residue of complete counterexample prefixes and a residue of com-
plete non-counterexample prefixes.  

It is worth investigating where “Lemma 18.0: Statement and Proof” on page 84 can give us a 
contradiction despite this fact.  That lemma states that, for each range element y (for example, the 
range element 1), and for each exponent sequence A, there exists an x that maps to y via A possi-
bly followed by a single buffer exponent.

Show That Lemma 5.0 Makes Counterexample Tuples Impossible
(Note: we now believe this implementation will not work.  The reason is given at the end of 

this sub-section. We describe the implementation just in case a reader might see a way to over-
come the flaw in our argument.).

1. “Lemma 5.0” on page 15 states that if counterexamples exist, then each tuple-set contains 
an infinity of counterexample tuples and an infinity of non-counterexample tuples.

2. Assume counterexamples exist.  Then by “Lemma 8.7” on page 22, there exists a minimum 
level i0 such that for all greater levels i, the set of i-level non-counterexample anchor tuples is 
incomplete (because some i-level exponent sequences are associated with counterexample anchor 
tuples and therefore not with non-counterexample tuples).

3. Each domain element x of the 3x + 1 function is eventually the first element of an anchor 
tuple, because for each such x, there exists a minimum i such that x is less than the distance 
between first elements of i-level tuples successive at level i in some i-level tuple-set.  That is, 
there exists a minimum x such that
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(See “Lemma 1.0” on page 11.)
If tc is an i-level counterexample anchor tuple in a tuple-set TA, where A = {a2, a3, a4, ..., ai}, 

let tc(1, j), 1  j  i, and i  i0, denote the prefix of tc consisting of the elements at levels 1 through 
j. Let A(tc(1, j)) denote the exponent sequence associated with that prefix.

Since the set of non-counterexample anchor tuples is incomplete at level i  i0,  there must be 
a prefix A(tc(1, j)) of the i-level exponent sequence associated with at least one i-level counterex-
ample anchor tuple tc that differs from the corresponding prefix of all i-level exponent sequences 
associated with i-level non-counterexample tuples. That is, there must be a prefix 
tc(1, j) such that, for all i-level non-counterexample anchor tuples tnc, A(tc(1, j)) A(tnc(1, j)).

However, by Lemma 5.0, for some larger i = i´, there will be at least one non-counterexample 
anchor tuple tnc´ such that A(tnc´ (1, j)) = A(tc(1, j)).  Therefore, to maintain the necessary incom-
pleteness property of non-counterexample anchor tuples at all levels greater than i0, there must be 
an i´-level counterexample anchor tuple tc´ such that for all i´-level non-counterexample anchor 
tuples tnc´, A(tc´(1, j´)) A(tnc´(1, j´)), where  j´ >  j.

This argument is repeated for prefixes at each level i, where i increases without limit. Thus, 
the differing counterexample prefixes continue to grow longer and longer.

4. .But if the exponent sequence associated with an infinite counterexample tuple differs from 
the exponent sequences associated with all non-counterexample infinite tuples, as must be the 
case for the incompleteness property to hold at all levels i  i0, then the first level at which this 
difference occurs is fixed, and holds for all larger levels.  It is nonsensical to speak of the differ-
ence as somehow increasing for a fixed counterexample infinite tuple.   This contradiction gives 
us a proof of the 3x + 1 Conjecture.

Now to the flaw in this argument.  That there is a flaw is made clear immediately upon consid-
ering the 3x – 1 function. A counterexample, namely, 5, appears already at level 2.  And so the set 
of i-level non-counterexample anchor tuples is incomplete for all levels i, where i  2. And yet 
according to our argument, this cannot happen!  

The flaw can be described via the following example. Consider the 3-level counterexample 
anchor tuple <5, 7, 5>, which is associated with the exponent sequence A = {1, 2}.  Although 
there can be no 3-level non-counterexample anchor tuple that is associated with A (because that 
would imply there are two anchor tuples in the same tuple-set, which is impossible), Lemma 5.0 
states that at some level i´, there will be at least one i´-level non-counterexample anchor tuple tnc 
such that A(tnc(1, 3)) = {1, 2}. Lemma 5.0 specifies nothing about the exponent sequence associ-
ated with the rest of tnc, that is, associated with the suffix exponent sequence A(tnc(4,  i´)).  And so 
it is entirely possible that there exists an i´-level counterexample anchor tuple tc such that A(tc(1, 
3)) = A(tnc(1, 3)) = {1, 2}.

A strategy that is closely related to the one we have described applies the same reasoning to 
suffixes of non-counterexample anchor tuples.  By “Lemma 18.0: Statement and Proof” on 
page 84, if y is a range element (non-counterexample or counterexample) then for each exponent 
sequence A, there exists an x that maps to y via A, possibly followed by one “buffer” exponent. 
Thus, for each non-counterexample range element y,  all exponent sequences A map to y via A, 
with the possibility of the additional buffer exponent.  Thus either the exponent sequences of 

x 2 2a2  2a3  2ai 
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counterexample and non-counterexample anchor tuples differ only in their last exponent, or  the 
exponent sequences of prefixes of counterexample anchor tuples are “pushed down” without 
limit, since these prefixes offer the only possibility of exponent sequences of counterexample 
anchor tuples differing from the exponent sequences of non-counterexample anchor tuples.

The flaw is similar to that for the previous strategy in this sub-section, and is exemplified by 
the existence of counterexamples to the 3x – 1 Conjecture.

Show That No Counterexample Anchor Tuple Exists (Flawed Strategy)
The following reasoning is not correct, but we offer it to show the strategy implementation we 

have in mind.  Perhaps the reader can find a way to correct the error.
Clearly the odd, positive integer 1 is an anchor (hence a range element) in each tuple-set TA 

such that 1 is mapped to by any exponent A. By “Lemma 18.0: Statement and Proof” on page 84, 
we know that, for each range element y (whether non-counterexample or counterexample) and for 
each exponent sequence A, there exists an x that maps to y via A possibly followed by a “buffer” 
exponent. Now 1 is mapped to by all even exponents.  Therefore, for all i  2, 1 is mapped to by 
all (i+1)-level exponent sequences A*{ai+1}, where A is any i-level exponent sequence, and ai+1 
is an even exponent.  

This means that no counterexample anchor can be mapped to by one of these exponent 
sequences.  (Otherwise, a tuple-set would have a non-counterexample anchor tuple and a counter-
example anchor tuple, which is impossible.)  The error in our reasoning occurs in the next sen-
tence.

But then, since Lemma 18.0 applies to counterexamples as well as non-counterexamples, this 
means that for all counterexample anchors yc,  yc must be mapped to by an odd exponent only.

This statement is erroneous because it is possible that, for each exponent sequence A, if 
A*{ai+1}maps to 1, where ai+1 is even, then A*{ai+1}maps to yc, where  yc is mapped to by even 
exponents,  ai+1is therefore even but  ai+1ai+1.  (If  yc is mapped to by odd exponents, then 
A*{ai+1}affords no potential contradiction, because ai+1 is even and ai+1is odd.


Show That No Counterexample Anchor Tuple Exists (Second Flawed Strategy)

1. We begin by reviewing the following facts:
Each odd, positive integer, whether non-counterexample or counterexample, is the first ele-

ment of an infinite tuple.  
Each infinite tuple has a mark m.  By definition, this means that for each infinite tuple, there 

is a least level (namely, m) at which a prefix of the infinite tuple is an anchor tuple (first m-
level tuple in an m-level tuple-set). All greater-level prefixes are likewise anchor tuples.

A finite prefix of an infinite tuple we call simply a tuple.

2. For each level i, where i  2, and for each i-level tuple-set, form the set Si = the set of all 
non-counterexample infinite tuples having mark  i.  Each set Si is non-empty because the set S2 
is non-empty (all 2-level anchor tuples are non-counterexample tuples).

Assume counterexamples exist. Then for each Si , form the set Ui  consisting of the set of all 
pairs <tnc, tc>, where tnc is an i-level non-counterexample tuple and tc is an i-level counterexam-
ple tuple such that the exponent sequences associated with the two tuples are the same. We know 
that this pairing is always possible by “Lemma 5.0” on page 15.
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3. We now ask about the mark of each infinite counterexample tuple whose i-level prefix is 
the i-level counterexample tuple in a pair <tnc, tc>.  Clearly, the mark must be greater than i, 
because if it were less than or equal to i, that would mean there are two anchor tuples in the same 
tuple-set, which is impossible, by definition of anchor tuple.

4. But clearly step 3 implies that no counterexample infinite tuple has a finite mark, which 
means no counterexample infinite tuple exists, hence neither do any counterexamples.

We must now check our argument by interchanging the terms “non-counterexample” and 
“counterexample” in step 2. We know that, based on computer tests, all Si for 2  i  35 are empty.  
But there must be an infinity of consecutive levels i > 35 such that Si  is not empty.  Our conclu-
sion must be that no non-counterexample infinite tuple has a mark, and hence that non-counterex-
amples do not exist, which we know is false.

We conclude that counterexamples do not exist.

The error in this reasoning is that it is entirely possible for one or more exponent sequences to 
be missing from the exponent sequences associated with the non-counterexample tuples in some 
Si (step 2). The only possible reason is that such exponent sequences are associated with counter-
example anchor tuples.  And so the proof fails at that point.

Show That the Set of all Tuple-sets Is the Same Whether or Not Counterexamples Exist
 Objections to the comparison of the two cases, counterexamples exist, and counterexamples 

do not exist,  have fallen into several categories.  These are listed in our paper, “Is It Legitimate to 
Begin a Sentence With ‘If Counterexamples Exist, Then...’ ” on occampress.com, along with our 
replies to the objections.

Perhaps the strategy will be more convincing if the reader considers a version of the 3x + 1 
function that initially acts simultaneously on the entire set of odd, positive integers.  Then, if the 
exponent is 1, the result is the set of range elements congruent to 5 mod 2 • 3(2  1) = 5 mod 6.  If 
the exponent is 2, the result is the set of range elements congruent to 1 mod 2 • 3(2  1) = 1 mod 6.. 

We can designate this initial behavior of the 3x + 1 function as C{1}(x) = y in the first case, 
and as C{2}(x) = yin the second case.

   We then apply C,  the set-argument version of the3x + 1 function,  to the set y or the set y 
for any exponent a3, and again arrive at a set of range elements, in this case, a set whose elements 
are congruent mod 2 • 3(3  1) = mod 18.  And so on.  

It should be clear that this process always yields the same results (the same sets of range ele-
ments) regardless if counterexamples exist or not.

Show That If All i-Level Anchors are Non-Counterexamples, Then So Are All (i+1)-Level 
Anchors
If the following Conjecture is true, it will directly imply the truth of the 3x + 1 Conjecture, 

since computer tests show that the set of all odd, positive integers 2 • 335– 1 are non-counterex-
amples, so that Conjecture R1 would allow a simple inductive proof that all odd, positive integers 
map to 1.
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Conjecture R1. 
Let Si  denote the set of odd, positive integers that are less than 2 • 3i– 1.  This set consists of 

all i level anchors (these contain no multiples of 3), plus all multiples of 3 in the range given.   
Let S´i denote the set of all x that map to elements of Si . Then S´i includes the set of all odd, 

positive integers y such that 2 • 3i– 1 y 2 • 3i.

Discussion of possible proof:  It seems that the proof would be laborious but not conceptually 
difficult.  Furthermore, we have examples to guide us.  Thus, consider S3 = the set of all odd, pos-
itive integers that are less than 2 • 33– 1 = 18, that is, the set S3 = {1, 5, 7, 9, 11, 13, 15, 17}. Now 
since if any element of a “spiral” maps to a non-counterexample, then all elements of the “spiral” 
do, we obtain immediately from S3  the odd, positive integers 4•5 + 1 = 21, 4•7 + 1 = 29, 4•9 + 1 
= 37, and 4•11 + 1 = 45. These integers lie between 2 • 33– 1  = 18 and  2 • 34– 1 = 54 and hence 
are in S´3. 

. 
 

Strategies Based on the Minimum Counterexample
If a counterexample exists, then there is a minimum counterexample.  For details on the possi-

bility of proving the 3x + 1 Conjecture from this fact, see “Strategy of Proving There Is No Mini-
mum Counterexample” in the first file of our paper, “The Structure of the 3x + 1 Function: An 
Introduction” on occampress.com.

Strategies Using Induction on Anchors 
As a result of computer tests of the 3x + 1 function1, we can state that, for all i, where 2  i  

35,  all i-level anchors are non-counterexamples.  This fact suggests the possibility of an inductive 
proof of the 3x + 1 Conjecture.  Such a proof would first define a function t(i) that would yield, for 
each i,  (1) the number of levels down (“depth”) in the infinite set of recursive “spiral”s2 with base 
element 1 and (2) the maximum number of branches to the right (“width”) for each node, that 
would yield all the anchors for level i.

Clearly, the computer would be a virtual necessity in arriving at a formula for the value of t(i) 
for each i.  As a start, we might try a depth and width of 2 • 3i– 1  — as long as the value of the 
depth and width is finite, the value doesn’t matter. 

One of the longest tuples that begins with a small odd, positive integer is the tuple whose first 
element is 27.  The tuple <27, 41, 31, ..., 1> has 42 elements.  Since 27 is a level 4 anchor, our ten-
tative depth formula works for it, since the depth for level 4 is 2 • 34– 1  = 54, which is greater than 
42.

In general, assuming, for the moment, no multiples of 3, the number of nodes (odd, positive 
integers) for a depth of k and a width of w is 1 + w + w2 + w3 + ... wk = (wk+1 – 1)/(w– 1).

The inductive proof would then show that for each i, the set of anchors for all i-level tuple-
sets, consists solely of non-counterexamples.  This would then imply that no counterexamples 
exist.

1. See, e.g., Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html.
2. See “Section 2. Recursive ‘Spiral’s” in the paper, “The Structure of the 3x + 1 Function: An Introduction” 
on the web site www.occampress.com
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Strategies Based on Recursive “Spiral”s
We repeat what we said at the start of the section “Strategies Based on Tuple-sets” on page 44: 

“Tuple-sets have one important advantage over recursive ‘spiral’s, namely, that if a counterexam-
ple exists, then by “Lemma 5.0” on page 15, each tuple-set contains a countable infinity of coun-
terexample tuples, as well as a countable infinity of non-counterexample tuples.  On the other 
hand, an infinite set of recursive ‘spiral’s with base element 1 cannot contain any counterexample 
tuples, and an infinite set of recursive ‘spiral’s with base element a counterexample, cannot con-
tain any non-counterexample tuples.”

