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 Important Note (Dec. 10, 2002)

This paper gives proofs of all theorems and lemmas in Schorer’s “The Structure of the 3x + 1 
Function: An Introduction” that are not given in that paper.  (That paper, like this one, is accessi-
ble on the web site www.occampress.com.)  All of these proofs have been checked and deemed 
correct by at least half a dozen mathematicians.  However, this paper has not been revised since 
the indicated date, and therefore numbering of theorems, lemmas and conjectures is not necessar-
ily the same as that in the Introduction.  Furthermore, improved versions of definitions and of 
much of the exposition, plus extensive additional material on possible strategies and possible 
proofs of the 3x + 1 Conjecture, plus new lemmas, will be found in the Introduction.  

The author will be glad to answer any questions concerning either paper.
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The Structure of the 3x + 1 Function
Abstract

The 3x + 1 Problem asks if iterations of the 3x + 1 function 

always terminate in 1, where x is an odd, positive integer,  ord2(3x + 1) = aj is the largest exponent 
such that the denominator evenly divides the numerator.  (The result of each iteration is thus again 
an odd, positive integer.)  In this paper, we describe two structures underlying this function.  The 
“spacial”, “geometric” nature of each structure suggests several strategies for a solution to the 
problem which otherwise are not at all apparent. The first structure  is called “tuple-sets”.  Each 
tuple-set consists of all tuples whose elements are the successive odd, positive integers produced 
by a finite sequence A of exponents aj = ord2(3x + 1).  We define distance functions between the 
elements of the tuples in tuple-sets (Lemmas 1.0 and 1.1), then describe several possible strategies 
for solving the Problem using tuple-sets, supporting each strategy with various lemmas. Among 
these lemmas are that for each odd, positive integer y not a multiple of 3, and for each finite 
sequence A of exponents, there exists an  x that maps to y via A with the possible concatenation of 
one additional exponent (Lemma 7.0).   Also that the infinitary tree of all possible tuple-sets can 
be reduced to an equivalent finitary tree (Lemma 7.3). 
      The second structure is called “recursive ‘spiral’s”.  Each range element y of the 3x + 1 func-
tion defines an infinite set of such “spiral”s.  This set represents all odd, positive integers x that 
map to y in a finite number of iterations  of the 3x + 1 function.  The set is self-similar in the sense 
defined by Mandelbrodt.  We define distance functions between the elements of “spiral”s (Lem-
mas 11.0, 12.1, and 12.2), then describe several possible strategies for solving the Problem using 
recursive “spiral”s, supporting each strategy with various lemmas.  Among these are Lemma 
15.85, which establishes the sequence of congruence classes mod 2 • 3i - 1 that each element of 
each possible “spiral” belongs to.
      Finally, we show how the two structures can be merged into a single structure that suggests 
another strategy for a solution to the Problem.

Key words: 3x + 1 Problem, 3n + 1 Problem, Syracuse Problem, Ulam’s Problem, computa-
tional number theory, proof of termination of programs, recursive function theory

American Mathematical Society Classification Numbers: 11Y16, 11Z05, 03D20, 68Q60
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The Structure of the 3x + 1 Function
Introduction
Statement of Problem

The 3x + 1 Problem, also known as the 3n + 1 Problem, the Syracuse Problem, the Collatz 
Problem, Ulam’s Problem, Kakutani’s Problem, and Hasse’s Algorithm,asks if repeated iterations 
of the 3x + 1 function 

always terminate in 1, where x is an odd, positive integer,  ord2(3x + 1) = aj  is the largest expo-
nent of the prime 2 such that the denominator  evenly divides the numerator.  (The result of each 
iteration is again an odd, positive integer.)  Thus, for example, beginning with x = 5, we have the 
result of one iteration, y, = 1, and we stop.  Here aj = 4.  Beginning with x = 13, we have the result 
of one iteration, y, = 5, with aj = 3.  Then, as in the previous example, 5 yields 1, and we stop.

The conjecture that all repeated iterations eventually terminate in 1, that is, that no counterex-
amples exist, will hereafter be referred to as Conjecture 1.

Although many results are known — see, for example, [1], [2], and [3] — no proof or counter-
example is known. 

Summary of Research on the Problem
As stated in [1], “The exact origin of the 3x + 1 problem is obscure.  It has circulated by word 

of mouth in the mathematical community for many years.  The problem is traditionally credited to 
Lothar Collatz, at the University of Hamburg.  In his student days in the 1930’s, stimulated by the 
lectures of Edmund Landau, Oskar Petron, and Issai Schur, he became interested in number-theo-
retic functions.  His interest in graph theory led him to the idea of representing such number-theo-
retic functions as directed graphs, and questions about the structure of such graphs are tied to the 
behavior of iterates of such functions...  In the last ten years [that is, 1975-1985] the problem has 
forsaken its underground existence by appearing in various forms as a problem in books and jour-
nals...”

[1] and [2] are the best summaries of research on the problem through Jan. 1996, as far as the 
author is aware.  More than 150 papers are listed.  [1] discusses some of the more important 
results in addition to giving an unannotated list of papers.  [2] is an annotated bibliography.  
Because of the apparent lack of structure in the 3x + 1 function, much of the research has been 
based  on analytic (in the number-theoretic sense) and probabilistic approaches.  p-adic number 
theory has been utilized.  

[3], published in 1998, is an excellent, detailed presentation, with proofs, of many of the sig-
nificant results connected with the analytical (in the number-theoretic sense) and probabilistic 
approaches to the Problem.  

Note: The author discovered tuple-sets in the early eighties, but was unable to get any papers 
on them published because editors were not convinced they would lead to a solution of the Prob-
lem. Then, during the refereeing process of an earlier version of the present paper in 1998, the 
author was informed that results similar to some of those in the paper had recently appeared in 
chapter II of [3].  However, these results do not explicitly set forth the tuple-sets or recursive “spi-
ral”s structures, nor do they include most of the results, or any of the possible strategies for a 
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The Structure of the 3x + 1 Function
proof of Conjecture 1, that are contained in this paper.  This paper points out correspondences, 
both in terminology and in results, with [3].  They are listed in the Index under “Wirsching...”.

Prizes for Proofs of Conjectures and for Answers to Questions
The offering of prizes for proofs of conjectures has a long history in mathematics.  Prizes were 

offered for a proof of Fermat’s Last Theorem.  Prizes have been offered for a proof of Conjecture 
1 (see (Lagarias, 1985)).  However, since some mathematicians are reluctant to accept money for 
doing proofs, winners are not required to accept the prize money offered in this paper.

Prizes are offered for proofs or disproofs of conjectures, and for answers to certain questions.  
However, since some of the questions are less precisely stated than the conjectures, prizes are not 
always offered for answers.   Offers of prizes in this paper are given in the Index under “Conjec-
ture...” and “Question...”.

Rules governing prizes are as follows:
(1) Conjectures: prize money will be awarded for the first valid proof or disproof that the 

author of this paper receives.  The proof or disproof need not be original. Questions: prize money 
will be awarded for the first correct answer to the question.  The answer need not be original. 

(2) The winner implicitly agrees to allow the author of this paper to publish the winner’s proof 
or answer as part of future versions of this and other papers by the author.  If the winner so 
requests, his or her name will not be mentioned in future versions of this and other papers by the 
author, until a paper by the author containing the proof or disproof or answer, is published in a ref-
ereed journal.  

(3) The author of this paper and the prize winner will keep a record of the actual prize-win-
ning proof or answer in case later versions of this paper result in accidental errors.

(4) If a prize winner’s proof or answer is found to contain an error, the prize winner will have 
up to one month to repair the error.  If the prize winner is unable to do so, he or she will return the 
prize money to the author of this paper within one month following the end of the month allowed 
to repair the error.

(5) The prize winner has permission to publish the proof or answer on his or her own, pro-
vided due and appropriate credit is given to the author of this paper, specifically, as to the ideas 
and proofs existing in this paper at the time the winner won the prize.

(6) It is possible that a given prize may already have been won at the time a reader decides to 
attempt a proof or disproof or answer a question.  Also, amounts of prizes are subject to change 
without notice!  Therefore, prospective prize winners are advised to contact the author of this 
paper before beginning to work on any proof or disproof or answer to a question!

Consultants Sought
The author is seeking consultants to help bring this work to fruition.  Terms are as follows.
Consultant must have a knowledge of elementary number theory at least equivalent to that of 

a senior undergraduate math major.
Consultant will be payed for hours worked, regardless of the ultimate outcome of this 

research.  Hours worked can be as little as one per week. 
Shared authorship will be offered if the consultant makes a significant contribution, where the 

meaning of “significant” is to be agreed upon beforehand between author and consultant.
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The Structure of the 3x + 1 Function
About This Paper
First of all, the author encourages the reader to use the extensive Index to rapidly find defini-

tions of terms, statements and proofs of lemmas, etc.
Second of all, the author is only too aware that the style and notation of this paper are much in 

need of improvement.  On the other hand, the author believes that, in attempting to solve difficult 
problems, ideas must come first, even if the initial presentation of these ideas is awkward and 
long-winded.

This paper is a compendium of results from several other papers.  In order to avoid confusion 
for persons who received these other papers, and who will receive this one, original numbering of 
lemmas has been retained, even when this numbering contradicts the order in which the lemma 
occurs in this paper.  The reader will find it easy to locate the page containing any specific lemma 
by simply looking up the lemma in the Index under “Lemma...”.

Periods, commas, and similar punctuation following equations that occupy separate lines are 
absent due to a limitation of the word-processor used to write this paper.  The author believes this 
will not be a source of confusion.

Equations are always numbered relative to a given proof.  
All terms defined in this paper, as well as lemmas, remarks, questions, and conjectures are 

listed in the extensive Index.
This paper is a work in progress.  Hence there are almost certainly to be errors, for which the 

author apologizes.

Suggestions for a First Reading of (Parts of) This Paper
There is absolutely no reason for the reader to feel that this paper is an all-or-nothing proposi-

tion, i.e., that the choice is between reading the entire paper or reading nothing of it.  An under-
standing of the basic ideas can be obtained by reading only a few selected pages and using the 
Index as necessary to look up the definitions of terms.  The author recommends the following. 

“Abstract” on page 2;
“Section 1: Tuple-Sets” on page 6, through Lemma 1.1;
The initial tables summarizing properties of tuple-sets and rows at the start of 
     “Summary of Properties of Tuple-sets” on page 13;
Initial paragraphs of “The “Pushing Away” Strategy” on page 19;
“Strategy of Proving There Is No Minimum Counterexample” on page 58;
“.Section 2. Recursive “Spiral”s” on page 62, through 
     “Distance Functions on “Spiral”s” on page 63 and the lemmas defining the functions.
“Strategy of “Filling-in” of Intervals” on page 68
“Section 3. A Single Structure Combining Tuple-sets and Recursive “Spirals”” on page 83.
5



The Structure of the 3x + 1 Function
Section 1: Tuple-Sets
In the first section of this paper, we describe a structure called “tuple-sets” that underlies iter-

ations of the 3x + 1 function.  The “spacial”, “geometric” nature of this structure is important for 
the strategies it suggests.  Informally, for a given finite sequence of exponents A = {a2, a3, ..., ai},  
i ≥ 2, ai  ≥ 1, the tuple-set TA consists of:

 all tuples of length 1 containing an odd, positive integer that does not map to 
       another odd, positive integer via the exponent a2; plus 
 all tuples of length 2 representing all computations of the 3x + 1 function obtained 
       from the exponent sequence {a2} such that the last element of each tuple does not map to
      another odd, positive integer via the exponent a3; plus 
all tuples of length 3 representing all computations of the 3x + 1 function obtained 
       from the exponent sequence {a2, a3} such that the last element of each tuple does not
       map to another odd, positive integer via the exponent a4; plus ...
all tuples of length i representing all computations by the 3x + 1 function obtained 
       from the exponent sequence A.
Tuples are oriented vertically on the page in a sequence extending infinitely to the right.  

There is always a first (leftmost) tuple in every tuple-set.

Definitions

3x + 1 function, C(x)
In the literature, the most common definitions of the 3x + 1 function are f and T:
f(x) = {3x + 1 if x is odd; x/2 if x is even};

T(x) = {(3x + 1)/2 if x is odd; x/2 if x is even};

(In [3], n is used instead of x to emphasize that the domain of the function is the natural num-
bers (p. 11).)

A few authors have used the definition (or an equivalent) given at the start of this paper.  We 
designate this representation of the function as C(x), following  Crandall ([3], p. 65):  

where ord2(3x + 1) is the largest exponent of 2 such that the denominator evenly divides the 
numerator.  We will show that this definition of the function, in which successive divisions by 2 
are collapsed into a single power of 2, brings out two structures underlying the function that are 
otherwise are not at all evident.  Henceforth in this paper, unless otherwise specified, the term “3x 
+ 1 function” will refer to C(x).

Iteration
An iteration takes an odd, positive integer, x, to another odd, positive integer, y, via one appli-

cation of the 3x + 1 function. 

C x( ) 3x 1+
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The Structure of the 3x + 1 Function
Computation 
A computation is a sequence of one or more successive iterations of C, i.e., 

The number of successive iterations in a computation may be finite or infinite.  The term compu-
tation corresponds to the term C-trajectory, or simply, trajectory, in [3] (p. 10), except that a com-
putation contains no even numbers.

Domain Element, Maps to, Is Mapped to, Range Element
If x yields y in one iteration of the 3x + 1 function, we say that x  maps to y  in one iteration.  

We also say that x maps to any other odd, positive integer occuring in the computation of x.  We 
will sometimes refer to x as a domain element, since it is an element of the domain of the 3x + 1 
function.  We will say that y, or any subsequent odd, positive integer in the computation of x, is 
mapped to by x.  We will sometimes refer to y, or any subsequent odd, positive integer in the com-
putation of any x, as a range element, since it is an element of the range of the 3x + 1 function.  It 
is trivial to show that there are no multiples of 3 in the range of the 3x + 1 function (see Lemma 
0.2.),  so the range is a proper subset of the domain.

Power of 2
A power of 2 is a term  .

Exponent
An exponent is the exponent aj of 2 in the power of 2 that, in the 3x +1 function, yields an odd, 

positive integer in one iteration.  Sometimes, by abuse of language, we shall speak of aj as “map-
ping to” a range element y, by which we shall mean that  .

A sequence A = {a2, a3, ..., ai} of exponents corresponds to an admissible vector in [3] (p. 42). 
(The reason we begin our subscripts with 2 is trivial and will be explained below.)

The 3x + 1 Conjecture (Conjecture 1)
The 3x + 1 Conjecture (referred to in this paper as Conjecture 1) asserts that, for all domain 

elements x, repeated iterations of the 3x + 1 function beginning with x eventually terminate in 1.  
A domain element that does not meet this condition is called a counterexample.  That is, a coun-
terexample x has the property that, for all z mapped to by x, z > 1.  A minimum counterexample y, 
with which we will be concerned in certain parts of this paper, has the following two properties: 
(1) for all z mapped to by y, z ≥ y, and (2) for all x mapping to y, x ≥ y. 

Tuple-set
A tuple-set, TA,  is defined as follows. (The reader may find it helpful to refer to Fig. 1 while 

reading the following.  The integers between arrows are explained below, immediately following 
the statement of Lemma 1.0.)

Let A = {a2, a3, ..., ai} be a finite sequence of exponents, where ai  ≥ 1, i  ≥ 2.  (The reason for 
beginning our indexes with 2  is trivial, and will become clear below in the definition of a level in 
a tuple-set.)  We associate with each A a tuple-set TA that, informally, represents all possible com-

Ck x( )( )k 0≥ x C x( ) C2 x( ) …, , ,( )=

2aj

3x 1+( ) 2aj⁄ y=
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The Structure of the 3x + 1 Function
putations such that the sequence of exponents in each computation is given by A.  Formally, TA is 
the set of all tuples tk such that:

      (a) the first element tk(1) of tk is a domain element;

      (b) the j’th element tk(j) of tk, j  ≥ 2, if it exists, is the range element produced, in a single 
iteration, from the (j-1)’th element of the tuple tk, via the exponent aj.

The set of tuples in a tuple-set is thus as described in the first paragraph of Section 1.

Fig. 1.  Part of the tuple-set TA associated with the sequence A = {1, 1, 2}

Fig. 1 shows part of a tuple-set, namely, the tuple-set  TA associated with the sequence A = {1, 
1, 2}.

The 2nd element of the 8th tuple, t8(2), is 23 because 23 is the range element mapped to by the 
1st element, 15, in one iteration (a2 = 1).

The 4th element of the 4th tuple, t4(4),  is 13 because 13 is the range element mapped to by the 
3rd element, 17, in one iteration (a4 = 2).  

There is no 2nd element of the 1st tuple because there is no range element mapped to by 1 
such that a2 = 1.  

There is no 2nd element of the 5th tuple because there is no range element mapped to by 9 
such that a2 = 1.

Tuples in a tuple-set are ordered according to their first elements.

Level in a Tuple-set
A level j in a tuple-set is defined as follows.  If A = {a2, a3, ..., ai}, i ≥ 2, is a finite sequence of 

exponents, the subscrpt j in aj, 2 ≤ j  ≤ i, denotes the  level j in TA.  As specified under the defini-
tion of tuple-set, we begin numbering our levels with 2  so that level 1 is then the level containing 
the set of all possible tuple first elements {1, 3, 5, 7, ... } in any TA, that is, the set of odd, positive 
integers, or, in other words, the set of all domain elements.

1 3 5 7 9 11 13 15 17 19 21 23 25 27

5 11 17 23 29 35 41

...

...

17

13

35 53
18

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

...

...

j

1

2

3

4

level
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The Structure of the 3x + 1 Function
If a tuple has an element at level j, but none at level j + 1, we will refer to the tuple as a j-tuple, 
or a j-level tuple. If the tuple also has an element at level j + 1, we will sometimes refer to the 
tuple as a (≥ j)-tuple. The longest tuple in any tuple-set defined by an exponent sequence of length 
i - 1 is an  i-level tuple.  

In the case that A = {a2, a3, ..., ai}, i ≥ 2,  we will refer to TA as an i-level tuple-set. Clearly, 
every range element mapped to by a given (i - 1)-long exponent sequence occurs in level i of the 
corresponding tuple-set.

Tuples Consecutive at Level j
Tuples consecutive at level j are defined as follows.  Let tk, tm be (≥ j)-tuples in some TA.  If 

there is no (≥ j)-tuple between tk and tm, we say that tk and tm are tuples consecutive at level j.  
Here, “between” means relative to the natural linear ordering of tuples based on their first ele-
ments. 

Thus, for example, in Fig. 1, tuples 4 and 8 are consecutive at level 3.

Row
Let A = {a2, a3, ..., ai}, i ≥ 2, be a sequence of exponents,  and let TA be the corresponding 

tuple-set.  Then a level-j row, Rj, 1 ≤ j ≤ i,  in TA is the set of all jth tuple-elements in tuples con-
secutive at level j. We shall see that, as a result of the distance functions defined in lemmas 1.0 
and 1.1, that each row is a congruence class.  We shall also see that the 3x + 1 function can — and 
perhaps should! —  be defined as a function on congruence classes, rather than merely on odd, 
positive integers.  This definition holds even if we include negative elements of each congruence 
class.

Extensions of Tuples and of Tuple-sets
Let TA be a tuple-set defined by the sequence of exponents A = {a2, a3, ..., ai}.  Then any 

tuple-set TA′  defined by a sequence of exponents A′ =  {a2, a3, ..., ai, ai+1} is called an extension 
of TA.  We define extensions of tuples in a similar manner.  Thus, a (≥ i)-tuple in TA′ is an exten-
sion of an i-tuple in TA. 

 If A = {a2, a3, ..., ai}, i ≥ 2, is a sequence of exponents, then we define an initial sub-sequence 
of the exponent sequence A as the sequence {a2, a3, ..., aj}, where . Thus, for example, 
{a2} is an initial sub-sequence of A, and so is {a2, a3, a4}, but, for example, {a3, a4} is not. We 
define an inititial sub-sequence of a tuple tk similarly. 

With the concept of extensions of tuples and tuple-sets established, we can see that every j-
tuple,  , defined by an initial sub-sequence {a2, a3, ..., aj} of  A is in the tuple-set TA.

Non-terminating Tuple (n-t-v-1, n-t-v-c)
As stated under “Computation” on page 7, a trajectory (tuple) may be finite or infinite.  We 

will use the term non-counterexample tuple to denote a finite tuple whose elements ultimately 
map to 1, and the term counterexample tuple to denote a finite tuple whose elements are counter-
examples.  We will use the term n-t-v-1 (non-terminating-tuple-via-1) to denote an infinite tuple 
whose elements map to 1, and the term n-t-v-c (non-terminating-tuple-via-c (c for counterexam-
ple)) to denote an  infinite tuple whose elements are counterexamples.

It is possible that a tuple contains an infinite repetition of a sequence of its elements, where the 
sequence may be of length 1.  (The tuple <1, 1, 1, ...> is a trivial example, and the only known 
example at time of writing.)  Clearly, any such tuple is infinite.  If the repeated element is not 1, 

2 j i≤ ≤

2 j i≤ ≤
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The Structure of the 3x + 1 Function
then the tuple contains solely counterexample elements.  An infinitely repeated sequence of ele-
ments is called a cycle.

We remark in passing that, since the statement of the 3x + 1 problem specifies that iterations 
are to terminate when and if 1 is reached, counterexamples are sometimes described as giving rise 
to “infinite” or non-terminating computations.   However, by the definition of n-t-v-1 and n-t-v-c, 
all domain elements give rise to “infinite” computations. 

Graphical View of a Tuple-set
      At this point, it will be helpful if we get an abstract view  of the various-length tuples in a 
tuple-set.  Let TA be any tuple-set, with A = {a2, a3, ..., ai}.   Then, as shown in Fig. 3.05, there is 
an infinity of tuples consecutive at level i and, indeed, at all levels 1 ≤ j ≤ i.  Between each pair of 
i-level tuples there is a finite set of tuples consecutive at level i - 1.  Between each pair of these is 
a finite set of tuples consecutive at level i - 2, etc., down to level 1.  The distance (numerical dif-
ference) between elements of tuples at each level will be specified in Lemmas 1.0 and 1.1.

      Fig. 3.05.  Graphical view of tuples in a tuple-set.
            A, the distance (numerical difference) at level i between elements of tuples consecutive at 
                  level i, = 2 • 3i - 1 (Lemma 1.0 (a))
            B, the distance (numerical difference) at level i - 1 between elements of tuples 
                  consecutive at level i - 1, = 2 • 3i - 2 (Lemma 1.0(a))
            C, the distance (numerical difference) at level i - 1 between elements of tuples 
                  consecutive at level i, =

                

                (Lemma 1.1)

level

1

i
i - 1

2

.

.

.

    . . . . . . . . . 

A
C B

lcm 2 2ai⋅ 2 3i 2–⋅,( ) 2 2ai 3i 2–⋅ ⋅=
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The Structure of the 3x + 1 Function
Distance Functions on Tuple-sets

Lemma 1.0 (a) Let A = {a2, a3, ..., ai},  i ≥ 2, be a sequence of exponents, and let  tk, tm be tuples 
consecutive at level i.  Let d(i, i), the distance between tk and tm at level i, be defined by  |  -  

|, where |x| denotes the absolute value of x.    Then  d(i, i) is given by:

(b) Let tk, tm be tuples consecutive at level i in TA.  Let d(1, i), the distance between tk and tm at 
level 1, be defined by  |  -  |. . Then d(1, i) is given by:

Thus, in Fig. 1, the distance d(3, 3) between t8(3) = 35 and t4(3) = 17 is 2 · 3(3-1) = 18.  The dis-
tance d(1, 2) between t12(1) = 23 and t10(1) = 19 is 2 · 21 = 4.

Proof:
Since the proof is rather long, but involves only basic algebraic manipulations, it has been 

placed in Appendix A.

Remarks About the Distance Functions
(1) Strictly speaking, we should include the sequence A of exponents as arguments of d(1, i), 

d(i, i), but this notation would be cumbersome and, since typically this sequence is known, unnec-
essary.

(2) The distance functions make clear that, for each finite sequence of exponents, there exists 
an infinity of computations produced by that sequence.   (The equivalent of this statement is made 
in [3] (p. 48).)   In particular, there exists an infinity of tuples consecutive at level i for all i ≥ 2.

(3) The formula for d(1, i) implies that it is possible for pairs of tuples consecutive at level i in 
one tuple-set to be the same distance apart, at level 1, as pairs of tuples consecutive at level 1 in 
another tuple-set.  For example, this would occur between tuples consecutive at level 2  in TA 
when A = {2} (d(1, 2) = 2 ⋅22 = 8) and between tuples consecutive at level 3 in TA′ when A′ = {1, 
1}(d(1, 3) = 2⋅2121 = 8).