It is important to keep in mind that the structure of the infinite set of recursive “spiral”s for the 
3x – 1 function is the same as that for the 3x + 1 function.  But the distance in the former case 
between successive elements x, x´ of a given “spiral” is x´ = 4x  – 1, whereas for the 3x + 1 func-
tion it is x´ = 4x  + 1.  Thus, for example, in the 3x – 1 function, the “spiral”  of elements mapping 
to 1 is 1, 3, 11, 43, ...,  and 3 = 4(1) –  1, 11 = 4(3) –  1, etc.

Yet this minor difference is sufficient to allow counterexamples in the case of the 3x – 1 func-
tion, and furthermore, counterxamples that appear early (5, 7 are two counterexamples).  But no 
counterexample to the 3x + 1 function is known in all odd, positive integers up to well above 
1015.

It is also important to keep in mind that if counterexamples to the 3x + 1 function exist,  then 
for each range element y in the countable infinity of counterexample range elements, there exists 
an infinite set of recursive “spiral”s with base element y.  Furthermore, this set has the same struc-
ture, and the same distance between successive elements x, x´ of each “spiral”, namely, x´ = 4x + 
1.  

A problem that occurs in the contemplation of the infinite resursive “spiral”s with base ele-
ment 1 is that of determining the set of first elements of all  “spiral”s.  For example, 1 is such a 
first element (the elements of the “spiral” are 1, 5, 21, 85, ... ), as is 3 (the elements of the “spiral” 
are 3, 13, 53, 213, ... ), as is 7 (the elements are 7, 29, 117, ...), ...  

 It turns out that tuple-sets provide us with a valuable first step toward determining the set of 
first elements of all  “spiral”s.  The reason is as follows. The first element of a “spiral” maps to a 
range element (in one iteration of the 3x + 1 function) via the exponent 1 or via the exponent 2.  
But the set of all 2-level tuple-sets in the tuple-set TA, where A = {1} is the set of all 2-tuples that 
map to a range element via the exponent 1, and similarly for the set of all 2-level tuple-sets in the 
tuple-set TA´, where A´ = {2}.  So the set of first elements of all “spiral”s in the infinite set of 
recursive “spiral”s whose base element is 1 is a subset of the set of all first elements of 2-tuples in 
TA  TA´.  The subset is a proper subset only if counterexamples exist.

Of course, also to be kept in mind is that the set of odd, positive integers that directly or indi-
rectly map to 1 is the same regardless if counterexamples exist or not (the laws of arithmetic are 
not subject to the truth or falsity of the 3x + 1 Conjecture).  See “Lemma 8.8” on page 26.  T 

Obviously, we would have our proof of the 3x + 1 Conjecture if there existed a closed-form 
function that, for any infinitary tree generated by a single rule, e.g., the definition of the 3x + 1 
function or of the 3x – 1 function or of the 3x + C function, where C is an integer, would return a 
finite representation of the set of all elements at all nodes of the tree.  But so far as we know, no 
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such function has yet been discovered. 

The Simplest Strategy Using Recursive “Spiral”s
The simplest strategy is based on the following facts:
Every non-counterexample is an element of the 1-tree;

For each finite exponent sequence (possibly followed by a buffer exponent — see “Lemma 
18.0: Statement and Proof” on page 84), there exists a path upward — toward the root of the 1- 
tree —  that is associated with this sequence.  (The path is, of course, a tuple.)  In other words, by 
abuse of language, we can say that “every exponent sequence maps to 1”, or, in other words, 
“every exponent sequence is associated with a non-counterexample anchor tuple”.  But this we 
already knew, from “Lemma 5.0” on page 15.

Each tuple is the prefix of an infinite tuple, and each infinite tuple has a minimum prefix that 
is an anchor tuple.  (By definition, the level of the last element of that minimum prefix is the mark 
of the infinite tuple.)  All extensions of that anchor tuple are also anchor tuples.  So, by abuse of 
languge, we say that “every tuple is eventually an anchor tuple, and remains one thereafter (that 
is, for all higher levels)”.

Then our task is simply to show that all this implies that every anchor tuple is a non-counter-
example anchor tuple.  One obstacle that must be overcome is the presence of possible buffer 
exponents.  In brief, we must eliminate the possibility that the exponent sequence associated with 
each counterexample anchor tuple, always differs in at least the last exponent, from the exponent 
sequence associated with a non-counterexample anchor tuple at the same level.  If that were so, 
then counterexample anchor tuples could co-exist with non-counterexample anchor tuples at any 
level i, and that would deprive us of a contradiction that would prove the Conjecture.

Whatever we come up with, we must remember that it must pass the 3x — 1 Test (see “Defi-
nition of the “3x – 1 Test”” on page 95).  This would seem to be especially challenging, since it 
appears that “every exponent sequence maps to 1” in the case of the 3x – 1 function, as in the case 
of the 3x + 1 function.

Strategy of “Filling-in” of  Intervals in the Base Sequence Relative to 1
At present, we believe there is at least one mathematician (and probably several) in the world 

who could, from the material in this section, either construct a proof of the 3x + 1 Conjecture, or 
make a major, publishable, advance toward such a proof.  

This strategy was first discussed in the section, “Strategy of “Filling-in” of  Intervals in the 
Base Sequence Relative to 1”, in the first file of our paper, “The Structure of the 3x + 1 Function: 
An Introduction” on occampress.com.

Definition of “Filling-in” Strategy
The Filling-in Strategy is described by the following conjecture, which is clearly equivalent to 

the 3x + 1 Conjecture:
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Conjecture 4.0   
Each interval in the base sequence relative to 1, that is, in the sequence S1 =  {1, 5, 21, 85, 

341, ..., }, is eventually filled by elements that map to 1. 

Fig. 5.  Illustration of part of the “filling-in” process.

The reason we are motivated to attempt a proof of Conjecture 4.0 is the following fact. Sup-
pose y is non-counterexample range element. Then a “spiral” maps to y in one iteration of the 3x + 
1 function.  Each successive element of the “spiral” is an element of successive intervals in S1 
(Lemma 14.0 in the section, “Three Important Lemmas”,  in the first file of the paper, “The Struc-
ture of the 3x + 1 Function: An Introduction” on occampress.com). This is true for all non-coun-
terexample range elements.  (The same fact holds for each counterexample range element, if 
counterexamples exist.)

Since we know, by “Lemma 13.0: Statement and Proof” on page 80, that  a countable infinity 
of range elements map to 1, we might wonder (naively) why that does not give us a proof of the 3x 
+ 1 Conjecture.  The answer is the “forward-movement” problem, which we now explain.

The “Forward-Movement” Problem
Suppose we have a succession of intervals, each four times larger than the previous. In partic-

ular,  I1+ contains 2 elements, I2+ contains 8 elements, I3+ contains 32 elements, etc. It is easy to 
see that interval Ii+ contains 22i – 1 elements.  (The reason for the “+” is that each of these inter-
vals contains the element of S1 =  {1, 5, 21, 85, 341, ..., } that immediately precedes it.  This con-
vention will be of use to us, as the reader will learn below.)

Suppose we have an infinite sequence of “spiral”s s1, s2, s3, ... as follows:

The “spiral” s1 places one element in each of I1+, I2+, I3+, ... Thus each interval from I1+ on 
contains one element.

The “spiral” s2 places one element in each of I2+, I3+, I4+, ...  Thus each interval from I2+ on 
contains two elements.

The “spiral” s3 places one element in each of I3+, I4+, I5+, ...   Thus each interval from I3+ on 
contains three elements.

Etc.

It is clear that, because of the exponential growth in the size of intervals, no interval will ever 
be filled with “spiral” elements. The reason is that the “spiral”s “move forward” too rapidly to fill 
in any interval. 

...
1 5 21 85

3 13 53 213

17 69

27

25

2422

21 23
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On the other hand, suppose we have an infinite series of “spiral”s s1, s2, s3, ... as follows: 

The “spiral” s1 places one element in each of I1+, I2+, I3+, ... Thus each interval from I1+ on 
contains one element.

The “spiral” s2 places one element in each of I1+, I2+, I3+, ...  Thus each interval from I1+ on 
contains two elements.

The “spiral” s3 places one element in each of I1+, I2+, I3+, ...  Thus each interval from I1+ on 
contains three elements.

Etc.

Clearly, all intervals will eventually be filled with “spiral” elements. There is no forward 
movement problem.  However, this process does not apply to the 3x + 1 function.

What we would like is for the number of “spiral” elements in each interval to increase like the  
left-hand side of the following equations:  

In interval I1+: 1 + 1 = 22(1) – 1 = 2;
In interval I2+: 1 + 1 + 21 + 22 = 22(2) – 1 = 8;
In interval I3+: 1 + 1 + + 21 + 22 + 23 + 24 = 22(3) – 1 = 32;
Etc.

Here, there is no foreward-movement problem. Clearly, each interval is eventually filled in 
with “spiral”elements.

Our goal, in the Filling-in Strategy, is to show that in fact this is the case for the 3x + 1 Prob-
lem.  But if we are to achieve this goal, we need to have before us some facts about “spiral”s, 
intervals, and levels (the last term to be defined below).  We now provide these facts.

Here are the initial facts that we must deal with in connection with the forward-movement 
problem:

Let y be a range element in an interval of the sequence S1 = {1, 5, 21, 85, 341, ... } of elements 
that map to 1 in one iteration of the 3x + 1 function.  (The next sub-section has details on inter-
vals.) Then y is mapped to either by all odd exponents or by all even exponents.  For each case, 
there are three possibilities for the first three elements of the “spiral” that maps to y:

3, e, o; 
o, 3, e; 
e, o, 3.

where “3” means that the “spiral” element is a multiple of 3, and hence not a range element;  “e” 
means the “spiral” element is mapped to by all even exponents; “o” means the “spiral” element is 
mapped to by all odd exponents.

The first two possibilities are the worst cases, because, in the case (3, e, o), it means that for 
the third “spiral” element x we have (3x + 1)/25 = y, or x  (32/3)y, or x lies between 10y and 11y.  
Now 4y + 1 is in the next interval, 4(4y + 1) + 1= 16y + 4 + 1 is in the interval after that. So x is in 
the second interval forward from that of y.  But since x is mapped to by all odd exponents, it is 
mapped to by the exponent 1, so the xthat maps to x in this case yields a smaller number than x, 
which is in our favor.
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In the even exponent case (o, 3, e), we have, for the third “spiral” element, (3x + 1)/26 = y, or 
x   (64/3)y, or x lies between 21y and 22y.  Now 4y + 1 is in the next interval, 4(4y + 1) + 1= 16y 
+ 4 + 1 is in the interval after that, and 4(4(4y + 1) + 1) + 1 = 64y + 16 + 4 + 1.  So x is in the sec-
ond or third interval forward from that of y.  But since x is mapped to by all even exponents, it is 
mapped to by the exponent 2, so the xthat maps to x in this case yields a larger number than x, 
which is not in our favor.

In the worst case, the forward-movement could be three intervals per descent in level from y.  
But the forward-movement for the other cases will be less, and we must always keep in mind that 
if we subtract a finite number of intervals from a countable infinity of successive intervals, we are 
left with a countable infinity of successive intervals.  However, if the size of the intervals is grow-
ing exponentially, then we may be leaving ample space for counterexample elements in these 
intervals.  Which brings us to the following fact:

Fundamental Fact of the Moving-Forward Problem
If the filling-in rate is greater than or equal to the moving-forward rate, then there is no mov-

ing-forward problem.

By this we mean the following:  since each interval contains four times the number of ele-
ments in the previous interval, if the filling-in rate is greater than four times per interval, then 
there is no moving-forward problem.  See (2) under “The Most Promising Implementations of the 
Filling-in Strategy”, below.

“Spiral”s, Intervals, and Levels
We begin by repeating the definition of “spiral” (see “Section 2. Recursive ‘Spiral’s” in the 

first file of the paper, “The Structure of the 3x + 1 Function: An Introduction”, on the website 
occampress.com): if y is a range element, then the set of x that map to y in one iteration of the 3x 
+ 1 function is a “spiral”.  

There are an infinite number of x in each spiral.  These x map to y either by all odd exponents 
or by all even exponents (Lemma 13.0).  Thus the first element of the spiral maps to y by either 
the exponent 1 or by the exponent 2.

If y is a non-counterexample, then all x in the “spiral” mapping to y are non-counterexamples.  
(And similarly for counterexamples.)

The set of first elements of all non-counterexample “spiral”s is a subset of the set of first ele-
ments of all the 2-tuples in all the 2-level tuple-sets T{1} and T{2}. For further details, see “Strat-
egy Based on the Application of “Spiral”s to 2-level Tuple-sets” in the first file of the paper, “The 
Structure of the 3x + 1 Function: An Introduction” on occampress.com)

The distance function on “spiral”s is as follows: if x, xare successive elements of a “spiral”, 
then x4x (Lemma 11.0 in the first file of our paper, “The Structure of the 3x + 1 Function: 
An Introduction” on occampress.com).

Let S1 = {1, 5, 21, 85, 341, ... }.  This is the “spiral” that maps to 1 in one iteration of the 3x + 
1 function.  

Each “spiral” — including the first element of each “spiral” —  that maps, directly or indi-
rectly, to 1 is a descendant of exactly one element of  S1 = {1, 5, 21, 85, ... }.  
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We say that an odd, positive integer that maps to 1 in k iterations of the function is at level k. 
The level of a “spiral” is the level of its first element. Call the set of “spiral”s that map directly or 
indirectly to 1, the 1-tree. Since the 1-tree is oriented vertically, we will speak of a level that is 
“lower” than a given level, or a certain number of levels “down” from a given level, even though 
the level number is higher (larger).

The set of all k-level non-counterexamples is the set of all odd, positive integers that are the 
first elements of all anchor tuples in all (k + 1)-level tuple-sets such that the anchor ((k + 1)-level 
element) of the anchor tuple is 1. Thus, the entire 1-tree consists of all tuples having 1 in some 
extension.

As we descend through successive levels in the 1-tree, the thought might occur to us: How is 
this descent possible, given that we cannot go into the odd, negative integers, since they are not 
elements of the domain or range of the 3x + 1 function?  The answer is that in general, the descent 
yields larger and larger numbers: all exponents greater than 1 have that effect.  For example, the 
level-2 range element 13 is mapped to by the level-3 range element 277 via the exponent 6.  We 
must also keep in mind that the set of all integers at each level is simply a subset of the odd, posi-
tive integers.  The 3x + 1 function, both in the “upward” or “forward” direction and in the “down-
ward” or “inverse” direction, can be thought of as merely re-arranging, at each level, a subset of 
the odd, positive integers (Lemma 4.75 in “A Solution to the 3x + 1 Problem” on occam-
press.com).

Let Ii, where i  1, denote the ith interval in S1.  Thus I1 = {3}, I2 = {7, 9, 11, 13, 15, 17, 19}.
Let Ii+, the “expanded interval”, where i  1, denote Ii preceded by the ith element of S1.  Thus 

I2+ = {5, 7, 9, 11, 13, 15, 17, 19}.
Let |Ii| denote the number of elements in Ii. Then |Ii| = 22i–1 – 1.
Let |Ii+| denote the number of elements in Ii+. Then |Ii+|  = 22i–1 and |I(i + 1)+|  = 4|Ii+|.
A total of  |Ii+| “spiral”s are represented in Ii+.  Each “spiral” has exactly one element in Ii+. 

If all intervals from  |I1+| through  |Ik+| are filled with non-counterexamples then:
There is one element in |Ik+| for each “spiral” that started in any interval |I1+| through  |Ik+|. 

This means that, for example,  for each “spiral” s that started in interval I2+, there 
exists a countable infinity of successive intervals each of which contains an element of 
s.

Thus, for each j, the |Ij+| elements in Ij+ consist of one element from each of the |Ij–1+| “spi-
ral”s having elements in Ij–1+, plus one element from each of the “spiral”s that start in    
Ij+. There must be 3 |Ij–1+| of these latter, new “spiral”s, since  |Ij+|  = 4 |Ij–1+| =   |Ij–1+| 
+  3 |Ij–1+|.  But some of these might be “spiral”s from deep descendants of much ear-
lier “spiral”s.  

By computer test, we know that at least the first 26 intervals are filled with non-counterexm-
ples. There are thus elements of 22•26–1 “spiral”s in I26+.  Not all of these “spiral”s are at the same 
level, however!  Thus, e.g., the “spiral” {3, 13, 53, ... }, which has an element in I26+,  is at level 
2, because 3 maps to 1 in two iterations of the 3x + 1 function.  But the “spiral” {7, 29, 117, ... }, 
which also has an element in I26+, is at level 5, because 7 maps to 1 in five iterations of the 3x + 1 
function. There exists a maximum level “spiral” in each interval, hence in  I26+. Since it is known, 
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from computer tests, that the anchors of all 35-level tuple-sets are non-counterexamples, this sug-
gests that the maximum level “spiral” in  I26+ is at about level 35.

Successive elements of a “spiral” are in successive intervals Ii+ (Lemma 14.0 in the section 
“Three Important Lemmas” in the first file of the paper, “The Structure of the 3x + 1 Function: An 
Introduction” on occampress.com). 

The elements of a “spiral” follow the pattern ...3, e, o, 3, ..., where “3” means: “multiple-of-3, 
hence not mapped to by any odd, positive integer”; “e” means “mapped to by all and only expo-
nents of even parity”; “o” means “mapped to by all and only exponents of odd parity”. (See proof 
of Lemma 18.0 in “A Solution to the 3x + 1 Problem” on occampress.com.)

As we move forward through the elements of a “spiral”, each occurrence of an “e” element 
means that we have added one element to each of a countable infinity of successive intervals, and 
similarly for each occurrence of an “o” element.  Thus for each triple of “spiral” elements we 
move through, we have added two elements to each of a countable infinity of successive intervals. 

In reckoning the “spiral” elements in a given expanded interval Ii+, we must include the “spi-
ral” elements generated by the first element of Ii+, that is, by the ith element of S1, and also, possi-
bly, the “spiral” elements generated by the first element of I(i+1)+ .

The most important properties of a “spiral” are: (1) the first element; (2) the level of the first 
element, hence of the “spiral”; (3) the element of the “spiral” S1 = {1, 5, 21, 85, ... } from which 
the first element, hence all elements, are descended; (4) the parity of the exponents mapping to the 
base element of the “spiral”.

Downward Extensions of “Spiral”s in Triples of Intervals and of “Spiral” Elements
In each consecutive triple of successive intervals, we know that each “spiral” yields one range 

element that is mapped to by even exponents only, and one range element that is mapped to by 
odd exponents only. The reason we know this is that the pattern of successive elements in any 
“spiral” is ...3, e, o, 3..., as we explained in the previous sub-section.

 From this fact, we can construct, for each “spiral” having elements in each interval of a “tri-
ple”, a binary tree of unlimited depth.  Here is how the construction works.

Let Ik+ denote the largest interval that contains solely non-counterexamples.  By computer 
tests, we know that k > 26.  Let a equal the number |Ik+| of elements in Ik+ .  We know that 
a = 22k+ – 1.  

We also know that the infinity of successive intervals following Ik+ each contains an element 
of each of the a spirals having elements in Ik+.

Let trip(k, n) denote the nth triple of successive intervals following the interval Ik+. 
Let s be a “spiral” having an element in each of the successive intervals in trip(k, 1).  Two of 

these elements are range elements.  One is mapped to by all even exponents (thus establishing a 
new “spiral” s1 ) and the other is mapped to by all odd exponents (thus establishing a second new 
“spiral” s1).  Each of these two new “spiral”s consists of an infinity of successive triples of ele-
ments.  In the first triple of each “spiral”, s1 and s1 there are two range elements.   One is 
mapped to by all even exponents (thus establishing a new “spiral” s2) and the other is mapped to 
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by all odd exponents (thus establishing a second new “spiral” s2).  Each of these two “spiral”s 
consists of an infinity of successive triples of elements.  Etc.

So if we descend j levels, we establish 21 + 22 + 23 + ... + 2j = 2j+1 – 2 new “spiral”s.  
Therefore, each of the three intervals in the next triple, that is, in trip(k, 2), and all subsequent 

triples, contains a + a(2j+1 – 2) non-counterexample elements, each an element of a separate “spi-
ral”.  However, by the reasoning we have just demonstrated, there are in addition (a + a(2j+1 – 
2))(2j+1 – 2) additional non-counterexample elements in trip(k, 2), each an element of a separate 
“spiral”.  Each of these elements is an element of a new “spiral” which sends an element into each 
of countable infinity of successive intervals.  

We can proceed like this without limit.  Each of the three intervals in each new triple contains 
the number of elements m in the previous triple, plus (2j+1 – 2)m new elements, each of which is 
an element of a separate “spiral”. 

Since the number of elements in the third interval of each triple is 43 times the number in the 
third interval of the previous triple, and since 43 = 26, it seems we might have some hope of prov-
ing that an interval beyond Ik+ is completely filled with non-counterexamples, thus proving the 3x 
+ 1 Conjecture.  The reason this would constitute a proof is that the successive elements of at least 
one counterexample “spiral” would have to “skip over” the filled-in interval, and that is prohib-
ited by Lemma 14.0 in the section, “Three Important Lemmas”,  in the first file of the paper, “The 
Structure of the 3x + 1 Function: An Introduction” on occampress.com.

It is important to keep in mind that arbitrarily deep downward extensions of each extended 
interval I1+, I2+, ... send forth “spiral”s to an infinity of successive intervals.  We have not consid-
ered these “spiral”s  in our discussion up to this point.

The Most Promising Implementations of the Filling-in Strategy
These implementations make clear that we have other options than simply proving that each 

interval Ii+ is eventually filled in with non-counterexamples!  The implementations are:

(1) Prove that just one interval following the first interval in which counterexamples appear, is 
filled with non-counterexamples.  Just one.  This contradicts Lemma 14.0 (in the section, “Three 
Important Lemmas”  in the first file of the paper, “The Structure of the 3x + 1 Function: An Intro-
duction” on occampress.com), which implies that no interval can be “skipped over” by successive 
elements of a (non-counterexample) “spiral”.

(2) Prove that the number of non-counterexamples in a countable infinity of successive inter-
vals is always increasing (as a result of the always-increasing number of “spiral”s) as we move 
through successive triples of intervals. This implies that there cannot be a fixed number of non-
counterexamples in these intervals.  A fixed number would allow room for counterexamples.  The 
previous section, “Downward Extensions of “Spiral”s in Triples of Intervals and of “Spiral” Ele-
ments” on page 61, offers grounds for cautious optimism about this implementation.

(3) Prove that there is “not enough room” for counterexamples in the intervals in the “spiral” 
S1 = {1, 5, 21, 85, 341, ... } in addition to non-counterexamples. (Clearly, this implementation is 
closely related to the previous one.)  Specifically, if counterexamples do not exist, then all ele-
ments of all intervals are filled with non-counterexamples.  If counterexamples do exist, then 
some elements of some of these intervals are filled with counterexamples.  Yet if counterexamples 
exist, each counterexample yc is an element of a “spiral”.  Now if the counterexample yc is not an 
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element of an infinite cycle, then each iteration of  yc yields an element of another “spiral”.  And 
similarly in the downward direction if yc is a range element (in which case it yields infinities of 
“spiral”s).  If  yc is an element of an infinite cycle, then it appears that further difficulties arise in 
“finding room” for  the “spiral”s that are produced by yc. 

In any case, it seems difficult to believe that all these “spiral”s would be occupied by non-
counterexamples if counterxamples did not exist.

Some readers might reply that only one of the two cases “counterexamples do not exist” and 
“counterexamples exist” holds.  They might assert that it is illegitimate and indeed meaningless to 
speak of counterexamples somehow occupying locations that would be occupied by non-counter-
examples if counterexamples do not exist.  It is entirely possible that counterexamples “make all 
the room they need” if in fact they exist.

The trouble with this counterargument is that (1) it ignores the fact that for all elements that 
are known, by computer test, to map to 1 (at least the first 26 intervals of S1 = {1, 5, 21, 85, 341, 
... }) the 1-tree containing these elements is the same regardless if counterexamples exist or not. 
Informally, the two cases are not “disjoint”; (2) it ignores the fact that the intervals in S1 are the 
same regardless if counterexamples exist or not. Counterexamples are not some “additional type” 
of odd, positive integer lying outside these intervals.

(4) Prove that the density of odd, positive integers in the 1-tree implies that all intervals in S1 
= {1, 5, 21, 85, ... } are eventually filled in.  Informally, the density is the number of odd, positive 
integers in an “area” of the 1-tree defined by a number of levels and a number of successive “spi-
ral” elements.  If the density is sufficiently large, then a range of one or more intervals in S1, must 
be filled in.

(5) Another implementation is one based on elementary facts about  tuple-sets and recursive 
“spiral”s.   Consider a 2-level element y of a 2-level tuple <x, y>  in a 2-level tuple-set TA.  This 
element, being a range element, is mapped to by all exponents of one and only one parity. Further-
more, we know that all x in the tuples <x, y> are elements of a “spiral”, and are separated by the 
distance 4x + 1.   Thus, in each tuple-set defined by an exponent of that parity, y is the second ele-
ment of a tuple in that tuple-set.  If y is a counterexample range element, then we immediately 
have that a countable infinity of 2-tuples are counterexample tuples.

If we can show that if a 2-level tuple t in a 2-level tuple-set TA is a non-counterexample tuple, 
then the next 2-level tuple t´ in TA  is a non-counterexample tuple, we will have our proof of the
 3x + 1 Conjecture.

The 2-level element y of a 2-level tuple <x, y>  in a  2-level tuple-set is itself a 1-level element 
of a 2-level tuple <y, z> in some 2-level tuple-set.  Thus, for example, 7 is the 2-level element of 
the 2-level tuple <9, 7> in the 2-level tuple-set  TA, where A = {2}, and 7 is the 1-level element of 
the 2-level tuple <7, 11> in the 2-level tuple-set TA´ , where A´ = {1}.

This strategy is developed under “Strategy Based on the Application of ‘Spiral’s to 2-level 
Tuple-sets” in the first file of the paper, “The Structure of the 3x + 1 Function: An Introduction” 
on occampress.com.

A Challenge to the Reader
We pose the following challenge to the reader. Let Ik+ be the largest extended interval that is 

entirely filled with non-counterexamples.  We know, from what we have established in this sub-
section, that Ik+ and each successive interval beyond Ik+ contains 22k – 1 non-counterexamples, 
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each an element of a “spiral”.  Furthermore, we know that, by the recursive process we have 
described, each non-multiple-of-3 in the successive intervals beyond Ik+ gives rise to an infinity of 
“spiral”s.  The challenge is to explain how the interval I(k+1)+ could not be also filled with non-
counterexamples, considering the following facts:

The set of “spiral”s whose elements fill all extended intervals up to Ik+ is the same whether 
or not counterexamples exist;

The elements of these “spiral”s in all intervals beyond Ik+ are likewise the same whether or 
not counterexamples exist;

  The descendants of each range element in each of these “spiral”s are likewise the same 
whether or not counterexamples exist;

The number of elements in each expanded interval from the first (I1+) on, is the same 
whether or not counterexamples exist.  Intervals do not somehow “exapand” to accomodate coun-
terexamples.

Other Strategies Based on Recursive “Spiral”s
Other strategies based on recursive “spiral”s are discussed in “Section 2. Recursive ‘Spiral’s” 

in the first file of the paper, “The Structure of the 3x + 1 Function: An Introduction” and in the 
second file of “The Structure of the 3x + 1 Function”, both on the web site occampress.com.  

Strategies Based On Topology
These are described in the paper, “The Structure of the 3x + 1 Function: An Introduction”, 

www.occampress.com, in the section “Strategy of Using a Topology Defined on Tuples or Tuple-
sets”.  
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Open Questions
At present, there are several Open Questions that we feel are of fundamental importance:

(1) A question that we are sure has been asked ever since the 3x + 1 Problem was given to the 
world in the early 1930s, is, informally: “What makes certain odd, positive integers yield 1 — “go 
to 1” — after repeated iterations of the 3x + 1 function?”  Or, in other words, “Why are there non-
counterexamples?” In particular, “Why does the number of iterations differ so much between dif-
ferent odd, positive integers?  For example, 3 yields 1 in 2 iterations of the function; 11 yields 1 in 
4 iterations; 21 yields 1 in 1 iteration; 27 yields 1 in 41 iterations.” 