(4) The distance between elements of tuples consecutive at level j, 2  ≤  j < i,  is given in 
Lemma 1.1.

(5) It is straightforward to prove that the distance functions carry over into the negative inte-
gers as well.

Our next task is to prove several lemmas (Lemmas 2.0 through 6.0) required for the proof of 
Lemma 7.0, which states that for any y in the range of the 3x + 1 function, and for any sequence of 
exponents, with the possible addition of a concluding “buffer” exponent, there exists an x whose 
computation yields y.  But first, we give the distance between tuples consecutive at level j and 
then dispose of the question of the countability of tuple-sets.

tki
tmi

d i i,( ) 2 3 i 1–( )⋅=

tk1
tm1

d 1 i,( ) 2 2a2( ) 2a3( )… 2ai( )⋅=
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The Structure of the 3x + 1 Function
Lemma 1.1.  Let TA be a tuple-set defined by a sequence A = {a2, a3, ..., ai}, i ≥ 2.  Then the dis-
tance d(j, i) between elements at level j, 1 ≤ j ≤ i,  of  tuples tk, tm consecutive at level i is given by 
the following table:

Proof:
The distances at levels 1 and i were established by Lemma 1.0.  The distance at any other level 

j follows from the fact that, by Lemma 1.0, the distance must be the least common multiple of 

  
and

    

 

Lemmas 1.0 and 1.1 are stronger results than Lemma 3.1 in [3] (p. 45), since the latter only 
deals with congruence mod 3i - 1 of elements at level i, not at levels 1, 2, 3, ..., i - 1.  (Also, con-
gruence mod 3i - 1 does not imply congruence mod 2 • 3i - 1.)

Table 1: Distances between elements of tuples consecutive at level i

Level Distances between elements of tk, tm at 
level 

i

i - 1

i - 2

i - 3

... ...

2

1 ...  

2 3i 1–⋅

2 3i 2– 2ai⋅ ⋅

2 3i 3– 2ai 1– 2ai⋅ ⋅

2 3i 4– 2ai 2– 2ai 1– 2ai⋅ ⋅

2 3 2a3…2ai 1– 2ai⋅ ⋅

2 2a2⋅ 2a3 2aa 1– 2ai

2 3j 1–⋅

2 2aj 1+ 2aj 2+ … 2ai⋅ ⋅ ⋅ ⋅
12



The Structure of the 3x + 1 Function
Summary of Properties of Tuple-sets
For readers with limited time, we now provide a table that summarizes our results — both 

those above and those to follow — on tuple-sets and rows in a tuple-set.  (Recall that a row is sim-
ply the set of elements at a given level in a given tuple-set.)  We break the properties of rows into 
three parts: those concerning top rows, those concerning middle rows, and those concerning the 
bottom (i.e., first) row.   The phrase “extension of a top row Ri” means the same thing as “the top 
row Ri + 1 mapped to by a top row Ri”.

The table entry for each property whose value is known includes a reference to definitions or  
lemma(s) that establish the value.

Following these tables, we present the results themselves.  They are organized by the possible 
strategies they suggest for proving Conjecture 1.

Note: some table-rows may have the same content as other rows, though under different prop-
erties.  This redundancy is deliberate, the purpose being to aid understanding and to make the 
looking up of properties easier.

Table 2: Some important properties of tuple-sets

Property Value of property Reference

Sequence of exponents, A, 
that define a tuple-set TA

A = {a2, a3, ..., ai}, ai ≥ 1. Definition of tuple-set

Structure of tuple-sets (not of 
tuples within tuple-sets)

Infinitary tree, equivalent to a 
2 • 3i -2-ary tree.  Thus, in the 
latter, finitary, tree:
 
level 2 has 2 • 32 - 2 = 2 nodes 
(the 2 top rows of all 2-level 
tuple-sets), mapped to by 2 
equivalence classes of expo-
nents; 

level 3 has 2 • 33 - 2 = 6 nodes 
(the 6 top rows of all 3-level 
tuple-sets), mapped to by 6 
equivalence classes of expo-
nents;

level 4 has 2 • 34 - 2 = 18 
nodes (the 18 top rows of all 
4-level tuple-sets), mapped to 
by 18 equivalence classes of 
exponents;

etc.

Lemma 7.3
13



The Structure of the 3x + 1 Function
2 • 3i - 1 Distance between elements of 
tuples successive at level i in 
an i-level tuple-set

Lemma 1.0

2 • 3i - 2 Number of top rows of all i-
level tuple-sets; also

Number of exponent equiva-
lence classes (and the maxi-
mum exponent), from which 
exponents mapping to the top 
row of any i-level tuple-set, 
from the top rows of all i- 1 
level tuple-sets, must be 
selected.

Lemmas 3.055, 3.057

Lemma 7.3

Table 3: Some important properties of the top (i.e., level i) row of an i-level 
tuple-set

Property Value of property Reference

Distance d(i, i) between suc-
cessive elements of a top row, 
i.e., between i-level elements 
of tuples consecutive at level 
i

d(i, i) = 2 • 3i - 1 Lemma 1.0 (a)

Total number of different top 
rows over the set of all i-level 
tuple-sets

φ(2 • 3i - 1) = 2 • 3i - 2 = the 
number of reduced residue 
classes mod 2 • 3i - 1

Lemmas 
3.055, 3.057

Distance between successive 
exponents in an exponent 
equivalence class mapping 
from an i-level top row to an 
(i + 1)-level top row.  All 
members of a class map to the 
same level-(i+1) top row 
from the same level i top row.

2 • 3i - 2 Lemma 7.3

Table 2: Some important properties of tuple-sets

Property Value of property Reference
14



The Structure of the 3x + 1 Function
Total number of exponent 
equivalence classes mapping 
a level-i top row to all level-(i 
+ 1) top rows

φ(2 • 3i - 1) = 2 • 3i - 2 = the 
number of reduced residue 
classes mod 2 • 3i - 1

Lemma 7.3

Smallest exponent mapping 
to any given top row of an (i 
+ 1)-level tuple-set from any 
top row of an i-level tuple-set

≤ 4 Lemma 7.35

Upper bound on exponents 
mapping from any given top 
row of an i-level tuple-set to 
the top row of any (i + 1)-
level tuple-set

2 • 3i - 1 (All larger exponents 
are elements of equivalence 
classes having smaller mini-
mum elements)

Lemma 7.3

Beginning of sequence of 
exponents mapping to any 
given (i + 1)-level top row 
from all i-level top rows

For an (i + 1)-level top row 
mapped to by odd exponents:
1,3, *,  or 1, *, 5, or *, 3, 5.
For an (i + 1)-level top row 
mapped to by even exponents:
2, 4, *, or 2, *, 4, or *, 4, 6,
where * denotes a “missing” 
exponent due to absence of a 
multiple-of-3 in the i-level 
top row. The * recurs after 
every two non-* exponents.

Lemma 15.0

Sequence of exponents map-
ping from any given i-level 
top row to all (i + 1)-level top 
rows

1, 2, 3, ..., 2 • 3i - 1, with each 
exponent mapping to a 
unique (i + 1)-level top row.  
A larger exponent a′i + 1 then 
maps to the same row as one 
of the above exponents ai + 1 
if 
a′i + 1 ≡ ai + 1 mod 2  • 3i - 1.

Lemma 7.3

Minimum element in a top 
row

Minimum residue in a 
reduced residue class mod 2 • 
3i - 1

Lemmas 
3.055, 3.057

Table 3: Some important properties of the top (i.e., level i) row of an i-level 
tuple-set

Property Value of property Reference
15



The Structure of the 3x + 1 Function
Formula for the minimum 
element of the top row of an 
i-level tuple-set, given only 
the sequence of exponents 
defining the tuple-set 

See Lemma 7.38 Lemma 7.38

Formula for the minimum 
element of the top row of an 
(i+ 1)-level tuple-set mapped 
to by the top row of an i-level 
tuple-set via an exponent
 ai + 1

See Lemma 7.36 Lemma 7.36

Distance between successive 
elements of (sub-row of) top 
row of an i-level tuple-set that 
generates a top row of an (i + 
1)-level tuple-set via the 
exponent ai + 1

, 

where lcm denotes least com-
mon multiple

Lemma 1.1

Successive elements of (sub-
row of) top row of i-level 
tuple-set map to successive 
elements elements of top row 
of (i + 1)-level tuple-set?

Yes. Lemma 7.40

Set of elements in all top 
rows of all i-level tuple-sets

Set of range elements,  i.e., 
set of odd, positive integers 
not multiples of 3

Lemma 3.28

Relationship between top 
rows of all i-level tuple-sets 
and top rows of all (i + 1)- 
level tuple-sets

(1) Each top row in an i-level 
tuple-set generates, via all 
exponents ai + 1, the top rows 
of all (i + 1)-level tuple-sets.

(2) For each (i + 1)-level top 
row, if it is desired to generate 
the row via all possible expo-
nents, then all i-level top 
rows are required .

(1) Lemma 
7.25
(2) Lemma 
7.27.

Table 3: Some important properties of the top (i.e., level i) row of an i-level 
tuple-set

Property Value of property Reference

lcm 2 3i 1–⋅ 2 2ai 1+⋅,( )
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The Structure of the 3x + 1 Function
We now proceed to the statements, and proofs, of our results concerning tuple-sets.  The results 
are organized by the possibile strategies they suggest for proving Conjecture 1.  But first we prove 
a few elementary facts concerning multiples of 3.

Lemmas Concerning Multiples of 3
The following lemmas are widely known.  They are included because they were not known to 

several readers of earlier versions of this paper, and because the proof of Lemma 0.4 is related to 
Lemma 15.0.

Lemma 0.2  No multiple of 3 is a range element.

Proof :

Table 4: Some important properties of the middle (i.e., levels 1  < j < i) row of an i-level tuple-
set

Distance, d(j, i) between ele-
ments at level j of successive 
tuples consecutive at level i 

d(j, i) =

where lcm is the least common multiple.

Lemma 1.1

For each i and each j, mini-
mum elements of level j rows 
over all i-level tuple-sets

General formula not yet known; must be deter-
mined empirically for each given tuple-set

For each j, set of elements in 
all j-level rows of all i-level 
tuple-sets

Set of range elements,  i.e., set of odd, positive 
integers not multiples of 3

Lemma 3.28

Table 5: Some important properties of the bottom (i.e., level 1) row of an i-level tuple-set

Property Value of property Reference

Distance, d(1, i), between 
successive tuple elements at 
level 1 of tuples consecutive 
at level i

d(1, i) =

 

Lemma 1.0 (b)

Set of elements in bottom row 
of all i-level tuple-sets

Set of domain elements, i.e., 
set of all odd, positive inte-
gers

Lemma 3.28

lcm 2 3i 1– 2 2
aj 1+ 2

aj 2+ … 2
ai⋅ ⋅ ⋅ ⋅,⋅( )

2 2a2 2a3 … 2ai⋅ ⋅ ⋅ ⋅
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The Structure of the 3x + 1 Function
If

    

then  1 ≡ 0 mod 3, which is false.  

Lemma 0.4  Every odd, positive integer (except a multiple of 3) is generated by a multiple of 3 in 
one iteration of the 3x + 1 function.

Proof:
The following is an edited version of a proof by Michael O’Neill.

The only relevant generators are 3(2i + 1), for some i.  We show that, for each odd, positive 
integer k not a multiple of 3, there exists an i and a j such that

     
                                                                                                       (0.4.1)

where j is necessarily the largest such j, since k is assumed odd.
      Rewriting (0.4.1), we have:

                                                                                                                         (0.4.2) 

Without loss of generality, we can let k ≡ r mod 18, where r is one of 1, 5, 7, 11, 13, or 17 (k is 
not a multiple of 3).  Or, in other words, for some q, r, . Then, from (0.4.2) we can 
write:      

                                                                                             
                                                                                                                                                     (0.4.3)

Since the first term is a multiple of 9, (2j - 1)r - 5 must also be,  if the equation is to hold.  We 
can thus construct the following table.  (Certain larger j also serve equally well, but those given 
suffice for purposes of this proof.)

Table 6: Values of r, j, for Proof of Lemma

r j

1 6 27

3x 1+
2aj

--------------- 3m=

k 3 3 2i 1+( )( ) 1+( )
2j

---------------------------------------------=

k2j 1– 5– 9i=

k 18q r+=

18 2j 1–( )q 2j 1–( )r 5–+ 9i=

2j 1–( )r 5–
18



The Structure of the 3x + 1 Function
Given q and r, we can use r to look up j in the table, and then solve (3) for integral i.  