The answer is remarkably simple (and so we now regard the Open Question (1) as no longer 
Open): “Because all non-counterexamples are elements of an infinitary tree with 1 as the root (see 
the section, “Graphical Representation of the Set J as Recursive ‘Spiral’s” , p. 25 in our paper, 
“Are We Near a Solution to the 3x + 1 Problem?” on occampress.com). The set J is the set of all 
non-counterexamples; a recursive “spiral” is the set of odd, positive integers that map to a non-
counterexample range element of the function.

Each (finite) non-counterexample tuple is an upward path in the 1-tree.  
In our opinion, the efforts of mathematicians to answer the Question have been hampered by 

their adhering to the original definition of the 3x + 1 function, in which each division by 2 is a 
separate node in the tree representing computations by the function.  In our definition, all succes-
sive divisions by 2 are collapsed into a single exponent of 2, thus making possible tuple-sets, 
which reveal the underlying, and, we feel, beautiful, structure of the 3x + 1function

(2) Why do counterexamples to the 3x – 1 Conjecture appear already at level 2, whereas no 
counterexample to the 3x + 1 Conjecture has been discovered at levels 2 through at least level 35?  
One answer to this question — though not one that is of the depth that we seek — is given in 
“Why Are There Counterexamples to the 3x – 1 Conjecture?” on page 101.  Essentially, the rea-
son is that at least the counterexamples 5 and 7 simply “fall out of the arithmetic” of the Lemma 
1.0 distance functions.

This Open Question also applies to “3x + 1-like” functions (see “Appendix C — “3x + 1 - 
like” Functions” on page 90).  The functions of this type that we have investigated, and that have 
counterexamples to the corresponding conjecture,  all have a counterexample among the small 
odd, positive integers.

(3) How is it possible that the following two facts hold for the tuple-sets over the odd, nega-
tive integers, yet seem not to hold for the tuple-sets over the odd, positive integers?

(I) for each i   2, the set of i-level counterexample and non-counterexample negative anchor 
tuples is complete;

(II) for each  j    2, there exists an i > j such that the set of j-level prefixes of all i-level nega-
tive counterexample anchor tuples is complete, and similarly for the set of  j-level prefixes of all i-
level negative non-counterexample anchor tuples.

See “How Is the Interleaving of Counterexample and Non-Counterexample Anchor Tuples 
Possible?” on page 100.
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(4) Is it possible for arbitrarily long extensions of a tuple <yc> to contain no element less than 
yc?  If it is not, then we have a proof of the 3x + 1 Conjecture, because such a sequence of exten-
sions would define a counterexample tuple, namely, the counterexample tuple generated by the 
minimum counterexample yc. (See “Strategy of Proving There Is No Minimum Counterexample” 
in the first part of our paper, “The Structure of the 3x + 1 Function: An Introduction” on occam-
press.com.) The attempt to prove no such counterexample tuple exists might be helped by refer-
ring to Table 1, “Distances between elements of tuples consecutive at level i” on page 12, and by 
considering tuple-sets over the negative integers.  The 3x – 1 function, where counterexample 
tuples are abundant,  is the negative of the 3x + 1 function over the negative integers.  It follows 
easily from the  Distance functions (“Lemma 1.0” on page 11), that no infinite counterexample 
tuple in the 3x + 1 function, can be associated with the same exponent sequence as an infinite 
counterexample tuple in the 3x – 1 function.

 (5) What is the relationship between the two structures underlying the 3x + 1 function, 
namely, tuple-sets and recursive “spiral”s?  By “the relationship” we mean, ideally,  a closed form 
function that takes an i-level non-counterexample tuple as input, and shows where this tuple is 
located in (a)  its i-level tuple-set and where it is located in  (b) the infinite set of recursive “spi-
ral”s with base element 1. A first step toward an answer is given in “Mechanism of the Relation-
ship Finally Discovered” on page 33.  

(6) Is it in fact the case that, in the 3x – 1 function, for all i 2, there is exactly one anchor 
tuple for each i-level exponent sequence, hence exactly one i-level tuple-set for each i-level expo-
nent sequence?  (This is the case in the 3x + 1 function.

(7) Is it ever legitimate, in a proof, to make use of the fact that a certain fact is not known, 
when that fact is known in a similar problem?  The question arises because in several of our strat-
egies, we say, “If a counterexample exists...” and “If a counterexample does not exist ...”.  Some 
critics have responded that whatever we say following these phrases must be invalid, because we 
know that counterexamples to the 3x –1 function exist.
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Appendix A — Statement and Proof of Each Lemma

 Lemma 1.0: Statement and Proof
(a) Let A = {a2, a3, ..., ai},  where i  2, be a sequence of exponents, and let  tk, tn be tuples con-
secutive at level i in TA.  Then d(i, i), the distance between tk and tn at level i, is defined to be the 
absolute value of the difference between the level i elements of  tk and tn, that is, is defined to be 
|tk(i) - tn(i)|, and is given by: 

(b) Let tk, tn be tuples consecutive at level i in TA.  Then  d(1, i), the distance between tk and tn 
at level 1, is defined to be the absolute value of the difference between the level 1 elements of tk 
and tn, that is, is defined to be |tk(1) - tn(1)|, and is given by:

Thus, in Fig. 1 in the section “Tuple-set” on page 7, the distance d(3, 3) between t8(3) = 35 and 
t4(3) = 17 is 2 ꞏ 3(3-1) = 18.  The distance d(1, 2) between t12(1) = 23 and t10(1) = 19 is 2 ꞏ 21 = 4.

Proof:

The proof is by induction.

Proof of Basis Step for Parts (a) and (b) of Lemma 1.0:

Let tr and ts be the first and second 2-level tuples, in the standard linear ordering of tuples 

based on their first elements, that are consecutive at level i = 2 in TA.  (See Fig. 2 (1).)

d i i  2 3 i 1– =

d 1 i  2 2a2  2a3  2ai =
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Fig. 2 (1).  Illustration for proof of Basis Step of Lemma 1.0.

Then we have:

                                                                                                                                                 (1.1)

                                                       

and since, by definition of d(1, 2),

we have:

                                                                                                (1.2)           

Therefore, since, by definition of d(i, i), 

level

1

2

3

4

d(2, 2) = 2•31

t(r)(1)

t(r)(2)

t(s)(1)

t(s)(2)

tuple tr

tuple ts

    d(1, 2) = 2•2
a2

3t r  1  1+

2a2

-------------------------- t r  2 =

t s  1  t r  1  d 1 2( )+=

3 t r  1  d 1 2( )+  1+

2a2

----------------------------------------------------- t s  2 =
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we can write, from (1.1) and (1.2):

By elementary algebra, this yields:

Now d(2, 2) must be even, since it is the difference of two odd, positive integers, and further-

more, by definition of tuples consecutive at level i, it must be the smallest such even number, 

whence it follows that d(2, 2) must = 3 ꞏ 2,  and necessarily 

A similar argument establishes that d(2, 2) and d(1,2) have the above values for every other 

pair of tuples consecutive at level 2.

Thus we have our proof of the Basis Step for parts (a) and (b) of Lemma 1.0.

Proof of Induction Step for Parts (a) and (b) of Lemma 1.0

Assume the Lemma is true for all levels j, 2  j  i.

Let  tr, ts be tuples consecutive at level i, and let tr, tf  be tuples consecutive at level i +1.  (See 

Fig. 2 (2).)

t r  2  d 2 2( )+ t s  2 =

3t r  1  1+

2a2

-------------------------- d 2 2( )+
3 t r  1  d 1 2( )+  1+

2a2

-----------------------------------------------------=

2a2d 2 2( ) 3 d 1 2( )=

d 1 2  2 2
a2=
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Fig. 2 (2).  Illustration for proof of Induction Step of Lemma 1.0.

Then we have:

and since, by definition of d(i, i), 

 for some g  1, we have:

level

1

2

3

i

i + 1

tuple

tr

tuple
ts

tuple
tf

d(i+1,i+1) = 2•3i

d(i, i)=2•3i-1

d(1, i) =

2 2a22a32ai

t f  i 1+  t r  i 1+  d i 1 i 1++( )+=

t f  i  t r  i  g 2 3i 1– +=
t(r)(i)

t(r)(i + 1)

3t r  i  1+

2ai 1+

------------------------- t r  i 1+ =

t f  i  t r  i  g d i i( )+=
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Thus, since

 we can write:

This yields, by elementary algebra:

As in the proof of the Basis Step, d(i+1, i+1) must be even, since it is the difference of two 

odd, positive integers, and furthermore, by definition of tuples consecutive at level i+1, it must be 

the smallest such even number.  Thus d(i+1, i+1) = 3 ꞏ d(i, i), and 

.

 Hence

Now g is the number of tuples consecutive at level i that must be “traversed” to get from t(r) to 

t(f).  By inductive hypothesis, d(1, i) for each pair of these tuples is:

 

hence, since 

3 t r  i  g d i i( )+  1+

2ai 1+

--------------------------------------------------------- t f  i 1+ =

t r  i 1+  d i 1 i 1++( )+ t f  i 1+ =

3tt r  i 
1+

2ai 1+

----------------------- d i 1+ i 1+( )+
3 tt r  i 

gd i i( )+  1+

2ai 1+

---------------------------------------------------=

2a i 1+ d i 1+ i 1+( ) 3 gd i i( )=

g d i i  2
ai 1+ d i i =

g 2
ai 1+=

d 1 i  2 2
a2 2

a3   2
ai =

g 2
ai 1+=
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we have

.

A similar argument establishes that d(i+1, i+1) and d(1, i+1) have the above values for every 

pair of tuples consecutive at level i+1.

Thus we have our proof of the Induction Step for parts (a) and (b) of Lemma 1.0.  The proof of 

Lemma 1.0 is completed. 

Lemma 2.0: Statement and Proof
For each exponent a2, a tuple-set TA, where A = {a2}, exists.

Proof:
By Lemma 13.0 (see “Lemma 13.0: Statement and Proof” on page 80) we know that each 

range element is mapped to by all exponents of one parity only.  Then since 5 is mapped to by 3 
via the exponent 1, we know that 5 is mapped to by all odd exponents.  Since 1 is mapped to by 1 
via the exponent 2, we know that 1 is mapped to by all even exponents.  Both 1 and 5 are level-2 
anchors, since each is less than 2• 32– 1 = 6.  Therefore each tuple <x, 5>, where x maps to 5 via 
the odd exponent a2 is the anchor tuple of a tuple-set, and each tuple <x´, 1>, where x maps to 1 
via the even exponent a2´, is the anchor tuple of a tuple-set.  The result follows by Lemma 1.0 (a) 
and (b) (see “Lemma 1.0: Statement and Proof” on page 68), which assures us of an infinite num-
ber of tuples in each 2-level tuple-set.  

Lemma 3.0: Statement and Proof
Each i-level tuple-set, where i 2, can be extended by each even or odd exponent ai+1.

Proof:
By Lemma 2.0 (see “Lemma 2.0: Statement and Proof” on page 73), for each exponent a2, a 

tuple-set TA , where A = {a2}, exists.  So we show that for each exponent a2 = ai+1, the sequence 
of first elements of all tuples in TA has at least one element in common with the sequence of i-
level elements in TA . 

The sequence of i-level elements in the i-level tuple-set TA is given by 

                                                                                                             (3.1)
                                                                                                       

where k  0 and y is an i-level anchor, that is, y is an odd, positive integer that is less than or equal 
to, and relatively prime to, 2 ꞏ 3(i – 1). 

The sequence of 1-level elements of TA is given by

                                                                                                        (3.2)

d 1 i 1+  d 1 i  2
ai 1+=

2 3
i 1– k y+

2
a2y 1–

3
--------------------- j2 2

a2+
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where y or 5 is a 2-level anchor and  j   0 (see “Lemma 1.0: Statement and Proof” on 
page 68). Specifically, yis 1 if a2 = ai+1 is even, and yis 5 if a2 = ai+1 is odd. The left-hand term 
of (3.2) gives the value of the first element x of the level-1 sequence of TA because 

and an anchor, namely, y is the smallest i-level element (in this case 2-level element) of an i-level 
tuple-set.  The right-hand term of (3.2) is j times the difference between successive first elements 
of TA (see  “Lemma 1.0: Statement and Proof” on page 68). 

Setting (3.1) equal to (3.2), we must prove that a solution j, k exists to the equation

Multiplying through by 3, then dividing through by 2, which we can do since 3y + 1 is even, 
we get

Rearranging terms, we have

  
                                                                                  (3.3)

  or

                                                            

The right-hand side of the equation must be a multiple of 3, and so we can divide both sides 
by 3 and write:

                                                            

This is an equation of the form

and a basic fact of Diophantine Equations states that such an equation has a solution u, v if and 
only if (a, b) divides c.  In our case, 

3x 1+

2
a2

--------------- y=

2 3
i 1– k y+

2
a2y 1–

3
--------------------- j2 2

a2+=

3
i
k

3y 1+
2

---------------+ 2
a2 1–

y 3j2
a2+=

3
i
k 3j2

a2–
3y 1+

2
---------------– 2+

a2 1–
y=

3 3
i 1–

k j2
a2–  3y 1+

2
---------------– 2+

a2 1–
y=

3
i 1–

k 2
a2j– U=

au bv+ c=
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and so (3.3) has a solution j, k.
Lemma 1.0 (see  “Lemma 1.0: Statement and Proof” on page 68) then assures us of an infinity 

of i-level elements in TA that have extensions via the exponent a2 = ai+1, thus creating the tuple-set 
TA, where A = {a2, a3, ..., ai, ai+1}. 

Lemma 4.0: Statement and Proof
For each exponent sequence A = {a2, a3, ..., ai}, where i  2, there exists a tuple-set TA generated 
by A.

Proof:
The proof is by induction.

Basis Step:
By Lemma 2.0 (see “Lemma 2.0: Statement and Proof” on page 73) we know that there is a 2-

level tuple-set for each exponent a2.

Inductive Step:
Assume the Lemma is true for all  j-level exponent sequences 2  j  i.  But then by Lemma 

3.0 (see “Lemma 3.0: Statement and Proof” on page 73) it is true for all tuple-sets generated by
(i + 1)-level exponent sequences. .

Lemma 4.5: Statement and Proof
For each i 2, the number of i-level tuple-sets is countably infinite.

Proof: 
Each i-level exponent sequence is a string of one or more of the symbols 1, 2, 3, ..., 8, 9, “,” .  

(Strings involving “,,...,”, however, that is, involving two or more commas in succession, do not 
occur. Nor do strings that begin with “,”.)  There is a countable infinity of such strings. 

Lemma 4.75: Statement and Proof
For each i 2, the set of all i-level elements of all i-level tuples in all i-level tuple-sets is the 

set of all range elements of the 3x + 1 function.

Proof:
We use an inductive proof.
Basis step

3
i 1–

2
a2( , ) 1=
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The Lemma is certainly true for all 2-level tuple-sets, since the set of all first elements of all 2-
level tuples in all 2-level tuple-sets is the domain of the 3x + 1 function, and the set of all second 
elements in all 2-level tuples in all 2-level tuple-sets is therefore the range of the 3x + 1 function.

Inductive step
Assume the Lemma is true for all levels i, where 2  i  k.  Assume now that at least one range 

element is absent from the set of all (k + 1)-level elements of all (k + 1)-level tuples in all (k + 1)-
level tuple-sets.    

But it is easily shown (see proof in “Lemma 18.0: Statement and Proof” on page 84) that each 
range element is mapped to, in one iteration of the 3x + 1 function, by an infinity of range ele-
ments.  Therefore an infinity of range elements must be absent from the set of all k-level elements 
of all k-level tuples in all k-level tuple-sets, contrary to the first assumption in our inductive step. 

Lemma 5.0: Statement and Proof
Assume a counterexample exists.  Then for all i 2, each i-level tuple-set contains an infinity of i-
level counterexample tuples and an infinity of i-level non-counterexample tuples.

       Proof:

      1. Assume counterexamples exist. Then:

          There is a countable infinity of non-counterexample range elements.
               Proof: Each non-counterexample maps to a range element, by definition of range 
                    element.
                Each range element is mapped to by an infinity of elements
                   ( “Lemma 13.0: Statement and Proof” on page 80).  A countable infinity of these
                    are range elements (proof of “Lemma 18.0: Statement and Proof” on page 84).

          There is a countable infinity of counterexample range elements.
               Proof: same as for non-counterexample case.

      2. For each finite exponent sequence A, and for each range element y, non-counterexample or 
counterexample, there is an x that maps to y via A possibly followed by a buffer exponent 
(“Lemma 18.0: Statement and Proof” on page 84).  The presence of the buffer exponent does 
not change the fact that x is the first element of a tuple associated with the exponent A.. 

Lemma 5.5: Statement and Proof
Let a be a finite exponent sequence such that if x maps to y via a, then y > x.  Then there does not 
exist a counterexample x such that the infinite tuple <x, ... > is associated with the exponent 
sequence {a, a, a, ... }.

Proof: 
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Assume the contrary.  Then there exists a counterexample x such that x is the first element of 
the infinite tuple <x, ... > that is associated with the exponent sequence {a, a, a, ... }.  But x maps 
to y via a, and by hypothesis y > x, so y is the first element of the infinite tuple <y, ... > and this 
infinite tuple is likewise associated with the exponent sequence {a, a, a, ... }.  Therefore, in the 
infinite sequence of tuple-set extensions associated with the infinite sequence {a}, {a, a}, 
{a, a, a}, ... of exponent sequences,  there must occur an i-level tuple-set TA in which <x, ... > and 
<y, ... > have i-level prefixes that are tuples consecutive at level i.  The infinite tuples <x, ... > and 
<y, ... >  have (i + j)-level prefixes in all j-level extensions of TA .  But since x and y are the same 
for all these prefixes, the level 1 distance function defined by part (b) of “Lemma 1.0” on page 11 
is violated, and this contradiction gives us our proof. 

Lemma 6.0: Statement and Proof
Let t be the i-level anchor tuple in an i-level tuple-set, where i 2. Then the last element y of t, 
that is, the i-level element of t (which is the anchor), is a number less than 2 ꞏ 3(i  1). 

Proof:  

By definition of i-level anchor tuple, t is the first i-level tuple in an i-level tuple-set.  Hence 
there are no i-level tuples to the left of t under our convention for ordering tuples from left to right 
in a tuple-set.  By the distance function defined in part (a) of  “Lemma 1.0” on page 11, the dis-
tance between the last elements of consecutive i-level tuples in an i-level tuple-set is 2 • 3(i  1).  
An argument similar to that used in the proof of part (a) of Lemma 1.0 (see “Lemma 1.0: State-
ment and Proof” on page 68), but in the “leftward” direction, shows that, if the value of the i-level 
element of an i-level tuple t in an i-level tuple-set is greater than  2 • 3(i  1), then there exists an i-
level element of an i-level tuple t´ to the left of t. But if there is no i-level tuple to the left of t, it 
follows that the last element y of t must be  less than 2 • 3(i  1). 

Lemma 7.0: Statement and Proof
(a) For each i-level tuple-set TA, where A = {a2, a3, ..., ai}, the set of all i-level elements of all 

i-level tuples is a reduced residue class mod 2 • 3(i – 1). 

 (b) The set of all such reduced residue classes, over all i-level tuple-sets TA, is a complete set 
of reduced residue classes mod 2 • 3(i – 1).

Proof: 
Part (a): Let TA  be an i-level tuple-set. Since the first i-level tuple t in TA is an anchor tuple, 

the last element y of t is an anchor.  By Lemma 6.0 (see “Lemma 6.0: Statement and Proof” on 
page 77), y is an odd, positive integer not divisible by 3 that is less than 2 • 3i– 1 — in other words, 
y is the minimum element of a reduced residue class mod 2 • 3i– 1. 

Part (b): The set of all i-level elements of all i-level tuples in all i-level tuple-sets is the set of 
range elements of the 3x + 1 function (“Lemma 4.75” on page 14).  This set includes the set U of 
range elements that are less than 2 • 3i– 1.  Since a range element is an odd, positive integer that is 
not a multiple of 3, the set U consists of all minimum reduced residues mod 2 • 3i– 1 — that is, the 
complete set of minimum reduced residues.  The result follows from the fact that the distance 
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between i-level elements of successive i-level tuples in an i-level tuple-set is 2 • 3i– 1 ( “Lemma 
1.0: Statement and Proof” on page 68). 

Lemma 8.0: Statement and Proof
For each odd, positive integer x there exists a minimum i = i0  such that for each i  i0, x is the 
first element of the first i-level tuple in some i-level tuple-set, that is, x is the first element of an i-
level anchor tuple in some i-level tuple-set.  In terms of infinite tuples, this lemma states: if x is an 
odd, positive integer, then in the infinite tuple t = <x, y, y, ... >,  there exists a minimum level i0 
such that:

 t(i0) is the i0-level anchor tuple in an  i0-level tuple-set;
 t(i0 + 1) is the (i0 + 1)-level anchor tuple in an (i0 + 1)-level tuple-set;
 t(i0 + 2) is the (i0 + 2)-level anchor tuple in an (i0 + 2)-level tuple-set;
etc.
 (Of course, the (i0 + k + 1)-level tuple-set, where k  0, must be an extension of the (i0 + k)-

level tuple-set by the same exponent by which the anchor tuple is extended.) 
 
Proof:  

Let x be an odd, positive integer.  Then x is the first element of an infinite tuple t = <x, y, ... >.  
With each increment of i, i 2, the element of  t at level i increases by at most a factor of 2, since 
for all exponents except 1, C(y) < y, and for exponent 1, C(y) 2y.  However, with each increment 
of i, 2 ꞏ 3(i  1) increases by a factor of 3. Therefore, a level i = i0 must eventually be reached such 
that the element y of t at level i is less than 2 ꞏ 3(i  1).   But then by definition y is an anchor, and 
hence the prefix <x, y, ..., y> is an anchor tuple.  By our rule, “once an anchor tuple, always an 
anchor tuple” (see under “Mark” on page 19), the final part of our result follows.   

Lemma 10.0: Statement and Proof
No multiple of 3 is a range element.

Proof :

If

    

then  1  0 mod 3, which is false.  

Lemma 11.0: Statement and Proof
Each odd, positive integer (except a multiple of 3) is mapped to by a multiple of 3 in one iteration 
of the 3x + 1 function.

Proof:

3x 1+
2a

--------------- 3m=
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Since the domain of the 3x + 1 function is the odd, positive integers, the only relevant genera-
tors are 3(2k + 1), k .  We show that, for each odd, positive integer y not a multiple of 3, there 
exists a k and an a such that

     
                                            ,                                                          (11.1)

where a is necessarily the largest such a, since y is assumed odd.
 Rewriting (11.1), we have:

                                            .                                                                          (11.2) 

Without loss of generality, we can let y r mod 18, where r is one of 1, 5, 7, 11, 13, or 17 
(since y is odd and not a multiple of 3, these values of r cover all possibilities mod 18).  Or, in 
other words, for some q, r, . Then, from (11.2) we can write:      

                                           .                                               (11.3)

                                                                                                 

Since the first term on the lefthand side is a multiple of 9, (2a - 1)r – 5 must also be if the equa-
tion is to hold.  We can thus construct the following table.  (Certain larger a also serve equally 
well, but those given suffice for purposes of this proof.)

Given q and r (hence y), we can use r to look up a in the table, and then solve (11.3) for inte-
gral k, thus producing the multiple of 3 that maps to y in one iteration of the 3x + 1 function.  

Lemma 12.0: Statement and Proof
For each range element y there exists an infinity of x that map directly to y.  Specifically,    

If 

Table 2: Values of r, a, for Proof of Lemma

r a

1 6 27

5 1 0

7 2 9

11 5 171

13 4 99

17 3 63

y
3 3 2k 1+   1+ 

2
a

----------------------------------------------=

y2a 1– 5– 9k=

y 18q r+=

18 2a 1– q 2a 1– r 5–+ 9k=

2a 1– r 5–
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Then, for all n  1,

      Proof: 

The proof is a matter of straightforward algebra.

From the antecedent, we have:

Substituting into the left-hand side of the consequent, multiplying the term in parentheses by 
3, cancelling two 1’s, and factoring out (2a)(y) yields:

The 2as cancel, the term (1 + 3(...)) is easily shown to equal 22(n), the 22(n) in numerator and 
denominator cancel, and we are left with y, which gives us our result.  

Remark
Lemma 12.0 and Lemma 11.0 (see “Lemma 11.0: Statement and Proof” on page 78) imply 

that if a counterexample exists, then there is an infinity of counterexamples. 

Lemma 13.0: Statement and Proof
Each range element y is mapped to, in one iteration of the 3x + 1 function, by all exponents of one 
parity only.

The following proof is an edited version of a proof by Sanjai Gupta.  Any errors it contains are 
entirely our own.

Proof:
 Fix a range element y, and suppose that x maps to y via the exponent a. Now a is either even 

or odd, hence a = 2n + h, where h is either 0 or 1.  Since y = (3x + 1)/2a, it follows that (2a)y = 
3x+1.  Reduce the equation mod 3, and we get (2h)y  1 mod 3, by the following reasoning: (2a)y 

3x 1+

2
a

--------------- y=

3 x 2a 2 0 + 2a 2 1 +  2a 2 n 1– ++ + + y+  1+
2a 2 n +

-------------------------------------------------------------------------------------------------------------------------- y=

x
2ay 1–

3
-----------------=

2ay 1 3 20 22 24  22 n 1– + + + + + 
2a 2 n +

--------------------------------------------------------------------------------------------------
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 1 mod 3 implies (22n + h)y  1 mod 3 implies 22n 2hy  1 mod 3 implies 2hy  1 (mod 3) because 
22n = 4n 1 mod 3.  

Since y is fixed, either y  1 or y  2 mod 3.  (We know that y, a range element, is not a multi-
ple of 3 by Lemma 10.0 (see “Lemma 10.0: Statement and Proof” on page 78)).  If y  1 mod 3, 
then we have 2h(1) 1 mod 3, which implies that h must be 0.  If y  2 mod 3, then we have 
(2h)(2)  1 mod 3, implying that h must be 1, which proves the Lemma. 

Lemma 14.0: Statement and Proof
There exists an explicit construction of the tuple-set whose exponent sequence is associated with a 
given tuple.

Proof:
Let x be the first element of a tuple and let {a2, a3, ..., an+1} be the sequence of exponents 

associated with the first n extensions of the tuple <x>.  The last element of the tuple is given by:

where 

The term r is most easily calculated by iterating from x = 0, then multiplying by the appropri-
ate power of 2, as shown in the table at the end of this proof.  We want the integral x that produce 
odd outputs:

which gives

This is a standard linear Diophantine equation.  Since (3n, 2a + 1) = 1, and 1 divides the 
righthand side of the equation, the equation has a solution.  One solution is:

3nx r+
2a

-----------------

a ai

i 2=

n

=

3nx r+
2a

----------------- 2k 1+=

3nx 2a 1+ k– 2a r–=

x0 2a r– –  22 3n 1– a 1+  1–
3n

------------------------------------------ 
 =
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Note that the ratio in the expression for x0 is an integer because

The general solution is:

where t ranges over the integers.  Thus, the x’s are the inputs that iterate with the specified expo-
nents and 

are the outputs.

Table 3: Successive values of n, the x term, and r in proof of Lemma 14.0

n x term r

level of tuple 
element 

yielded, i.e., 
i in ai

   1 31x                                    1 2

   2 32x 3

   3 33x   4

   4 34x 5

k0 2a r– –  2 2 3n 1– 1–  a 1+  =

22 3n 1– 1 mod 3n

x x0 t 2a 1+– +=

k k0 t 3n–=

2k 1+ 2k0 t 2 3n – 1+=

31 2a2+

3
2

3
1
2

a2 2
a22

a3+ +

3
3

3
2
2

a2 3
1
2

a22
a3 2

a22
a32

a4+ + +
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Lemma 15.0: Statement and Proof
For each range element y, and for each finite sum a of exponents, a domain element x exists that 
maps to y via a sum a that contains a.

      Proof:

We are looking for an x such that the sequence of iterations represented by 

where n, a, and r are defined as in Lemma 14.0 (see “Lemma 14.0: Statement and Proof” on 
page 81), lead to a computation that ends with y.  n, a, and r are determined by the exponent 
sequence we want.  There also has to be an optional buffer iteration between the above and y, for 
example, to allow for parity constraints on the exponent leading to y (see “Lemma 12.0: Statement 
and Proof” on page 79).  Thus, for example, if y is mapped to by even exponents, and our expo-
nent sequence a ends with an odd exponent, then there must be a buffer exponent following the 
sequence a.  So, we want

or

which gives
                                                                                               (15.1)
                                                                                                 

. . . . . . . . . . . .