Possible Strategies for Proving Conjecture 1 Using Tuple-sets

The “Pushing Away” Strategy
The idea here is to show that every tuple containing an assumed counterexample is “pushed 

away” from tuples whose elements map to 1, with the result that the counterexample tuples never 
“find a home”.  The strategy relies on the distance functions described above, in particular d(1, i), 
which gives the distance between the first elements of i-level tuples in an i-level tuple-set, and the 
important Lemma 7.0, below, which asserts that every range element is mapped to by every expo-
nent sequence, with the possible concatenation of one additional “buffer” exponent.  There are 
several versions of this strategy, which we now describe informally.

The “Pushing Away” Strategy: Version 1
We begin by asking, “What is the difference between a tuple containing counterexamples (an 

n-t-v-c) and one that does not (an n-t-v-1)?”  The answer is that extensions of an n-t-v-c never 
become <..., 1, 1, ..., 1> (defined by an exponent sequence {..., 2, 2, ..., 2}), where the number of 
1s (2s)  is unbounded).  

Now we ask, “What does it mean for a tuple t not to have an extension in a given tuple-set?  In 
other words, what does it mean for t to be only a j-level tuple, j < i, in an i-level tuple-set?”  And 
we answer that it means simply that j has an extension in another tuple-set, i.e., a tuple-set defined 
by a different exponent sequence.  It is important to understand that every (finite) sequence of 
extensions of every tuple in every tuple-set, defines a tuple-set.  And, of course, the first element 
of each tuple remains the same — remains fixed — throughout all these extensions.

Now, by Lemma 7.0, we know that, for all range elements y (i.e., all odd, positive integers that 
are not multiples of 3), and for all exponent sequences A, there exists an x that maps to y via A 
with, possibly, an additional “buffer” exponent following A.

This means that every tuple-set TA has at least  one tuple whose elements ultimately map to 1. 
In fact, every tuple-set TA has an infinity of tuples whose elements ultimately map to 1.  (1 is cer-
tainly a range element, and every x mapping to 1 via A must be in the tuple-set TA.  There is an 
infinity of such x.)

5 1 0

7 2 9

11 5 171

13 4 99

17 3 63

Table 6: Values of r, j, for Proof of Lemma

r j 2j 1–( )r 5–
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The Structure of the 3x + 1 Function
Now, tuples whose elements ultimately map to 1 (n-t-v-1s) look like <x, ..., y, b, 1, 1, 1, ..., 1>, 
where b is the tuple element produced by the optional buffer exponent, and the number of 1’s is 
unbounded. (The corresponding exponent sequences look like (a2, ..., ai, B, 2, 2, 2, ..., 2}, where 
the number of 2s is unbounded.)

Suppose, now, the Devil is trying to find a place for a counterexample tuple (an n-t-v-c).  He 
selects a counterexample tuple that is defined by the exponent sequence A = {a2, a3, ..., ai}, goes 
to tuple-set TA, and says, “I can put my tuple here, as long as I put the first element at a distance 

  from an x that maps to 1 (by Lemma 1.0(b)).
But then he finds that the extensions of the tuples that map to 1 all eventually wind up in 

tuple-sets defined by A′ = {a2,..., ai, B, 2, 2, 2, ..., 2}, where B is the optional buffer exponent, so 
that the counterexample tuple can find no home in any of these tuple-sets.  So he says, “OK, I’ll 
select a counterexample tuple defined by a longer  A, and put my tuple in the tuple-set TA.” But 
again the same thing happens.  Not only can he not keep a tuple in any of these sets, but each time 
he tries again with a larger  A, he must put the first element of his counterexample at a greater dis-
tance from the x’s that map to 1 (by Lemma 1.0 (b)).

In short, it appears that every counterexample tuple is eventually “pushed away” from any 
fixed starting point in any tuple-set.  And if no counterexample tuple has a permanent starting 
point ( a permanent “home”), then there are no counterexample tuples.

We can present this strategy a little less fancifully.  By Lemma 7.0 we know that for all expo-
nent sequences A, there exists an x that maps to 1 with, possibly, an additional buffer exponent B 
following A.  Then for each such x, there exists a tuple-set defined by successive extensions of 
<x> until the first expansion that contains 1, i.e., a tuple-set defined by the tuple <x, ..., 1>.   There 
is a countable infinity of such tuple-sets.  If TA*{B}*{2} is any such set, where A = {a2, a3, ..., ai} 
and B is the optional buffer exponent, then we know that the first element x of a counterexample

 tuple must be at least at distance  (B is optional) from x.  Since, by Lemma 
10.0, if a counterexample exists, every tuple-set contains an infinity of n-t-v-cs, we know that an 
infinity of counterexamples x′ must be at least at this distance from x which map to 1.  The ques-
tion then is, where — in which tuple-set — is the counterexample x′ which has unlimited tuple-
extensions that never contain 1?

We now present the strategy more precisely.  
For each exponent sequence A = {a2, a3, ..., ai}, there exists an x which is the first element of 

an infinite sequence of tuples:
<x>, 
<x, C(x)>, 
<x, C(x), C2(x)>, ...., 
<x,  C(x), C2(x), ..., Ci - 1(x), Ci(x), 1>, 
<x,  C(x), C2(x), ..., Ci - 1(x), Ci(x), 1, 1>, ..., 
<x,  C(x), C2(x), ..., Ci - 1(x), Ci(x), 1, 1, ..., 1>
where: 
C(x) is the result of one iteration of the 3x + 1 function applied to x, a result which occurs via 

the exponent a2; 
C2(x) is the result of the next iteration of the 3x + 1 function, a result which occurs via the 

exponent a3; ...
 Ci (x) is the result of an optional iteration of the function, a result which occurs via an 

optional “buffer exponent”;

2 2a2 2a3 … 2ai⋅ ⋅ ⋅ ⋅

2 2a2 2a3 … 22⋅ ⋅ ⋅ ⋅
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The Structure of the 3x + 1 Function
 the number of 1s is unbounded. 
(Lemma 7.0)
Each such tuple defines a tuple-set (definition of tuple-set).
In each such tuple-set, the minimum distance to the first element x′ of the next tuple after (or 

before) the tuple having x as first element, is given by

 

and 

and

respectively (Lemma 1.0 (b)).
Therefore, x′ cannot remain the same for the infinite sequence of tuple extensions of x.  There-

fore there is no counterexample and, in particular, no minimum counterexample.

Remarks: 
(1) Any valid implementation of this strategy must deal with the possibility that the first ele-

ment x of an n-t-v-c can be smaller than the first element of any n-t-v-1.
(2) Some people are bothered by this strategy because they can easily conceive of an infinite 

tuple that does not contain a 1.  The author believes, however, that the important question is not 
whether we can conceive of such a tuple, but whether, instead, we can describe an infinite 
sequence of tuple-sets each of which contains a finite approximation (sub-tuple) of such a tuple, 
given what we know about tuple-sets and about tuples whose elements ultimately map to 1.

The “Pushing Away” Strategy: Version 2
This version is based on the fact (proved in Lemmas 3.0 and 4.0) that once an extension of a 

tuple becomes the first i-level tuple in an i-level tuple-set, all extensions of the tuple remain first 
tuples in their respective tuple-sets.  Assume that an n-t-v-c becomes such a first tuple.  This has 
the effect of “pushing away” n-t-v-1s that are defined by the same sequence of exponents.  But 
this would imply that there exists at least one n-t-v-1 that never becomes the first i-level tuple in 
any i-level tuple-set, contradicting  Lemma 3.0.

The “Pushing Away” Strategy: Version 3
Another version of the strategy derives from the obvious fact that every tuple that remains 

“fixed” in a succession of tuple-set extensions has the property that its first element remains the 
same in the sequence of tuple extensions.  Now Lemma 7.38 gives a formula for the last element 
of the first i-level tuple in an i-level tuple-set, assuming that only the sequence A of exponents 
defining the tuple-set is known. Lemma 2.13, p. 42 of [3], gives a formula that can easily by con-
verted into a formula for the first element of the first i-level tuple in an i-level tuple-set, assuming 
that the sequence A of exponents defining the tuple-set, and the last element of the tuple, are 

2 2a2⋅

2 2a2 2a3⋅ ⋅

2 2a2 2a3 … 22⋅ ⋅ ⋅ ⋅
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The Structure of the 3x + 1 Function
known.  Since Lemma 7.38 gives us the last element, we now have a formula for the first element, 
assuming only the sequence A of exponents is known. Let f1(a2, a3, ..., ai) be that formula.

Then to prove that the only tuples that remain fixed in a sufficiently long sequence of tuple-set 
extensions are those that eventually have 1 (hence 1, 1, 1, ..., 1) as their  last element, and hence 
that Conjecture 1 is true, we need only prove that:

For all first elements x of tuples, and given that, for each tuple <x>,  a2, a3, ..., aj, ..., is the 
exponent sequence defined by successive extensions of <x>,   f1(a2) = f1(a2, a3) = f1(a2, a3, a4) = 
... iff there exists a j such that aj = aj + 1 = aj + 2 = ... = 2,  where j, of course, depends on the pre-
ceding sequence a2, a3, a4, ...

We can express this conjecture in more detail.
      We begin with the observation that, if the first element of an unlimited series of tuple exten-
sions remains fixed, then so does the second, and the third, and ...
       Let x be a fixed, odd, positive integer which is the element of a 1-tuple <x>.  We know that 
unlimited extensions of <x> define an unlimited sequence {a2, a3, a4, ... } of exponents.

       By a simple inductive argument, we can show that, for arbitrarily large i, 

      Since the second, third, ... element of each tuple in the sequence of tuple expansions also 
remains fixed for all expansions, we can write, by a simple inductive argument, that, for all i, and 
for all k, 

(2)
 

Conjecture: For all x, there exists a k such that, for all n > k , yn = 1 and an = 2.

Notes:
(1) The author at present cannot believe that the entire arsenal of modern mathematics does not 
already contain machinery to prove the Conjecture. 

x
2a22a3…2aiyi( ) 2a22a3…2ai 1–( )– 3 2a22a3…2ai 2–⋅( )– 32 2a22a3…2ai 3–⋅( )– …– 3i 2––

3i 1–
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

3i 1– x 3i 2– 3i 3– 2a2⋅ 3i 4– 2a22a3⋅ … 2a22a32a4…2ai 1–+ + + + +
2a22a32a4…2ai

------------------------------------------------------------------------------------------------------------------------------------------------------------- =

2ai 1+ 2ai 2+ …2akyk( ) 2ai 1+ 2ai 2+ …2ak 1–( )– 3 2a22a3…2ak 2–⋅( )– 32 2a22a3…2ak 3–⋅( )– …– 3k 2––
3k 1–

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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The Structure of the 3x + 1 Function
(2) If we multiply the top and bottom of each side of each equation by 2, then all the terms are dis-
tances between elements at all levels of tuples consecutive at certain levels (see Lemma 1.1). 

     It would seem to be of fundamental interest to know why these distances appear in a series of 
expressions for the extensions of a single tuple.  

We now prove several lemmas that support the various versions of this strategy.

Lemma 1.2. The number of tuple-sets is countably infinite.

Proof:
Simply regard each finite sequence of exponents, with commas, as a base 11 integer.  The 

result follows from the countability of the integers.  

Lemma 1.3. Let x, x′ be two odd, positive integers and consider the two infinite “forward” 
sequences of tuple extensions X = {<x>, <x, y>, <x, y, y′>, ... } and X′ = {<x′>, <x′,w>, <x′, w, 
w′>, ... }.  Each tuple extension defines a finite “forward” exponent sequence.  Then the infinite 
“forward” exponent sequence defined by X cannot equal the infinite “forward” exponent 
sequence defined by X′.

Proof:
Assume, to the contrary, that x, x′ exist such that X = X′. But then an i-level extension of <x> is 

in an i-level tuple-set TA  defined by the extension iff an i-level extension of <x′> is in TA.  But 
then sooner or later, i.e., for some i, the level 1 distance function between x and x′ will be violated.  

Lemma 1.41.  Let y, z be two range elements and consider the two infinite sequences of “back-
ward” or inverse or “downward” tuple extensions Y = {<y>, <y′, y>, <y′′, y′, y>, ... } and Z = 
{<z>, <z′,z>, <z′′, z′, z>, ... }.  Each tuple extension defines a finite “backward” or inverse or 
“downward” exponent sequence.  Then the infinite “backward” exponent sequence defined by Y 
cannot equal the infinite “backward” exponent sequence defined by Z.