Table 3: Successive values of n, the x term, and r in proof of Lemma 14.0

n x term r

level of tuple 
element 

yielded, i.e., 
i in ai

3nx r+
2a

-----------------

3
3nx r+

2a
----------------- 
  1+

2j
----------------------------------- y=

3n 1+ x 3r 2a+ +
2a j+

--------------------------------------- y=

3n 1+ x 2ay 2j 3r– 2a–=
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or 

We are looking for x and j.  Since y is a range element, it cannot be a multiple of 3 (see 
“Lemma 10.0: Statement and Proof” on page 78).  Therefore 2ay is relatively prime to 3n + 1, as is 
3r + 2a.  Since 2j, where j 0, is an element of a reduced residue class mod 3n + 1, the congruence 
is solvable.  Hence we can find j, and then, from (15.1), x. 

Remarks
The result would hold for each finite number of buffer exponents following the exponent sum  

a, since they do not change the fact that a tuple generating each exponent sequence whose sum is 
a is guaranteed by the proof.

A recursive proof of the Lemma is possible because the set of odd, positive integers mapping 
to a range element y in one iteration of the 3x + 1 function C includes an infinite subset each ele-
ment of which is mapped to by an infinity of even exponents, and an infinite subset each element 
of which is mapped to by an infinity of odd exponents. (See “Lemma 13.0: Statement and Proof” 
on page 80, and Lemma 15.0, p. 57, in our paper, “The Structure of the 3x + 1 Function: An Intro-
duction” on the web site www.occampress.com).

Lemma 18.0: Statement and Proof
Let y be a range element of the 3x + 1 function.  Then for each finite exponent sequence A, 

there exists an x that maps to y via A possibly followed by a “buffer” exponent.  (If  y is mapped to 
by even exponents, and our exponent sequence A ends with an odd exponent, then there must be a 
“buffer” exponent following A, and similarly if y is mapped to by odd exponents and A ends with 
an even exponent.)

 
Proof:
1. Each range element y is mapped to by all exponents of one parity (“Lemma 13.0: Statement 

and Proof” on page 80).

2. Each range element y is mapped to by a multiple of 3 (“Lemma 11.0: Statement and Proof” 
on page 78).

Each range element is mapped to by an infinity of range elements (“Lemma 11.0: Statement 
and Proof” on page 78).

3. Let y be a range element and let S = {s1, s2, s3, ... } be the set of all odd, positive integers 
that map to y in one iteration of the 3x + 1 function.  In other words, S is the set of all elements in 
a “spiral”.  Furthermore, let the si be in increasing order of magnitude. It is easily shown that si+1 
= 4si + 1.

2ay 2j 3r 2a mod 3n 1++
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(In Fig. 18, y = 13, S = {17, 69, 277, 1109, ... }

Fig. 18

4. If si is a multiple of 3, then 4si +1 is mapped to, in one iteration of the 3x + 1 function,  by 
all exponents of even parity.

To prove this, we need only show that x is an integer in the equation

Multiplying through by 22 and collecting terms we get

and clearly x is an integer.

5. If sj is mapped to by all even exponents, then 4sj + 1 is mapped to, in one iteration of the 3x 
+ 1 function,  by all exponents of odd parity.

(The proof is by an algebraic argument similar to that in step 4.)

6. If sk is mapped to by all odd exponents, then 4sk + 1 is a  multiple of 3.
(The proof is by an algebraic argument similar to that in step 4..)

13

17 69 277 1109

369 739

22
24

26

28

11

21
22

21

4 3u  1+
3x 1+

2
2

---------------=

48u  4+ 3x 1+=
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7. The Lemma follows by an inductive argument that we now describe.

Let y be a range element.  It is mapped to by all exponents of one parity.  Thus it is mapped to 
by an infinite sequence of odd, positive integers.  As a consequence of steps 1 through 6, we can 
represent an infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where
“3” means “this odd, positive integer is a multiple of 3 and therefore is not mapped to by any 

odd, positive integer”;
“2” means “this odd, positive integer is mapped to by all even exponents”;
“1”  means “this odd, positive integers is mapped to by all odd exponents”.

Each type “2” and type “1” odd, positive integer is mapped to by all  exponents of one parity.  
Thus it is mapped to by an infinite sequence of odd, positive integers.  We can represent an 
infinite sub-sequence of the sequence by

...3, 2, 1, 3, 2, 1, ...

where each integer has the same meaning as above.

Temporarily ignoring the case in which a buffer exponent is needed, it should now be clear 
that, for each range element y, and for each finite sequence of exponents B, we can find a finite 
path down through the infinitary tree we have just established, starting at the root y.  The path will 
end in an odd, positive integer x.  Let A denote the path B taken in reverse order.  Then we have 
our result for the non-buffer-exponent case.  The buffer-exponent case follows from the fact that 
the buffer exponent is one among an infinity of exponents of one parity.  Thus y is mapped to by 
an infinite sequence of odd, positive integers.  We then simply apply the above argument.. 
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Apppendix B — Analysis of a Failed Strategy

In early 2009 we attempted to prove the 3x + 1 Conjecture using the inverse of the 3x + 1 
function — specifically, the inverse of 1.  Our motivation was as follows:

It dawned on us that all odd, positive integers that are known to map to 1 — namely, 1, 3, 5, 7, 
9, 11, ..., up to about 5.76 ꞏ 1018, by computer test1 — map to 1 regardless if counterexamples 
exist or not.  We then thought of the structure of the set of all odd, positive integers that are 
inverses of 1, a structure we have elsewhere called the “infinite set of recursive ‘spiral’s whose 
base element is 1.” (See “Section 2. Recursive ‘Spiral’s” in the first file of the paper “The Struc-
ture of the 3x + 1 Function: An Introduction” on the web site www.occampress.com.)  Following 
is a diagram of part of this structure.

     

            Recursive “spirals” structure of computations produced by the 3x + 1 function.
  Bold-faced numbers are range elements (21 and 453 are multiples of 3, hence not range ele-

ments).  Partial “spirals” surrounding the base elements 1 and 85 are shown.  The line connecting 
1813 to 85 is marked with a 26  because (3 • 181326 = 85.  The line connecting 453 to 1813 
is marked  85  • 24  because 453 +  85  • 24 = 1813. The exponents of 2 are not always even, of 
course. The “spiral” of numbers (not shown) mapping to 341 has odd exponents.

It is easily shown that {all odd, positive integers that map to 1 in one iteration of the 3x + 1 
function} = {1, 5, 21, 85, 341, ... }.  This set is a recursive “spiral”.  Lemma 11.0 in the above-ref-
erenced “...Introduction” paper,  states that if y is an element of a  “spiral”, the next element is 4y 
+ 1.

It is also easily shown that each recursive “spiral” contains an infinity of range elements and 
an infinity of multiples-of-3.

1. See results of tests performed by Tomás Oliveira e Silva, www.ieeta.pt/~tos/3x+1/html. All odd, positive 
integers to at least 20 ꞏ 258  5.76 ꞏ 1018 have been tested and found to be non-counterexamples. 

...

...

122

24

26

28

210
1

5

21

85

22
24

26

1 22

1 24 1 26

85 22
453

113

85 24

1813

85 28

85 26

7253

341

1 28

1 210

28
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We then defined the set J from this diagram as follows:

Let J denote 

{all odd, positive integers that map to 1 in one iteration of the 3x + 1 function}  
{all odd, positive integers that map to 1 in two iterations of the 3x + 1 function}  
{all odd, positive integers that map to 1 in three iterations of the 3x + 1 function} 
...

We stated that 

(1) Each element of J maps to 1 regardless whether counterexamples exist,

or, in other words,

(2) J is the same set regardless whether counterexamples exist.

Our justification was that the contrary would imply that the laws of arithmetic — in particular, 
those governing the elements of each “spiral” in the above structure —  were sensitive to the truth 
or falsity of the 3x + 1 Conjecture, which is absurd.  

However, statements (1) and (2) drew strong criticism from virtually all readers.  Many 
declared the statements were meaningless.  But we persisted, and eventually arrived at the follow-
ing argument:

Let V = the set of odd, positive integers, and let C = the set of counterexamples.  Then (1) 
implies:

 J  C = V = J, and therefore C is empty.  Hence we have a proof of the 3x + 1 Conjecture.

We received many objections to this argument, most of which we didn’t understand.  Then 
Jonathan Kilgallin sent us the following counterargument, which we consider irrefutable. It is that 
our argument can be applied equally to the 3x – 1 function.  But there we know that counterexam-
ples exist (5 and 7 form an infinite cycle, and thus are counterexamples).  Therefore our argument 
is invalid.

We feel it is important to understand the fault in our reasoning even apart from the 3x – 1 
counterargument. The fault rests in our confusing of domains of discourse.  

Case I. Let our domain of discourse = W = the set of odd, positive integers that map to 1 under 
the 3x + 1 function. Then (1) and (2) hold, and  we can legitimately write:

J  C = W = J,

because, in fact, there are no counterexamples in W, hence C = .
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Case II. Now let our domain of discourse = V = the set of odd, positive integers.  Then, 
although (1) and (2) hold, and we can write 

J  C = V,

it is not necessarily true that

V = J.

We will not know until we have a proof or disproof of the 3x + 1 Conjecture.

However, we emphasize that (1) and (2) hold in both cases.  In Case I, J has only one value in 
the domain of discourse, in Case II, J has two possible values in the domain of discourse.  Just as 
we might know that an equation has one solution, x, but we do not know, until we solve for x, if x 
is real or complex.

Perhaps a better way to understand the counterintuitive fact that J is a single, fixed set in both 
cases is as follows. Let S1 denote the set containing the singleton set that is the set of odd, positive 
integers.  Let S2 denote the set of all proper subsets of the odd, positive integers.  Then the 3x + 1 
Problem asks if J is an element of S1 or of S2.  
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                           Appendix C — “3x + 1 - like” Functions

Generalizations of the 3x + 1 Function
During the course of our attempts to find a proof of the 3x + 1 Conjecture, we were occasion-

ally encouraged to check if our proposed proof also constituted a proof of the 3x – 1 Conjecture.   
If the answer was Yes, then our proof must be wrong, since the 3x – 1 Conjecture is false (5 and 7 
are counterexamples).  We began referring to this check as the 3x – 1 Test.

But the existence of the 3x – 1 function encouraged us to investigate what we called 3x + C 
functions, where C is an odd, positive integer  (We have been told that the 3x + 3k function, where 
k is a positive integer, was first defined and investigated by Barry Brent in 1993. We have so far 
been unable to find anything about 3x + C functions in the literature.) Some of these 3x + C func-
tions we now call 3x + 1-like functions (see definition below).

Another generalization of the 3x + 1 function is 3x + C functions whose domain includes the 
negative integers.  The negative of the 3x – 1 function over the negative integers is the same as the 
3x + 1 function over the negative integers, a fact that provides some insight into the nature of the 
3x + 1 function.  See, for example,  “Why Are There Counterexamples to the 3x – 1 Conjecture?” 
on page 101.

A further generalization would be Ax + B functions, where A and B are integers. 
Finally, for all the above functions, we can generalize the denominators.

Definition of “3x + C Function” and the “3x + C Problem”
We define a 3x + C  function FC  as 

where C and x are odd, positive integers.   However, we also include the 3x – 1 function in the
3x + C functions, as explained below.

Let FC be a 3x + C function.  Then if FC(1) = 1 we say that FC  gives rise to a 3x + 1-like 
Problem and that FC  is a 3x + 1-like function. It is by no means the case that all 3x + C  functions 
are 3x + 1-like functions:  For example, F7(1) = 5.  “Lemma 15.0” on page 92 states the condi-
tions for a 3x + 1-like function.

For each C  such that FC is a 3x + 1-like function, the 3x + C  Problem asks if for all x, 
repeated iterations of FC, beginning with x, eventually terminate in 1.  In some cases, for example, 
the 3x – 1 and 3x + 5 Problems, the answer is easily shown to be No. In other words, for these C, 
counterexamples to the 3x + C  Conjecture exist.

In the case of the 3x – 1 function, the smallest counterexample begins with 5, yielding the 
infinite cyclic tuple <5, 7, 5, ... >.  (In the 3x + 1 function, 5 is the first element of the non-counter-
example 2-level anchor tuple <5, 1>.)  Thus 5 and 7 are counterexamples to the 3x – 1 Conjecture.

In the case of the 3x + 5 function, 5 is a counterexample because it yields the infinite cyclic 
tuple <5, 5, ...>.  Another counterexample is 19, yielding the infinite cyclic tuple  <19, 31, 49, 19, 
... >.  (In the 3x + 1 function, 19 is the first element of the non-counterexample 4-level anchor 
tuple <19, 29, 11, 17>.)  Since any odd, positive integer that maps to a counterexample, is itself a 
counterexample, it turns out that, as the reader can verify, all odd, positive integers less than

FC x( )
3x C+

2ord2 3x C+( )
---------------------------=
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 2 • 33– 1 = 18 except 1 and 9 are counterexamples! 
For all other 3x + C functions, C is a counterxample, because (3C + C)/22 = C, giving rise to 

the infinite cycle, <C, C, C, ... >.

A Relationship Between 3x + C Tuples and 3x + 1 Tuples
We are indebted to a computer scientist for the statement and proof of the following Lemma. 

We have edited the proof slightly, so any errors are entirely our fault.

Lemma 14.8

For each 3x + C  function that is a 3x + 1-like  function other than the 3x – 1 function, the 
tuple <Cx, Cy, Cy´, ..., Cz> is a 3x + C tuple iff the tuple <x, y, y´, ..., z> is a 3x + 1 tuple.

Proof (only if part):

Assume Cu is an element of a 3x + C tuple.  Then 

The denominator of the middle term equals the denominator of the right-hand term because 
for each 3x + 1-like function except the 3x – 1 function, C is an odd, positive integer (see “Lemma 
15.0” on page 92).  Thus C does not contain 2 as a factor and therefore has no effect on the value 
of the ord2 function.

The right-hand term gives us our desired result.

Proof (if part):

Let x be an element of a 3x + 1 tuple.  Then:

The right-most equation gives us our result.
The denominators in the last two fractions are equal — that is, ord2(3Cx + C) = ord23(3x + 1) 

= ord2(3x + 1)  — because 3 does not contain 2 as a factor, and therefore has no effect on the value 
of the ord2 function. 

Remark
Lemma 14.8 shows that, informally, the 3x + 1 function is embedded in each 3x + 1-like func-

tion. 

3 Cu  C+

2ord2 3 Cu  C+( )
---------------------------------- C 3u 1+ 

2ord2 C 3u 1+ ( )
--------------------------------- C 3u 1+ 

2ord2 3u 1+( )
--------------------------= =

3x 1+

2
ord2 3x 1+ 

--------------------------- y
C 3x 1+ 

2
ord2 3x 1+ 

--------------------------- Cy
3Cx C+

2
ord2 3x 1+ 

--------------------------- Cy
3Cx C+

2
ord2 3Cx C+ 

------------------------------- Cy=== =
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All Positive C That Give Rise to 3x + 1-like Functions
The following Lemma shows that the 3x + 1 function is embedded in each 3x + 1-like func-

tion.  Thus, if a counterexample to the 3x + 1 Conjecture exists, then a counterexample to each
 3x + 1-like function Conjecture exists.

Lemma 15.0
  Let C define a 3x + C  function FC.  Then FC  gives rise to a 3x + 1-like Problem iff C = –  1 

or C = – 1 + 21 + 22 + 23 + ... + 2k.  

Proof (if part):
Let C =  – 1.  Then by direct calculation we confirm that F– 1 (1) = 1.

Let C = – 1 + 21 + 22 + 23 + ... + 2k.  Then 
(1)

Proof (only if part):
If FC  gives rise to a 3x + 1-like Problem, then by definition there must exist a k + 1 such that

We find that solutions to this equation are C = – 1 and C = – 1 + 21 + 22 + 23 + ... + 2k. 

The First Few 3x + 1-like Functions
The first few 3x + 1-like functions are the 3x – 1 function, the 3x + 1 function, the 3x + 5 func-

tion, the 3x + 13 function, the 3x + 29 function, ...

On Trivial Infinite Cycles in 3x + 1-like Functions
The definition of 3x + 1-like functions, along with “Lemma 15.0” on page 92 and its Corol-

lary, make clear that there are at least two trivial infinite cycles in each 3x + 1-like function: <1, 1, 
1, ... > and <C, C, C, ... >.  In the 3x + 1 case, and only in this case, these cycles are the same.  A 
naive question arises: if we are going to identify, for each 3x + 1-like function, one of these 
infinite cycles as “the fundamental (trivial) cycle”, which one should it be?  So far, researchers 
have regarded <1, 1, 1,....> in the 3x + 1 case as being “fundamental”, not least because it is part 
of the definition of the 3x + 1 Problem. If we do the  same for all 3x + 1-like functions, then the 
<C, C, C, ... > cycles are counterexamples to the 3x + C Conjecture.  On the other hand, if we 

3 1  1– 2
1

2
2  2

k
+ + + +

2k 1+
------------------------------------------------------------------- 1 2

0
2

1
2

2  2
k

+ + + + +
2k 1+

-------------------------------------------------------------- 2k 1+

2k 1+
------------ 1= = =

3 1  C+
2k 1+

--------------------- 1=
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make the <C, C, C, ... > cycles fundamental, then each <1, 1, 1, ... > is a counterexample!  In the 
3x + 1 case, this wrecks the definition of the 3x + 1 Problem.

A computer scientist has suggested that we define, for each 3x + 1-like functions except the 3x 
+ 1 function, both <1, 1, 1, ... > and <C, C, C, ... > as fundamental (trivial) cycles, call each odd, 
positive integer that maps to either 1 or C, a non-counterexample to the 3x + C Conjecture, and 
call all other odd, positive integers, counterexamples. This convention has the advantage that each 
of the two fundamental (trivial) cycles has an obvious relationship to <1, 1, 1, ... > in the 3x + 1 
function.

The fact that there are the two trivial infinite cycles, <1, 1, 1, ... > and <C, C, C, ... >, for each 
3x + C function that is a 3x + 1-like function  — two such cycles except when C = 1 (our familiar 
3x + 1 function) suggests a possible “convergence” strategy for proving the 3x + 1 Conjecture: 
show that, as C decreases, a certain crucial property converges to a value such that counterexam-
ples cannot exist for the 3x + 1 function.

Conjectures Concerning 3x + 1-like Functions
We will regard it as remarkable if the following conjectures are true, because it will mean that 

the countable infinity of 3x + 1-like functions all have the same structure.

Conjecture C1  
The tuple-set structure holds for all these functions.  In particular, the distance functions 

established by parts (a) and (b) of Lemma 1.0 are the same for all these functions.  Furthermore, 
for each 3x + 1-like function, and for each i  2, the set of  i-level anchors is the same as the cor-
responding set of i-level anchors in the 3x + 1 function.

The Conjecture holds in tests of the 3x – 1, 3x + 5,  and 3x + 13  functions.  In particular, for 
each 3x + 1-like function, the set of anchors for each 2-level tuple-set is {1, 5}, which is the same 
as for the 3x + 1 function. The exponents for successive 3x + 1-like functions beginning with the 
3x + 1 function, are successive, as shown in the following calculations:

(3 • 1 + 1)/22 = 1; (3 • 1 + 5)/23 = 1;  (3 • 1 + 13)/24 = 1; (3 • 1 + 29)/25 = 1; ...
(3 • 3 + 1)/21 = 5; (3 • 5 + 5)/22 = 5;  (3 • 9 + 13)/23 = 5; (3 • 17 + 29)/24 = 5; ...

In addition, each argument that yields 5 appears to be the previous argument plus an increasing 
power of 2.

Conjecture C2  
The recursive “spiral”s structure holds for all these functions.  In particular, the distance 

between successive elements x, x´ in a “spiral” is given by x´ = 4x + C.

The Conjecture holds in tests of the 3x – 1, 3x + 5,  and 3x + 13 functions.

Conjecture C3
For each 3x + 1 - like function FC, where C is positive, the infinite cycle <C, C, C, ... > exists.
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The Conjecture is true for C = 1, 5, 13, and 29.  However, for the case C = 1, and only for that 
case, the infinite cycle <C, C, C, ...> = <1, 1, 1, ... > , the trivial cycle.  For all other positive C (if 
the conjecture is true), the trivial cycle  and the cycle <C, C, C, ... > are different.  

If the Conjecture is true, then we have a proof that all 3x + C Conjectures, where C is positive, 
are false.

An Obvious Strategy For Using the 3x + 1-like Functions to Prove the 
3x + 1 Conjecture

If conjectures C1, C2 and C3 are true, then an obvious strategy for proving the 3x + 1 Conjec-
ture would be to assume a counterexample to the 3x + 1 Conjecture and then show that it implies 
a contradiction in at least one of the 3x + 1-like functions.  Or, we could proceed in the opposite 
direction, and show that the 3x + 1-like functions prevent a counterexample to the 3x + 1 Conjec-
ture.  Obviously, “Lemma 15.0” on page 92 will be of use in such a strategy.

The 3x + 5 Function: A Few Tuples
Observe that 3, 7, 11 and 13 map to a non-trivial infinite cycle 19, ..., 19, and thus are counter-

examples to the 3x + 5 Conjecture.

<1, 1, ...>
      <3, 7, 13, 11, 19, 31,49,19, ... >

<5, 5, ...>
<7, 13, 11, 19, 31, 49, 19, ... >
<9, 1, 1, ...>
<11, 19, 31, 49, 19, ... >
<13, 11, 19, 31, 49, 19, ... >
...
<19, 31, 49, 19, ... >

The 3x + 13 Function: A Few Tuples

<1, 1, ...>
<3, 11, 23, 41, 17, 1, 1, ...>
<5, 7, 17, 1, 1, ...>
<7, 17, 1, 1, ...>
<9, 5, 7, 17, 1, 1, ...>
<13, 13, ...>
...
<65, 13, 13, ...>

The 3x + 29 Function: A Few Tuples
Observe that 3, 5, 7, 11, 13 and 19 map to a non-trivial infinite cycle 11, ..., 11, and thus are 

counterexamples to the 3x + 29 Conjecture.
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Since the tuples <3, 19, 43> and <11, 31, 61> are both associated with the exponent sequence 
{1, 1}, they are in the same 3-level tuple-set, and, in fact are consecutive at level 3.  In accordance 
with part (a) of Lemma 1.0 the distance between their third elements is 18.

<1, 1, ...>
<3, 19, 43, 79, 133, 107, 175, 277, 215, 337, 65, 7, 25, 13, 17, 5, 11, 31, 61, 53, 47, 85, 71, 

121, 49, 11, ... >
<5, 11, 31, 61, 53, 47, 85, 71, 121, 49, 11, ... >
<7, 25, 13, 17, 5, 11, 31, 61, 53, 47, 85, 71, 121, 49, 11, ...>
<11, 31, 61, 53, 47, 85, 71, 121, 49, 11, ... >
<13, 17, 5, 11, 31, 61, 53, 47, 85, 71, 121, 49, 11, ... >
<19, 43>

The 3x – 1 Function
Definition of 3x – 1 Function

The definition of the 3x – 1 function is similar to that of the 3x + 1 function.  That is, for x an 
odd, positive integer, the 3x – 1 function C is defined as:

where ord2(3x – 1) is the largest exponent of 2 such that the denominator divides the numerator. 
The importance of the 3x – 1 function for our purposes is that it is the negative of the 3x + 1 func-
tion on the odd, negative integers. Thus, for example, 

The 3x – 1 Conjecture asserts that for each odd, positive integer x (or for each odd, negative 
integer x´ for the 3x + 1 function over the odd, negative integers) repeated iterations of the 3x – 1 
eventually terminate in 1 (or –1 in the negative case).

However, the 3x – 1 Conjecture is known to be false.  Among the counterexamples are 5 and 
17  (–5 and –17 in the negative case). 

A useful test for the correctness of a proof of the 3x + 1 Conjecture is to see if it also proves 
that the 3x – 1 Conjecture is true.  If it does, then we know that the proof is invalid.

Definition of the “3x – 1 Test”
The Test consists simply of seeing if a proposed proof of the 3x + 1 Conjecture also applies to 

the 3x – 1 Conjecture. 

C x( )
3x 1–

2ord2 3x 1–( )
--------------------------=
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Argument for the Test
If a proposed proof also proves the 3x – 1 Conjecture, the proposed proof must contain an 

error, because the Conjecture is false, since 5, 7, and 17 are known counterexamples.  So the Test 
can be used to find an error in a proof.  But by no means is it guaranteed to find an error. 

Arguments Against  the Test
In our experience, the Test is used by readers with no time (or inclination) to examine a pro-

posed proof of the 3x + 1 Conjecture in detail. So these readers simply assert, “You must convince 
me that your proof does not also apply to the 3x – 1 Conjecture.”  Our arguments against this use 
of the Test are as follows.

What Does It Mean for a Proof To “Pass the Test”?
There is no question but that the Test can reveal errors in a proposed proof of the 3x + 1 Con-

jecture.  In fact, it has done so twice for us. But if a proof does not pass the Test, the matter does 
not end there.  One must check that the reason is an error in the proof, and not in the fact that one 
or more 3x + 1 lemmas simply do not apply to the 3x – 1 function (see below under  “What Does 
It Mean for a Proof to “Fail the Test”?” on page 97 ).

  On the other hand, the best that the skeptical reader, or the author, can say, is, “The proposed 
3x + 1 proof does not seem to also prove the 3x – 1 Conjecture.”  But “does not seem to also 
prove” is not at all the same thing as “does not prove”.  Reader and/or author may have over-
looked something.  Furthermore there may be errors that the Test could never reveal.

3x – 1 Test Requirement Implies 3x +1-like Function Test Requirement 
A requirement that a proposed proof of the 3x + 1 Conjecture be subjected to, and pass, the

 3x – 1 Test carries with it an implication that the proof  should also pass a similar test for each of 
the countable infinity of 3x + 1-like functions.  The reason for this implication is that we have 
absolutely no reason to believe that the 3x – 1 Test suffices. But there is a countable infinity of
3x + 1-like functions, and at present we have no reason to believe that we could even determine 
which ones have counterexamples to their respective conjectures, much less determine how a test 
like the 3x – 1 Test could be applied to all the functions that do have counterexamples.

Furthermore it almost goes without saying that the implication extends to all proposed proofs 
of the 3x + 1 Conjecture, whether or not they are based on tuple-set and recursive “spiral” strate-
gies or on completely different strategies, e.g., partial differential equation strategies.  We strongly 
suspect that the 3x + 1 research community will have a few things to say about this requirement.

But why should the rest of the mathematics community be spared?  The requirement of the 
3x – 1 Test is ultimately a requirement that throughout mathematics, all proofs of conjectures 
must be accompanied by a proof that the proof does not also prove a false conjecture. We strongly 
suspect that the mathematics community will have a few things to say about this requirement.

General Insistence on Similar Tests Would Bring Mathematics to a Stop
If the rule were established that a proof of a conjecture must carry with it a proof that it does 

not also prove any other conjecture for which counterexamples are known, mathematics would 
come to a stop.  In addition, a fundamental theorem in the foundations of mathematics would be 
contradicted.  This theorem states that if a proof is correct, then its correctness can be verified by 
machine (computer program).  However, if it is decided that a proof of a conjecture is not correct 
unless one can show that it does not also prove the correctness of known-false conjectures, then 
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this theorem is contradicted, since it may not even be possible for the machine (program) to deter-
mine what all the relevant known-false conjectures are, much less actually confirm that the proof 
in question does not apply to each of them.

A Proof Is Correct or Incorrect Within Its Own Context
A proof must stand on its own, not the least reason being the theorem in foundations of math-

ematics that says that a correct proof can be verified by machine (program).  If a proof contains an 
error, then there must be a way to determine that error within the proof itself.

What Does It Mean for a Proof to “Fail the Test”?
If someone asserts that a proposed proof of the 3x + 1 Conjecture also “applies” to the 3x – 1 

Conjecture, does that mean that each statement in the proof holds for the 3x – 1 function as well?  
Or does it mean that “if appropriate changes are made”, then the proof holds?  But if any changes 
are made in a proof, it should not be surprising if the proof turns out to be invalid.  Furthermore, 
what are “appropriate changes”?  No reader who has claimed that a proposed proof of the 3x + 1 
Conjecture also applies to the 3x – 1 Conjecture, has demonstrated to us that in fact all the lemmas 
used in our proof, also apply to the 3x – 1 function.