Proof:
Assume, to the contrary, that y, z exist such that Y = Z. But then an i-level “downward” exten-

sion of <y> is in an i-level tuple-set TA  defined by the extension iff an i-level extension of <z> is 
in TA.  But then sooner or later, i.e., for some i, the level i distance function between y and z will 
be violated.  

1. This lemma was first stated and proved by a consultant.  The given proof is, however, that of the author of 
this paper.
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The Structure of the 3x + 1 Function
Lemma 2.0.  Every i-level tuple-set can be extended by any even or odd exponent ai+1.  In other 
words, for each even or odd ai+1, every i-level row maps to a non-empty tuple-set row .

The following proof is by Michael O’Neill.

Proof: 
The following identities make possible the creation of examples with arbitrary sequences of 

exponents, which proves the Lemma.
Let 

and

This can be generalized to longer sequences, but two is enough to show what is going on.  We 
are going to shift i1 by 2m .  There are three interesting cases:

Case 1:

Case 2:

Case 3:

In the first case the sequence becomes:

3i1 1+

2j1
---------------- i2=

3i2 1+

2j2
---------------- i3=

m j1 j2 1–+=

m j1 j2+=

m j1 j2+>
24



The Structure of the 3x + 1 Function
Since 2i3 + 32 is odd, no further halving is possible and we have produced a sequence (j1, j2 - 
1) from (j1, j2).  Shifting down by 2n produces the same result.

The second case starts out the same way but the second step is:

This time the right-hand side is even.  The sign of the shift determines how far the exponent 
increases.  The important point is that we can always choose the sign so that the exponent is 
increased by 1.

If i3 = 4n + 1 then choose an up-shift.  This gives 4n + 10 = 2(2n + 5).  Likewise, if i3 = 4n + 
3, a down-shift gives 4n - 6 = 2(2n - 3).  In both cases, no further factors of 2 can come out.

For longer sequences, 32 becomes 3n, but the same process works.
So this second case allows us to take a sequence (j1, j2) and get (j1, j2 + 1).

In the third case the general step is:

The right-hand side is now always odd, so the exponent does not change, but we have a way to 
shift the same exponent sequence to a different position. .

Note that these operations work for negative as well as positive integers.  
This third case also provides a proof that the distance functions are valid for negative integers 

as well.  Any finite tuple-set can be moved as a whole to another part of the space, positive or 
negative.  A quick glance at the formula for the shift shows that the difference between corre-
sponding elments does not change. 

3 i1 2m+( ) 1+

2j1
---------------------------------- i2 3 2m j1–( )+ i2 3 2j2 1–( )+= =

3 i2 3 2j2 1–( )+( ) 1+

2j2 1–
------------------------------------------------- 2i3 32+=

3 i2 2
j2±( ) 1+

2
j2

---------------------------------- i3 32±=

3 j2 2m j1–±( ) 1+

2j2
------------------------------------------ i3 322m j1– j2–±=
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The Structure of the 3x + 1 Function
Lemma 3.0. For each range element y  there exists an i-level tuple-set in which y is an element of 
the i-level first tuple.  

Proof:
Clearly, y is the first element of a tuple t at level 1.  Now consider the sequence of tuple-set 

extensions defined by tuple-extensions of t.  In each extension, the extension of t is present.  By 
Lemma 1.0,  the distance between first elements of tuples consecutive at level i increases with i.  
Therefore, an i must eventually be reached in which the distance at level 1 is greater than y, and 
thus y will be an element of the first i-level tuple in that i-level tuple-set. 

Lemma 3.055.  The top row of an i-level tuple-set is a residue class modulo 2 • 3i - 1.

The following proof is by Michael O’Neill.

Proof:
     The proof is by induction. 
     The base case is row 2.  Two representatives of row 2 for some exponent j are:

and 

since members of row 2 are generated by odd numbers.
Now,

and k - k′ is thus divisible by 3.  It is also divisible by 2 since k and k′ are both odd.  So, for any 
single exponent, the members of tuple-row 2 are in a single residue class modulo 6.

The general case is very similar. Assuming that the general member of tuple-row i - 1 is 
2 • 3i - 1m + r  for some fixed r, then two members of tuple row i are:

3 2m 1+( ) 1+
2j

---------------------------------- k=

3 2m′ 1+( ) 1+
2j

------------------------------------ k′=

k k′– 6 m m′–( )
2j

------------------------=

3 2 3i 1– m⋅ r+( ) 1+
2j

------------------------------------------------- k=
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The Structure of the 3x + 1 Function
So, 

So k - k′ is divisible by 2 • 3i..

By Lemma 3.055, there are two level-2 rows (i.e., top rows) in the set of all 2-level tuple-sets.  
These rows are the residue  classes {x| x ≡ 5 mod 2·31} for odd a2 and {x| x ≡ 1 mod 2·31}for even 
a2.  

   Lemma 3.055 implies that, for any i-level tuple-set, there is only a finite number of i-level-
rows, even though there is an infinity of exponent sequences of length i-1.   For example, for i = 2, 
there are two 2-level rows, but there is an infinite number of possible exponent sequences of 
length 1, namely, {a2 | a2 is an even or odd positive integer}.  For i = 3, there are six 3-level rows, 
but there is an infinite number of possible exponent sequences of length 2, namely, {a2, a3 | a2, a3  
is each an even or odd positive integer}.  Elaboration of these facts for all i is given in the Remark 
immediately following the proof of Lemma 7.0.  A closely related fact is given in the next lemma.

Lemma 3.057. The set of minimum elements of all top rows in all i-level tuple-sets is the set of 
minimum residues of the reduced residue classes mod 2 • 3i - 1.

Proof:
By definition, no range element is an even number.  By Lemma 0.2, no range element is a 

multiple of 3.  Therefore, by Lemma 3.055, the set of  top rows of all i-level tuple-sets is the set of 
reduced residue classes mod 2 • 3i - 1 , and the result follows.

Any such minimum element is, of course, the last element of the first i-level tuple in some i-
level tuple-set.  Actually, it is the last element of an infinity of such tuples, as explained in the 
Remark immediately following the proof of Lemma 7.0.

Lemma 4.0.  If t1 is the first i-level tuple in an i-level tuple-set, then the extension of t1 is the first 
(i + 1)-level tuple in the tuple-set its extension defines.  And so on, recursively.

Proof: 
If t1 is the first i-level tuple in an i-level tuple-set, then there are no tuple-elements to the left 

of at least one element of t1.  Therefore there cannot be any tuple-elements to the left of this 
(these) elements in any extension tuple, and the result follows.  

3 2 3i 1– m′⋅ r+( ) 1+
2j

--------------------------------------------------- k′=

k k′– 2 3i⋅( ) m m′–( )
2j

--------------------------------------=
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The Structure of the 3x + 1 Function
Lemma 5.0.  
If 

Then, for all n  ≥ 1,

This Lemma implies that, for each counterexample there exists an infinity of counterexam-
ples, and so on, recursively, for each counterexample in each such infinity.   This fact is well-
known, but Lemma 5.0, and its proof, are apparently less well-known.  In any case, they have 
important ramifications for our investigation of the structure of the 3x + 1 function.

      Proof: 
The proof is a matter of straightforward algebra.

From the antecedent, we have:

Substituting into the left-hand side of the consequent, multiplying the term in parentheses by 
3, cancelling the 1’s, and factoring out (2j)(y) yields:

The 2js cancel, the term 1 + 3... is easily shown to equal 22(n), and the result follows.  

Lemma 5.0 immediately allows us to specify the first elements of tuples consecutive at level 2 
in all 2-level tuple-sets.  

Lemma 3.25.  The first elements of tuples consecutive at level 2  in all 2-level tuple-sets are as 
described in the following tables.

3x 1+
2j

--------------- y=

3 x 2j 2 0( )+ 2j 2 1( )+ … 2j 2 n 1–( )++ + +( )y+( ) 1+
2j 2 n( )+

----------------------------------------------------------------------------------------------------------------------- y=

x 2jy 1–
3

----------------=

2jy 1 3 20 22 24 … 22 n 1–( )+ + + +( )+( )
2j 2 n( )+

-------------------------------------------------------------------------------------------------
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The Structure of the 3x + 1 Function
Proof:  Follows from Lemma 5.0 and the definition of the function d(1, i). 

We now give two well-known results that relate the “input”,  x,  the exponent, aj,  and  the 
“output”, y, of an iteration of the 3x + 1 function.  The author believes that these two lemmas are 
equivalent to Lemmas 1.0 and 1.1.  Because of their generality, they may prove useful in proving 
the existence of the mapping between tuple-sets and recursive “spiral”s described in Section 3.

The following lemma was brought to my attention by Alan Tyte.

Lemma 5.5.  If, in one iteration of the 3x + 1 function, y is mapped to by an even exponent of 2, 
then y ≡ 1 mod 3; if y is mapped to by an odd exponent of 2, then  y ≡ 2 mod 3.

Table 7: First elements of tuples consecutive at level 2: odd powers

Exponent a2 First elements of tuples consecutive at level 2

1  

3  

5   

7   

... ... 

2k + 1

Table 8: First elements of tuples consecutive at level 2: even powers

Exponent a2 First elements of tuples consecutive at level 2

2

4

6

8

... ...

2k

x x 3 mod 2 21⋅( )≡( ){ }

x x 3 5 21( )mod 2 23⋅( )+≡( ){ }

x x 3 5 21 23+( )mod 2 25⋅( )+≡( ){ }

x x 3 5 21 23 25+ +( )mod 2 27⋅( )+≡( ){ }

x x 3 5 21 23 25 … 22 k 1–( ) 1++ + + +( )mod 2 22k 1+⋅( )+≡( ){ }

x x 1mod 2 22⋅( )≡( ){ }

x x 1 1 22( )mod 2 24⋅( )+≡( ){ }

x x 1 1 22 24+( )mod 2 26⋅( )+≡( ){ }

x x 1 1 22 24 26+ +( )mod 2 28⋅( )+≡( ){ }

x x 1 1 22 24 26 … 22 k 1–( )+ + + +( )mod 2 22k⋅( )+≡( ){ }
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The Structure of the 3x + 1 Function
Proof:
Since 2 is a primitive root mod 3, and since φ(3) = 2, we have 21, 23, 25, ..., 22k+1, ... ≡ 2 mod 

3, and 22, 24, 26, ..., 22k... ≡ 1 mod 3. If ord2(3x + 1) is even, then, from the definition of the 3x + 
1 function, we have 1 ≡ 22ky mod 3, which implies that y ≡ 1 mod 3; if  ord2(3x + 1) is odd, then, 
from the definition of the 3x + 1 function, we have 1 ≡ 22k+1y mod 3, which implies that y ≡ 2 mod 
3. 

The following lemma was brought to my attention by Xiaoming Huo.

Lemma 5.7. (a) If, in one iteration of the 3x + 1 function, x maps to y via the exponent 1, then  x ≡ 
3 mod 4; (b) if, in one iteration, x maps to y via any other exponent, then x ≡ 1 mod 4.

Proof:
(a) (3x + 1)/2 = y, y odd, implies 3x + 1 = 2(2k + 1), or x = (4k + 1)/3.  Since x must be an inte-

ger, we find by trial that the smallest value of k is 2, yielding 3, the second 5, yielding 7,  and, in 
general, if k = 2 + 3m, m ≥ 0, then (4(2 + 3m) + 1)/3 = (8 + 12m + 1)/3 = 4m + 3.   

(b) Since, by the proof of (a), the x mapping to y via the exponent 1 constitute the entire resi-
due class ≡ 3 mod 4, and since x must be an odd, positive integer, hence not ≡ 0 or 2 mod 4, it fol-
lows that all the x mapping to y via any other exponent must be ≡ 1 mod 4.  

Lemma 6.0.  There exists an explicit construction of the tuple-set produced by a given tuple.

The following proof is by Michael O’Neill.