In fact, we know that at least one 3x + 1 lemma does not hold for the 3x – 1 function, and that 
is the lemma that defines the distance function on the inverse of the 3x + 1 function (Lemma 11.0 
in our paper, “The Structure of the 3x + 1 Function: An Introduction” on occampress.com). This 
distance function is as follows. If y is a range element, then in both the 3x + 1 and the 3x – 1 func-
tions, y is mapped to by all exponents of one parity only.  For example, in the 3x + 1 function, 5 is 
mapped to via odd exponents (each element of the set {3, 13, 53, ... } maps to 5 via an odd expo-
nent).   If x, x are successive elements of such a set, then x = 4x + 1.  In the case of the 3x – 1 
function, however, x = 4x – 1.  For example, in the 3x – 1 function, 5 is mapped to via even expo-
nents (each element of the set {7, 27, 107 ... } maps to 5 via an even exponent).

However, it does seem that the distance function in the “forward” direction of the 3x + 1 func-
tion, that is, the distance function for tuple-sets (“Lemma 1.0” on page 11 ) does in fact also hold 
for the 3x – 1 function.

We now prove several elementary facts about the 3x – 1 function.  From here on we will use 
its negative version, denoting it as C´, although we will refer to this negative version as the  3x – 1 
function.

Elementary Facts About the 3x – 1 Function

Lemma 9.0 
For no odd, negative integer –u is it the case that C(–u)  is positive.
Proof:
(3(–u) + 1)/( ord2(3(–u) – 1)) is negative because (3(–u) + 1) is negative and ord2(3(–u) + 1) is 

positive.

Lemma 9.05
The negative of the 3x – 1 function over the odd, positive integers = the 3x + 1 function over 

the odd, negative integers.  That is, for all odd, non-zero integers u,
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Proof:
Follows directly from algebra on the equation in the statement of part (a).

Lemma 9.1
If  y is an anchor for the 3x + 1 function at level i , then y – 2 ꞏ 3(i  1 ) is an i-level anchor for 

the (negative of the) 3x – 1 function. 
Proof:
It is reasonable to define an anchor for the 3x – 1 function analogously to an anchor for the 

3x + 1 function, that is, to define an anchor for the 3x – 1 function as an odd, negative integer y´ 
that is relatively prime to 2 ꞏ 3(i  1 ) and greater than – 2 ꞏ 3(i  1 ).  It is clear that  y – 2 ꞏ 3(i  1 ) is  

such an integer.  In fact, since y is a minimum positive residue of the integers mod 2 ꞏ 3(i  1 ) that 
is relatively prime to 2 ꞏ 3(i  1 ), it follows that y – 2 ꞏ 3(i - 1 ) is a maximum negative residue of the 
integers mod 2 ꞏ 3(i  1 )  that is relatively prime to 2 ꞏ 3(i  1).  

Thus, for example, consider the level-3 anchors.  Since 2 ꞏ 3(3  1 ) = 18;  the level-3 anchors 
for the 3x + 1 function are 17, 13, 11, 7, 5, 1.  For the negative of the 3x – 1 function, we get, for 
the level-3 anchors:

17 – 18 = –1;
13 – 18 = –5;
11 – 18 = –7;
7 – 18 = –11;
5 – 18 = –13;
1 – 18 = –17.

Lemma 9.15, the “Mirroring” Lemma
If C(x) = y, and x < y, then C(–x) = –y, and –x > –y;  If C(x) = y and x > y, then C(–x) = –y 

and –x < – y.

Proof:
Follows from a basic fact of arithmetic: if a < b, then –a > –b; if a > b, then –a < –b. 

Remark:
The reason for the name “Mirroring Lemma” is that the property it describes is the same as 

that which holds for a point in front of a vertical, say, six-foot, mirror, and the image of the point 
in the mirror.  If we place a measuring tape on the floor, perpendicular to the mirror, then we can 
imagine minus signs in front of each number on the tape in the image in the mirror.  And as we 
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move the point toward the mirror, that is, as the point passes downward through positive integers, 
its image moves upward through negative integers.

The mirroring effect does not apply to the 3x – 1 function.  Thus (3(5) – 1)/21 = 7 in the 3x – 1 
function, and (3(3) + 1)/21 = 5 in the 3x + 1 function.  In both cases, the exponent 1 results in an 
increase in the value of C(x).

Lemma 9.2
For each i  2, the set of all i-level anchor tuples for the 3x – 1 function is complete.
Proof:
Follows directly from (1) the fact that the set of all i-level anchor tuples for the 3x + 1 func-

tion is complete, and (2) “Lemma 9.1” on page 98.  

Lemma 9.3
“Lemma 1.0” on page 11 and “Lemma 5.0” on page 15 apply to the 3x – 1 function. 
Proof:
Each lemma applies to the 3x – 1 function because in our negative definition, the 3x – 1 func-

tion is simply the 3x + 1 function extended into the odd, negative integers, and this does not affect 
the proof of either Lemma, or of referenced lemmas.. 

Lemma 9.4
Let u be an odd, negative integer, and let tu = <u, u´, ... > be the infinite tuple it generates.  

Let A( tu) be the infinite exponent sequence associated with tu. Let x be an odd, positive integer, 
and let tx = <x, x´, ... > be the infinite tuple it generates. Let A( tx) be the infinite exponent 
sequence associated with tx. 

Then A( tu)  A( tx).
       Proof:

Assume the contrary.  Then u, x are at a distance d = x –   u  apart.  But as the length of their 
respective tuples increases, they nevertheless remain in the same succession of tuple-set exten-
sions, by our hypothesis.  However, by  “Lemma 1.0” on page 11, a level i must eventually be 
reached such that d is less than the minimum distance d (1, i) between first elements of successive 
i-level tuples, where

and the exponent sequence A for the i-level tuple-set TA is {a2, a3, ..., ai}.  This impossibility 
gives us our proof.  

Remark: Lemma 9.4 implies that there does not exist a counterexample x to the 3x + 1 Con-
jecture such that A(tx) =  A( tu) for any counterexample u to the 3x – 1 Conjecture.  In passing we 
point out that by “Lemma 5.0” on page 15 applied to the 3x – 1  function, we know that for each i, 
the set {tu (i)} of all i-level prefixes of all 3x – 1 counterexample infinite tuples tu  is complete.   
The next lemma is another way of expressing this fact.  It shows how a certain class of 3x + 1 
counterexample tuples are “pushed away” to infinity, and hence to non-existence.

d 1 i  2 2a2  2a3  2ai =
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Lemma 9.5
Let u be a counterexample to the 3x – 1 Conjecture, and let  tu = <u, u´, ... > be the infinite 

tuple it generates. Let A( tu(j)) be the exponent sequence associated with the prefix tu(j).   And 
similarly for counterxamples x to the 3x + 1 Conjecture. Then for all counterexamples x to the 3x 
+ 1 Conjecture:

If A(tx(2)) = A( tu(2)) then x – u must be  ; and

If A(tx(3)) = A( tu(3)) then x – u must be   ; and

If A(tx(4)) = A( tu(4)) then x – u must be   ; and
...
Proof:
Same argument as in the proof of “Lemma 9.4” on page 99, plus part (b) of  the distance func-

tion lemma, namely,“Lemma 1.0” on page 11

How Is the Interleaving of Counterexample and Non-Counterexample Anchor 
Tuples Possible?

“Lemma 5.0” on page 15, which also applies to the 3x – 1 function, states that if counterexam-
ples exist, then each i-level tuple-set, where i  2, contains an infinity of counterexample tuples 
and an infinity of non-counterexample tuples.  Since for each level  i  2, there are both non-coun-
terexample and counterexample anchor tuples in the case of the 3x – 1 function, this would seem 
to imply that, for each level i > 2, the set of non-counterexample anchor tuples is complete, and 
similarly for the set of counterexample anchor tuples.  (At level 2, this does not hold.) This in turn 
would imply that each i-level tuple-set has two anchor tuples, one non-counterexample and the 
other counterexample, which is impossible.  

But in fact the existence of non-counterexample and counterexample anchor tuples is possible 
if the following is always the case, namely, that for each level i > 2, there is a maximum  j < i such 
that the set of j-level non-counterexample anchor tuple prefixes is complete, and similarly for the 
set of j-level counterexample anchor tuple prefixes.  For longer prefixes, the corresponding sets 
are not complete, although the set of both non-counterexample and counterexample i-level anchor 
tuples is always complete.

We now believe that we have made our attempts to answer the question of interleaving unnec-
essarily difficult. For, regardless if the anchor tuple of an i-level tuple-set is non-counterexample 
or counterexample, the rest of the tuples in the tuple-set, both non-counterexample and, if coun-
terexamples exist, counterexample, are all associated with the same exponent sequence A that 
defines the tuple-set.  However, the mark of each infinite tuple having a prefix (tuple) in the tuple-
set must be greater than i: otherwise, the tuple-set would have two anchor tuples, which is impos-
sible. 

And so successive extensions of the anchor tuple define successive extensions of the original 
tuple-set, with the marks of all tuples in each tuple-set other than the anchor tuple being greater 
than the level of the tuple-set.  However, the tuples in these extensions grow farther apart (by part 
(a) of Lemma 1.0) because some tuples drop out when their exponent sequences are no longer the 
same as those of the extensions of the original anchor tuple.

2 2
a2

2 2
a2 2

a3

2 2
a2 2

a32
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100



Are We Near a Solution to the 3x + 1 Problem?
Thus we believe that the phrase “interleaving of counterexample and non-counterexample 
anchor tuples” is misleading.  Each tuple-set has exactly one anchor tuple, non-counterexample or 
counterexample.  The interleaving refers to the set of all anchor tuples at a given level i.  In gen-
eral, we can say only that this set is always complete (is associated with the set of all i-level expo-
nent sequences).

Note: later reflection based on consideration of recursive “spiral”s for the 3x – 1 function, 
incline us to assert that the following holds for this function:

Every finite exponent sequence is eventually the prefix of a non-counterexample anchor tuple, 
and of a counterexample anchor tuple.  However, unlike the case of the 3x + 1 function, the suf-
fixes of these two tuples will differ.

3x – 1 Anchor Tuples and a Failed Proof of the 3x + 1 Conjecture
The reader will naturally wonder how “Lemma 9.5” on page 100 can hold, given the fact that 

for each level i there is a complete set of positive anchor tuples (non-counterexample and counter-
example).  How is it possible that the distance function is not violated by the facts that (1) each 
negative counterexample u is eventually (that is, at some level) a negative anchor tuple, and 
remains so for an infinity of successive levels, and that (2) for each level i, there must be a posi-
tive anchor tuple tx(i) such that A(tu(i)) = A(tx(i))?

The answer is clear from the lemma statement itself.  It is different positive anchor tuples that 
fulfill the role of providing successive matching exponent sequences for the prefixes of tu.  A sin-
gle positive x does not give rise to all these positive anchor tuples.

If the reader asks what happens to the prefixes of infinite tuples tx once their exponent 
sequences no longer match those of prefixes of tu , the answer is that they are associated with the 
exponent sequences of different negative anchor tuples.

We see, therefore, that the 3x – 1 anchor tuples limit the possible exponent sequences for pos-
itive counterexample tuples.  But not sufficiently for a proof of the 3x + 1 Conjecture, because, for 
example, it is possible that all negative counterexamples give rise to infinite cycles.  If so, then it 
is still possible that positive counterexamples exist that do not give rise to infinite cycles.

Why Are There Counterexamples to the 3x  – 1 Conjecture?
Two known counterexamples to the 3x  – 1 Conjecture are 5 and 17, or, in our alternate ver-

sion of the function, –5 and –17.  Both counterexamples give rise to infinite loops.  For –5 we 
have the infinite tuple <–5, –7, –5, ...> and for –17 we have the infinite tuple <–17, –25, –37, –55, 
–41, –61, –91, –17, ...>.   As in the case of the 3x + 1 function, –5 (or 5) is the base element of an 
infinite set of recursive “spiral”s in the 3x  –  1 function, and similarly for –17 (or 17).  We conjec-
ture that these infinite sets are disjoint, and in fact that the three infinite sets of recursive “spiral”s 
with base elements  –5 (or 5), – 17 (or 17), and –1 (or 1) are disjoint.

If we sharpen our question to, “Why does the infinite cycle <–5, –7, –5, ...> (or <5, 7, 5, ...>), 
which consists of the counterexamples –5 (or 5) , and –7  (or 7), exist?”, then the answer is sim-
ple: the cycle is a consequence of the distance functions d(1, 3), d(2, 3) and d(3, 3) in “Lemma 
1.0” on page 11 operating on the 3-level tuple <11, 17, 13> in the 3-level tuple-set TA , where A =  
{1, 2}.  

Specifically, subtracting d(1, 3) = 2 •21• 22 = 16 from 11 gives us –5. Subtracting d(2, 3) =  
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2 •3 • 22 (see “Distances between elements of tuples consecutive at level i” on page 12) = 24  
from 17 gives us  –7.  Finally, subtracting d(3, 3) = 2 •33–1 = 18 from 13 gives us –5.  

Thus the distance functions give us the tuple <–5, –7,  –5> in the odd, negative integers, which 
is the negative of the tuple <5, 7, 5> for the 3x – 1 function. 

The 5x + 1 Function, and Nx + C Functions in General
This Appendix has been devoted to 3x + C funct.ions.  However, we must not overlook the 

fact that there are Nx + C functions where N is any integer.  I do not know to what extent, if any, 
these functions have been studied.  The question of the denominators that should be considered 
for each N, C is no doubt important in itself.

The 5x + 1 function, with the same denominator as for the 3x + 1 and other functions consid-
ered above, is interesting because it exhibits the same property we observed in these other func-
tions,  namely, that if counterexamples exist, then there are counterexamples already for small 
numbers.  

In the case of the 5x + 1 function, there is a tuple, <5, 13, 33, 83, 13, ...>, which contains a 
non-trivial infinite cycle, hence a sequence of counterexamples.  The first two elements of this 
tuple are the first two elements of the second 2-tuple in a 5x + 1 tuple-set (assuming, of course, 
that the tuple-set structure holds for this function). 

A study of all the Nx + C functions might begin with an attempt to somehow “line up” the 
functions, so that corresponding elements of corresponding tuples for each function could easily 
be compared.  It might then be possible to answer such questions as, Why is it that if counterex-
amples exist, at least one of them is a smal, odd, positive integer?  (See “Why Are There Counter-
examples to the 3x – 1 Conjecture?” on page 101.)
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