Proof:
Let x be the first element of a tuple and let {a2, a3, ..., an+1} be the sequence of exponents 

resulting from the first n extensions of the tuple <x>.  The last element of the tuple will be given 
by:

where 

r is most easily calculated by iterating from x = 0, then multiplying by the appropriate power 
of 2, as shown in the table immediately following this construction.  We want the integral x that 
produce odd outputs:

3nx r+
2a

-----------------

a ai

i 2=

n

∑=
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The Structure of the 3x + 1 Function
which gives

This is a standard linear Diophantine equation.  It has an explicit solution:

Note that the ratio in the expression for x0 is an integer because

The general solution is:

where t ranges over the integers.  Thus, the x’s are the inputs that iterate with the specified 
exponents and 

are the outputs.
Likewise, if we want to extend the set m + t • 2 • 3 n  by an exponent j we get:

3nx r+
2a

----------------- 2k 1+=

3nx 2a 1+ k– 2a r–=

x0 2a r–( )–( ) 22 3n 1– a 1+( )⋅ ⋅ 1–
3n

------------------------------------------ 
 =

k0 2a r–( )–( ) 2 2 3n 1–⋅ 1–( ) a 1+( )( )=

22 3n 1–⋅ 1 mod 3n≡

x x0 t 2a 1+⋅+=

k k0 t 3n⋅+=

2k 1+ 2k0 t 2 3n⋅ ⋅ 1+ +=
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The Structure of the 3x + 1 Function
or

which implies

and this equation has the same kind of explicit solution as the above. 

Lemma 7.0. For each range element y, and for each finite sum a of exponents, a domain element 
x exists that maps to y via a sum a′ that contains a.

      Proof:

Table 9: Successive values of n, the x term, and r in proof of Lemma 6.0

n x term r

level of tuple 
element 

yielded, i.e., 
i in ai

   1 31x                                    1 2

   2 32x 3

   3 33x   4

   4 34x 5

. . . . . . . . . . . .

3 m t 2 3n⋅ ⋅+( ) 1+
2j

----------------------------------------------- 2k 1+=

3m t 2 3n 1+⋅ ⋅ 1+ + 2j 1+ k 2j+=

t 2 3n 1+⋅ ⋅ 2j 1+ k– 2j 3m– 1–=

31 2a2+

32 312
a2 2

a22
a3+ +

33 322
a2 312

a22
a3 2

a22
a32

a4+ + +
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The Structure of the 3x + 1 Function
The following proof is by Michael O’Neill.

We are looking for an x such that the sequence of iterations represented by 

where n, a, and r are defined as in Lemma 6.0, lead to a computation that ends with y.  n, a, and r 
are determined by the exponent sequence we want.  There also has to be a buffer iteration between 
the above and y, e.g.,  to allow for parity constraints on the exponent leading to y (see Lemma 
5.0).  So, we want

or

which gives
                                                                                                  (7.1)
                                                                                                 

or 

We are looking for x and j.  Since y is a range element, it cannot be a multiple of 3 (by Lemma 
0.2).  Therefore 2ay is relatively prime to 3n + 1, as is 3r + 2a.  Since 2j for any j is an element of a 
reduced residue class mod 3n + 1, the congruence is solvable.  Hence we can find j, and then, from 
(7.1), x. 

Remark.  Since Lemma 7.0 applies to all range elements, it applies to the last elements of all first 
i-level tuples in all i-level tuple-sets, i ≥ 2.  Since, for  each such i, the set Si  of these last elements 
is the set of minimum residues of the reduced residue classes mod 2 • 3i - 1 (Lemma 3.057), we see 
that, if y is an element of Si, then for each exponent sequence A of length i - 1,  there must exist a 
first i-level tuple (hence an i-level tuple-set) defined by A, plus a possible additional buffer expo-
nent.  Now if y is an element of Si, then y is certainly an element of Si + 1, and so the same argu-
ment applies, only this case for each sequence A of length i.  And so on, recursively, for all i.  This 
matter is further discussed under “The “Last/First” Property” on page 56.

3nx r+
2a

-----------------

3 3nx r+
2a

----------------- 
  1+

2j
----------------------------------- y=

3n 1+ x 3r 2a+ +
2a j+

--------------------------------------- y=

3n 1+ x 2ay( )2j 3r– 2a–=

2ay( )2j 3r 2a mod 3n 1++≡
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The Structure of the 3x + 1 Function
The Buffer Exponent in the Proof of Lemma 7.0
Let us now consider the buffer exponent in the proof of Lemma 7.0.  We have said that it is 

required to meet parity constraints on the exponent leading to y, since, by Lemma 5.0,  y is 
mapped to only by exponents of one parity.  Thus, if the last exponent, ai, in our sequence A = 
{a2, a3, ..., ai} (whose sum is a), is of the opposite parity from that which maps to y, then the 
buffer exponent is needed provide the proper parity mapping to y. 

But parity is not the only reason that the buffer exponent is required.  For it can happen that 
even if ai is of the same parity as that which maps to y, a buffer exponent may still be required.

Does this mean that the buffer exponent can be arbitrarily large?  If so, this would, among 
other things, tend to defeat any hope of our proving Conjecture 1 by proving that there is no min-
imum counterexample. This strategy, using tuple-sets,  is discussed in detail under “Strategy of 
Proving There Is No Minimum Counterexample” on page 58 and, using recursive “spiral”s, under 
“Strategy of Proving There Is No Minimum Counterexample” on page 72.  The idea of such a 
strategy is this: assume a counterexample, hence a minimum counterexample, y exists, and then 
define an exponent sequence such that the x that maps to y, as promised by Lemma 7.0, is less 
than y.  If we could prove that such an exponent sequence exists for any assumed minimum coun-
terexample y, we would have a proof of Conjecture 1, because it would imply there is no mini-
mum counterexample.

Now, it is easy to define such exponent sequences.  For example, we can assign the value 2/3 
to each exponent 1, and the value 4/3 to each exponent 2.   For, if (3x + 1)/21 = y, then x is about 
(2/3)y (the 1 in the numerator becomes negligible for large x), and if (3x + 1)/22 = y, then x is 
about (4/3)y (the 1 in the numerator again neglible for large x).  Thus, for each sequence of itera-
tions of the 3x + 1 function involving only the exponents 1 and 2, we can compute the product of 
the above values.  If the result is less than 1, then we know that the x that produced the sequence is 
less than the final y.  However, if the buffer  exponent can be arbitrarily large, then all our labors 
in defining the sequence may be in vain, since the buffer exponent can be so large that x is greater 
than y.

But the congruence following (7.1) in the proof of Lemma 7.0 can be used to show that the 
buffer exponent can not be arbitrarily large.  The specifics are contained in the following lemma.

Lemma 7.1. Let A = {a2, a3, ..., ai} be a sequence of exponents, and let y be any range element.  
Then the maximum buffer exponent j (see proof of Lemma 7.0) required to ensure that an x exists
that maps to y via A,  is 2 • 3i - 1.  

Proof:
If a buffer exponent j in the proof of Lemma 7.0 (usually B elsewhere in this paper) is 

required, then it can be regarded as ai + 1.  Since the order of 2 mod 2 • 3(i + 1) – 1 =  
φ(2 • 3(i + 1) – 1)  = 2 • 3i – 1, and since the exponent 0 is not allowed in an exponent sequence, the 
result follows. 

      The following table contains some examples.
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The Structure of the 3x + 1 Function
Lemma 7.1 implies that, for each i + 1, the buffer exponents are distributed among 2 • 3i-1 
equivalence classes.  Thus 2j ≡ 2k iff j ≡ k mod 2 • 3i-1, and we need only consider the minimum 
power of 2 in each equivalence class, as shown in the above table.

Unfortunately, the fact that the largest of these minimum powers of 2 is

 

is not in itself sufficient to give us our hoped-for proof that there is no minimum counterexample.  
For, assume that this largest minimum buffer exponent is required to map to a given y via the 
exponent sequence A = {1, 1, 1, ..., 1} ((i - 1) 1s).  Then any x that is the first element of a tuple 
defined by A will be about (2/3)i - 1 of the last element x′ of the tuple, or x′ is about (3/2)i - 1x.  
However 

 implies x is greater than y, thus defeating our purpose.
Next, we observe that, since, by Lemma 5.0, any range element y is mapped to only by expo-

nents of one parity, then for any given y, there are, in fact, only (2 • 3i-1)/2 possible classes of 
buffer exponents mapping to y in a single iteration of the 3x + 1 function..

Next, we observe that 2 • 3i-1 is an expression we have seen before!  It is the distance between 
successive top-row tuple elements in any i-level tuple-set.  φ(2 • 3i-1) = 2 • 3i-2 is the number of 
elements in the set of minimal elements of all top rows in all i-level tuple-sets, where φ(u) is 
Euler’s function, which returns the number of numbers relatively prime to u.

Does this fact in some way guarantee that, since, for each i  ≥ 2, 1 is an element of the set of 
minimal elements of all top rows in all i-level tuple-sets, that all such minimal elements map to 1?  

Table 10: 

i + 1

No. of reduced residue 
classes mod 2 • 3(i + 1) (top 
rows of (i + 1)-level tuple-

sets)

Possible distinct powers of 2 utilizing 
buffer exponents j = B = ai + 1

3 φ(2 • 33 - 1) = φ(18) = 6 21, 22, 23, 24, 25, 26

4 φ(2 • 34 - 1) = φ(54) = 18 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 
212, 213, 214, 215, 216, 217, 218

... ... ...

i +1 φ(2 • 3(i + 1) - 1) = 2 • 3i- 1 21, 22, 23,...,   22 3i 1–⋅

22 3i 1–⋅

3 3 2⁄( )i 1– x( ) 1+

22 3i 1–•
------------------------------------------- y=
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The Structure of the 3x + 1 Function
If this were the case, then we would have a proof of Conjecture 1.  Consider the following two 
closely related conjectures, each of which is equivalent to Conjecture 1.

Conjecture 30. Let {TA}i be the set of all i-level tuple-sets, and let {TA}i+1 be the set of all i+1 
level tuple-sets.  Then 1 in the set of minimum residues of all top rows in {TA}i+1 is mapped to, 
directly or indirectly, by all the elements of the set of minimum residues of all top rows in {TA}i.

Conjecture 31. Let {TA}i be the set of all i-level tuple-sets.  Then 1 in the set of minimum res-
idues of all top rows in {TA}i is mapped to, directly or indirectly, by all the elements of the set of 
minimum residues of all top rows in {TA}i.

The author will pay $100 for the first, correct proof or disproof of one of these conjectures.

The reason why each of these conjectures is equivalent to Conjecture 1 is that, if true, each 
implies that all first i-level tuples in all i-level tuple-sets are n-t-v-1s.

A proof of Conjecture 31 by induction suggests itself.  
Basis Step: the Conjecture is certainly true for i = 2, since the set of all minimum residues of 

all top rows in {TA}2  is {1, 5}, and, by actual trial, we know that each of these maps directly or 
indirectly to 1.

Induction Step: Assume the Conjecture is true for all levels 2  ≤  i  ≤  k, but that it is false for 
level k + 1. We ask if this is possible, given what we have just established regarding buffer expo-
nents.  By Lemma 7.0, we know that, for 1, and for each sequence A of length k - 1 (these estab-
lish k-level tuples), there exists an x that maps to 1 via A, with the possible addition of a buffer 
exponent (thus, possibly, making a (k + 1)-level tuple.  Is it possible that these tuples are not the 
tuples giving rise to the minimum residues of all top rows in {TA}k + 1?  If so, then what tuples 
give rise to these minimum residues?

Lemma 3.28. For any i ≥ 2, let {TA}i denote the set of all i-level tuple-sets, i.e., the set of all tuple-
sets  defined by exponent sequences A = {a2, a3, ..., ai} where aj is a positive integer.  Then (a) for 
level 1, the set of all elements in all 1-level rows is the set of domain elements; (b) for level 1 < j ≤ 
i, the set of all elements in all j-level rows in {TA}i is the set of all range elements.

Proof:
(a) follows from the definition of the 3x + 1 function. 
For (b) we use an inductive proof.  
Basis Step: (b) certainly holds for level 2, since, for {TA}2, where A = {a2}, if a2 is even, the 

set of 2-level elements is {1, 7, 13, 19, 25, ...} and if a2 is odd, then the set of 2-level elements is 
{5, 11, 17, 23, ...}.  The union of the two sets is the set of range elements.  

Induction Step: Now assume that (b) is true for all i from i = 2 through k, but that it is false for 
i = k + 1.  But then at least one range element y must be missing from the set of all elements in all 
(i + 1)-level rows.  But by Lemma 5.0, we know that each range element is mapped to by an infin-
ity of exponents, either all even or all odd, and by Lemma 2.0 we know that each tuple-set has 
extensions via each positive integer.  Therefore y cannot be missing.   )
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The Structure of the 3x + 1 Function
Now we proceed with a lemma that answers question 5, above.  It shows that, for each i ≥ 2,  
the infinity of domain elements mapping to a given range element (in accordance with Lemma 
5.0), fall into 2 • 3i - 1 classes.  

Lemma 3.24. Let x be a range element that is a minimum residue mod , and let

Then if 

there exists an x′ such that

and furthermore

Proof:
The following proof is by Michael O’Neill.

The required x′ is:

where m comes from

This gives:

and

2 3i 1–⋅

3x 1+
2j

--------------- h=

j k mod 2 3i 1–⋅( )≡

3x′ 1+
2k

----------------- h=

x x′ mod 2 3i 1–⋅( )≡

x' x h2j 2m2 3j 1–( ) 1–
3

----------------------------- 
 +=

k j m2 3i 1–( )+=

3x 1+
2k

---------------
3 x h2j 2m2 3i 1–( ) 1–

3
----------------------------- 

 + 
  1+

2k
----------------------------------------------------------------------- 3x 1 h2j 2m2 3i 1–( ) 1–( )+ +

2k
----------------------------------------------------------------= =
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The Structure of the 3x + 1 Function
Thus, for example, x = 3 maps to h = 5 via the exponent 1, 5 being a minimal top row element 
for 2-level tuple-sets whose defining sequence is A = {a2}, a2 odd.  Since 1 ≡ 7 mod  2 • 32 - 1, we 
should find an x′ such that x ≡ x′ mod  2 • 32 - 1 that maps to 5 via the exponent 7, and, indeed, this 
is the case for x′ = 213, since 3 ≡ 213 mod 2 • 32 - 1.

Again we see, as in our discussion of buffer exponents, the presence of the term 2 • 3i - 1 in 
connection with exponents.  The close relationship between Lemma 3.24 and Lemma 7.1 is clear.  
In fact, we can say that the two lemmas show that, for each range element y in the set of min-
imum top row elements for all (i + 1)-level tuple-sets,  all x mapping to y via exponents in a 
given equivalence class,  are congruent mod 2 • 3i - 1.     The two lemmas suggest a strategy for 
a proof of Conjecture 31, namely: assume that for some first i, an element y of the set of minimal 
elements of all top rows in all i-level tuple-sets does not map, directly or indirectly, to 1.  Then 
this means that such an element is not an x′ (in Lemma 3.24) for any x in the set that does map, 
directly or indirectly, to 1, and furthermore that this  is true for all i starting with 2.  Is such a thing 
possible?  In other words, speaking informally, is it possible for an element of the set of minimal 
elements to have no connection with the set that maps, directly or indirectly, to 1?

We now investigate in more detail the process by which i-level tuple-sets become (i + 1)-level 
tuple-sets.

Generating Level-(i + 1) Top Rows from Level-i  Top Rows
To understand the generating of top rows of tuple-sets, we can begin with the domain  ele-

ments themselves, i.e., the odd, positive integers. Let each domain  element be the element of a 1-
tuple.  We imagine these level-1 tuples oriented vertically (so that extensions go in the vertical 
direction), and situated on a horizontal line infinite to the right, as in Fig. 1. 

We now consider all possible extensions, under one iteration of the 3x + 1 function,  of this 
initial, i.e., level-1, row of tuples.  That is, we consider all tuple-sets TA, A = {a2}, where a2 is an 
even or odd positive integer.  By Lemms 3.055 and 3.057, we know that the top row, i.e., the 
level-2 row, of each of the resulting tuple-sets, is either the set {1, 7, 13, 19, ... } or the set {5, 11, 
17, 23, ... }. � These sets are the two reduced residue classes mod 2 • 3(2 - ��1) = 6, as required by 
Lemma 3.055.  

We now consider all possible extensions, under one iteration of the 3x + 1 function,  of each of 
these level-2 rows, and then all possible extensions, under one iteration of the 3x + 1 function, of 
the level-3 rows.  The next two tables gives a summary of the results.  Following these two tables 
are tables giving the details.  A discussion of these results follows.  

h2j 2m2 3i 1–( )

2k
-------------------- 

  h2j m2 3i 1–( )+

2k
------------------------------ h= =
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The Structure of the 3x + 1 Function

all 

8

1

3

Notes: Numbers 1, 2, ..., 6 running horizontally are generating exponents. All exponents that 
are congruent mod 6 generate the same level-3 top row. Numbers 1, 5 in the left-hand column are 
the minimum elements of the two top rows of all 2-level tuple-sets. Remaining numbers are the 
minimum elements of the six top rows of all 3-level tuple-sets. Thus, e.g., the table shows that the 
level-2 top row {1, 7, 13, ... } generates the level-3 top row {7, 25, 43, ... } via the exponent 4.

The sequence of minimum elements of level-3 top rows generated by any level-2 top row is 
the sequence of minimum reduced residues mod 2 • 33 - 1 = 18 generated by the primitive root 5. 
Thus, e.g., for the level-3 top rows generated by the level-2 top row whose minimum element is 1, 
we observe that 51  ≡ 5 mod 18; 52  ≡ 7 mod 18; 53 ≡  17 mod 18; etc.  Does this phenomenon gen-
eralize to all i?  We conjecture that it does.  See discussion of Conjecture 6 below.

Table 11: Summary of extensions, under one iteration of the 3x + 1 function, of the top rows 
of all 2-level tuple-sets (see explanatory notes below)

level-2 top 
row 1 2 3 4 5 6

1 11 1 5 7 17 13

5 17 13 11 1 5 7

Table 12:  Another version of the previous table.  Here, level-3 top rows run along the top.  
Exponents are in boldface.  Thus, e.g., the level-2 top row {1, 7, 13, ...} generates the level-3 

top row {17, 35, 53, ...} via the exponent 5.

level-2 top 
row 1 5 7 11 13 17

1 2 3 4 1 6 5

5 4 5 6 3 2 1

Table 13: Summary of extensions, under one iteration of the 3x + 1 function, of the top rows of 
3-level tuple-sets (see explanatory notes below)

level 
3 top 
row

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

1 29 1 41 7 17 49 11 19 23 25 53 13 47 37 5 43 35 3

5 35 31 29 1 41 7 17 49 11 19 23 25 53 13 47 37 5 4
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The Structure of the 3x + 1 Function

9

7

3

5

all 

8

Notes: Numbers 1, 2, ..., 18 running horizontally are generating exponents. All exponents that 
are congruent mod 18 generate the same level-4 top row. Numbers 1, 5, ..., 17 in the left-hand col-
umn are the minimum elements of the six top rows of all 3-level tuple-sets. Remaining numbers 
are the minimum elements of the 18 top rows of all 4-level tuple-sets. Thus, e.g., the table shows 
that the level-3 top row {7, 25, 43, ...} generates the level-4 top row {35, 89, 143, ... } via the 
exponent 11.

The sequence of minimum elements of level-4 top rows generated by any level-3 top row is 
the sequence of minimum reduced residues mod 2 • 34 - 1 = 54 generated by the primitive root 41. 
Thus, e.g., for the level-4 top rows generated by the level-3 top row whose minimum element is 
13, we observe that 411  ≡ 41 mod 54; 412  ≡ 7 mod 54; 413  ≡  17 mod 54; etc.  Does this phe-
nomenon generalize to all i?  We conjecture that it does.  See discussion of Conjecture 6 below.

Conjecture 6. The sequence of top rows Ri + 1 generated by top rows Ri under successive expo-
nents, is the sequence of top rows Ri + 1 generated by successive powers of (-13), a primitive root 
mod 2 • 3i - 1 for all i ≥ 3.  

The author will pay $50 for the first proof or disproof of this conjecture.

Experiment suggests that, for all i ≥ 2,  -13 is a primitive root mod 2 • 3i - 1.  (I am indebted to 
Alan Tyte for bringing this to my attention.)  This is in fact true, since, (-13)2 is not ≡ 1 mod 32, 
and therefore, by a well-known result in elementary congruence theory,  -13 is a primitive root 
mod 3k for all k ≥ 1, hence, by another well-known result, a primitive root mod 2 • 3i - 1 for all i ≥ 
2.

Then to prove the Conjecture, we need only show that: 

implies

7 11 19 23 25 53 13 47 37 5 43 35 31 29 1 41 7 17 4

11 17 49 11 19 23 25 53 13 47 37 5 43 35 31 29 1 41

13 47 37 5 43 35 31 29 1 41 7 17 49 11 19 23 25 53 1

17 53 13 47 37 5 43 35 31 29 1 41 7 17 49 11 19 23 2

Table 13: Summary of extensions, under one iteration of the 3x + 1 function, of the top rows of 
3-level tuple-sets (see explanatory notes below)

level 
3 top 
row

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

2k 13–( )n⋅ 1–
3

----------------------------------- r0 mod 2 3i 1–⋅( )≡

2k 1+ 13–( )n 1+⋅ 1–
3

------------------------------------------------- r0 mod 2 3i 1–⋅( )≡
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The Structure of the 3x + 1 Function

, 
-4 

3

1

3

5

7

7

1

where r0 is a minimum residue mod 2 • 3i - 1, i.e., the minimum residue of a row Ri. 

Table 14: Another version of the previous table.  Here, the level-4 top row runs across the top
and exponents are in boldface.  Thus, e.g., the level-3 top row {5, 11, 17, ...} generates the level

top row {13, 31, 49, ...} via the exponent 14.

level 
3 top 
row

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 5

1 2 15 4 7 12 5 8 9 10 1 18 17 14 3 16 13 6 1

5 4 17 6 9 14 7 10 11 12 3 2 1 16 5 18 15 8 1

7 14 9 16 1 6 17 2 3 4 13 12 11 8 15 10 7 18

11 16 11 18 3 8 1 4 5 6 15 14 13 10 17 12 9 2

13 8 3 10 13 18 11 14 15 16 7 6 5 2 9 4 1 12 1

17 10 5 12 15 2 13 16 17 18 9 8 7 4 11 6 3 14

Table 15: Extensions, under one iteration of the 3x + 1 function, of the top rows of all 2-
level tuple-sets

Top row of  2-
level tuple-set Exponent Generating elements in top row 

of 2-level tuple-set

Top row of 3-level 
tuple-set generated 

via exponent

{1, 7, 13, 19, ... } 1 {7, 19, 31, 43, ...} {11, 29, 47, 65, ...}

{1, 7, 13, 19, ... } 2 {1, 25, 49, 73, ...} {1, 19, 37, 55, ...}

{1, 7, 13, 19, ... } 3 {13, 61, 109, 157, ...} {5, 23, 51, 69, ...}

{1, 7, 13, 19, ... } 4 {37, 133, 229, 325, ...} {7, 25, 43, 61, ...}

{1, 7, 13, 19, ... } 5 {181, 373, 565, 757, ...} {17, 35, 53, 71, ...}

{1, 7, 13, 19, ... } 6 {277, 661, 1045, 1429,...} {13, 31, 49, 67, ...} 

{1, 7, 13, 19, ... } 7 {469, 1237, 2005, 2773, ...} {11, 29, 47, 65, ...}
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The Structure of the 3x + 1 Function
Top row of 2-level 
tuple-set Exponent Generating elements in top row 

of 2-level tuple-set

Top row of  3-level 
tuple-set generated 

via exponent

{5, 11, 17, 23, ... } 1 {11, 23, 35, 47, ...} {17, 35, 53, 71, ...}

{5, 11, 17, 23, ... } 2 {17, 41, 65, 89, ...} {13, 31, 49, 67, ...} 

{5, 11, 17, 23, ... } 3 {29, 77, 125, 173, ...} {11, 29, 47, 65, ...}

{5, 11, 17, 23, ... } 4 {5, 101, 197, 293, ...} {1, 19, 37, 55, ...}

{5, 11, 17, 23, ... } 5 {53, 245, 437, 629,...} {5, 23, 51, 69, ...}

{5, 11, 17, 23, ... } 6 {149, 533, 917, 1301, ...} {7, 25, 43, 61, ...}

{5, 11, 17, 23, ... } 7 {725, 1493, 2261, 3029, ...} {17, 35, 53, 71, ...}

Table 16: Extensions, under one iteration of the 3x + 1 function, of some top rows of 3-level 
tuple-sets

Top row of 3-level 
tuple-set Exponent

Generating 
elements in top row 
of 3-level tuple-set

Top row of 4-level 
tuple-set generated 

via exponent

{13, 31, 49, 67, ...} 1 {31, 67, 103, 139, ...} {47, 101, 155, 
209,...}

{13, 31, 49, 67, ...} 2 {49, 121, 193, 265, 
...}

{37, 91, 145, 199, ...}

{13, 31, 49, 67, ...} 3 {13, 157, 301, 445, 
...}

{5, 59, 113, 167, ...}

{13, 31, 49, 67, ...} 4 {229, 517, 805, 1093, 
...}

{43, 97, 151, 205, ...}

{13, 31, 49, 67, ...} 5 {373, 949, 1525, 
2101, ...}

{35, 89, 143, 197, ...}

{13, 31, 49, 67, ...} 6 {661, 1813, 2965, 
4117, ...}

{31, 85, 139, 193, ...}

{13, 31, 49, 67, ...} 7 {1237, 3541, 5845, 
8149, ...}

{29, 83, 137, 191,...}
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The Structure of the 3x + 1 Function
{13, 31, 49, 67, ...} 8 {85, 4693, 9301, 
13909, ...}

{1, 55, 109, 163, ...}

{13, 31, 49, 67, ...} 9 {6997, 16213, 25429, 
34645, ...}

{41, 95, 149, 203, ...}

{13, 31, 49, 67, ...} 10 {2389, 20821, 39253, 
57685, ...}

{7, 61, 115, 169, ...}

{13, 31, 49, 67, ...} 11 {11605, 48469, 
85333, 122197, ...}

{17, 71, 125, 179, ...}

{13, 31, 49, 67, ...} 12 {66901, 140629, 
214357, 288085,...}

{49, 103, 157, 211, 
...}

{13, 31, 49, 67, ...} 13 {30037, 177493, 
324949, 472405,... }

{11, 65, 119, 173, ...}

{13, 31, 49, 67, ...} 14 {103765, 398677, 
103765, 988501,...}

{19, 73, 127, 181, ...}

{13, 31, 49, 67, ...} 15 {251221, 841045, 
1430869, 2020693, 
...}

{23, 77, 131, 185, ...}

{13, 31, 49, 67, ...} 16 {546133, 1725781, 
2905429, 4085077, 
...}

{25, 79, 133, 187, ...}

{13, 31, 49, 67, ...} 17 {2315605, 4674901, 
7034197, 9393493, 
...}

{53, 107, 161, 215, 
...}

{13, 31, 49, 67, ...} 18 {1135957, 5854549, 
10573141, 15291733, 
...}

{13, 67, 121, 175, 
,...}

{13, 31, 49, 67, ...} 19 {8213845, 17651029, 
27088213, 36525397, 
...}

{47, 101, 155, 
209,...}

Table 16: Extensions, under one iteration of the 3x + 1 function, of some top rows of 3-level 
tuple-sets

Top row of 3-level 
tuple-set Exponent

Generating 
elements in top row 
of 3-level tuple-set

Top row of 4-level 
tuple-set generated 

via exponent
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The Structure of the 3x + 1 Function
Observations Concerning the Generation of Level-3 Top Rows by Level-2 Top Rows
We observe, first of all, that, in conformity with Lemma 1.0, the distance between successive 

level-3 row elements is 2 • 33 - 1 = 18.  The distance between successive generating elements of 
each level-2 row is given by Lemma 1.1.  Thus, for example, the distance for exponent 4 (with {5, 
11, 17, 23, ...} as generating level-2 row)  is the least common multiple of 6 and 2 • 24  =  [6, 32] 
= 96.

Next, we observe that, with exponent 7, the same level-3 row is generated as was generated 
for exponent 1.  This is in conformity with Lemma 7.3, since 1 ≡ 7 mod (2 • 32 - 1= 6).

Next, we observe that the top rows of all 3-level tuple-sets are generated, via the exponents 1 
through 6, by each of the top rows in 2-level tuple-sets.  This phenomenon, in fact, applies for all 
levels i ≥ 2, as we shall now prove.

Lemma 7.25.  Let Ri  be the top-level row of an i-level tuple-set, i ≥ 2.  Let f(Ri, ai+1) denote the 
row produced by applying the 3x + 1 function to all elements x of Ri, and then selecting only those 
y yielded by ord2(3x + 1) = ai+1.  Then the set { f(Ri, ai+1)| ai + 1 ≥ 1} is  the set of top rows of all 
(i + 1)-level tuple-sets, i.e., the set of reduced residue classes mod 2 • 3(i + 1) - 1.
      
      Proof:
      The following is an edited version of a proof by Michael O’Neill. 
      
      Given y, an element of a level (i + 1) top row (y is thus an odd, positive integer not divisible by 
3), and Ri, a top row of an i-level tuple-set, we wish to find an element of the latter that maps to 
the former.

By definition, Ri = {x | x = r0 + k • 2 • 3i - 1,  k ≥ 0}, where r0 is the least element of the row Ri.  
We want to find k and j such that

This equation gives

or

(3r0 + 1) is part of an iteration, so it is equal to 2hm, where m is an odd, positive integer not 
divisible by 3, and h is established by r0.  Let k = 2h - 1k′.  Then

3 r0 k 2 3i 1–⋅ ⋅+( ) 1+
2j

------------------------------------------------------ y=

2jy 3r0 1+( ) k 2 3i⋅ ⋅+=

2jy 3r0 1+( )– k 2 3i⋅ ⋅=
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The Structure of the 3x + 1 Function
and

or

which can be solved for 2j - h.  Since h is known, we can find j.  k can be obtained from k′. 

Remark. It is important to keep in mind what it means to say that a top row Ri  generates a 
top row Ri + 1 via an exponent ai + 1. It means that a subset of Ri  yields all the elements of Ri + 1 
via the exponent ai + 1.  The first element of this subset — examples are given in table Table 15, 
“Extensions, under one iteration of the 3x + 1 function, of the top rows of all 2-level tuple-sets,” 
on page 41 and in Table 16, “Extensions, under one iteration of the 3x + 1 function, of some top 
rows of 3-level tuple-sets,” on page 42 — can be determined by taking the inverse, under ai + 1, of 
the smallest element of Ri + 1, and then applying Lemma 1.1 to obtain succeeding elements.  Thus
 each succeeding element will be some multiple k of the distance

 lcm(2 • 3i - 1,  ), where lcm denotes the least common multiple.

Next, we observe that it seems to require all i-level top rows to generate a given (i + 1)-level 
row via all exponents that can generate that (i + 1)-level top row.  For example, as we can see in 
the table,  in order to generate the level-3 row {11, 29, 47, 65, ...} via the exponent 1, the level-2 
top row {1, 7, 13, 19, ...} is required.  But in order to generate the same level-3  row via the expo-
nent 3, the level-2 row {5, 11, 17, 23, ...} is required.  We can generalize this observation.

Lemma 7.27. For all i ≥ 2, and for all (i + 1)-level top rows Ri + 1, the minimum set of i-level top 
rows required to generate Ri + 1 via all possible exponents that can generate Ri + 1, is {Ri}, the set 
of all i-level top rows.  In other words, for all  i ≥ 2, and for all (i + 1)-level top rows Ri + 1,  if we 
generate Ri + 1 by any proper subset of {Ri}, then some elements  of Ri + 1 will be generated by a 
proper subset of the set of exponents that can generate these elements. 

Proof:
The following is an edited version of a proof by Michael O’Neill.

Since each (i + 1)-level top row Ri + 1 is generated either by even or by odd exponents only 
(by Lemma 5.0), and since, by Lemma 15.0,  “a third” of the exponents are excluded because they 

2jy 2hm– 2 3i 2h 1– k′⋅ ⋅ ⋅=

2j h– y m– 3ik′=

2j h– y m mod 3i≡

2 2ai 1+⋅
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The Structure of the 3x + 1 Function
would imply mapping from a multiple of 3, there are 2 • 3i - 2 possible exponents mapping to Ri + 
1.  Since this is the same as the number of i-level top rows, to prove the lemma we have to show 
that no two elements from different i-level top rows can map to the same element of Ri + 1 via the 
same exponent.

Let the two i-level rows be:

r0 + k0 • 2 • 3 i - 1

and

r1 + k1 • 2 • 3i - 1

Mapping these to the (i + 1) level and setting the results equal gives

or 

and 

So

which imples that the two i-level rows are the same row.  

The Relationship Between Top Rows of All i-level and (i + 1)-level Tuple-sets
Let us pause at this point, and, first, get a clearer idea of the relationship between the top rows 

in all i-level and of all (i + 1)-level tuple-sets, and then, second, see if we can explain why this 
relationship seems to work out so nicely. 

We begin by showing graphically, in Fig. 7, the generating relationship between the top rows 
of all 2-level tuple-sets, and the top rows of all 3-level tuple-sets.  Each arrow represents the gen-
erating function via all exponents.  The arrow points to the row generated.  Note that, even though 
each row is identified by its first element, the contents of rows with the same first element at dif-
ferent levels are not identical, because of the distance function d(i, i) (Lemma 1.0). By Lemma 
7.25, the same generating relationship between successive top levels holds for all higher levels.

3r0 3k0 2 3i 1–⋅ ⋅ 1+ +
2j

-------------------------------------------------------
3r1 3k1 2 3i 1–⋅ ⋅ 1+ +

2j
-------------------------------------------------------=

r0 k0 2 3i 1–⋅ ⋅+ r1 k1 2 3i 1–⋅ ⋅+=

r0 r1– k1 k0–( ) 2 3i 1–⋅ ⋅=

r0 r1 mod 2 3i 1–⋅( )≡
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The Structure of the 3x + 1 Function
Fig. 7. Generating relationship between top levels of all 2-level tuple-sets and top levels of all 
3-level tuple-sets

The Reduction of the Infinitary Tuple-sets Tree to an Equivalent Finitary Tree
Next, we observe that Lemma 3.24 and Lemma 7.25 imply that the infinitary tree of all tuple-

sets can, without loss of generality, be reduced to a finitary tree, namely, a (2 • 3i -2) -ary tree, i ≥ 
2.  ((2 • 3i -2) is the number of reduced residue classes mod (2 • 3i -1).)  We state and prove this as 
Lemma 7.3.

Lemma 7.3.  Let Ri be a top-level row of an i-level tuple-set, i ≥ 2.  Then all exponents ai + 1 ≥ 1 
can be partitioned into (2 • 3i -2) equivalence classes such that all ai + 1 which are in a given class, 
generate the same (i + 1)-level row Ri + 1 =  f(Ri, ai+1), where f is as defined in Lemma 7.25.

Proof:
The following is an edited version of a proof by Michael O’Neill.

We want to show that any (i + 1)-level top row Ri + 1  generated by an exponent sequence A 
with final exponent j also has a generating sequence with final exponent j + 2 • 3i -2.  

Let y be a member of such a row and x be its generator.  Then

R1             R5           R7          R11          R13          R17 

R1               R5

R1

level

3

2

1

top rows of all tuple-sets at indicated level
               (each row is identified by its first element)
47



The Structure of the 3x + 1 Function
So we want another generator x′ such that

This gives

Then:

Since, by Fermat’s Little Theorem, 22m - 1 ≡ 0 mod 3, we can divide this equation through by 
3.  Call the resulting second term on the left-hand side, k.  So we have:

So x′ always exists and the elements of the row Ri + 1 are generated by exponents separated by 
2 • 3 i - 2. 

Lemma 7.3  essentially proves the existence of the similarity classes of feasible vectors 
defined in Definition 3.6 of [3] (p. 48).

Remark 1 The finitary tree of tuple-sets has the property that, by Lemma 7.3, the number of 
exponent equivalence classes at each level i increases with i.  Or, in other words, we may say, 
informally, that as i increases, the “branches” (exponent equivalence classes) grow at the same 
time “thinner” (because there is a greater distance between successive elements)  and more plen-
tiful, so that the larger that i is, the more closely do the uppermost branches “approximate” indi-
vidual exponents. 

Lemma 7.31. Let ai + 1, i ≥ 2, be an exponent that is “missing” from the set of exponents that gen-
erate a top row Ri + 1 because ai + 1 is the exponent for a multiple-of-3.  Then all exponents con-
gruent to ai + 1 mod 2 • 3 i - 2 are likewise missing from the set of exponents that generate Ri + 1.

3x 1+
2j

--------------- y=

3x' 1+
2j 2 3i 1–⋅+
---------------------- y=

3x 1+
2j

--------------- 3x' 1+
2j 2 3i 1–⋅+
----------------------=

3 2 2 3i 1–⋅( )⋅( )x 22 3i 1–⋅ 1–+ 3x'=

22 3i 1–⋅ x k+ x'=
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The Structure of the 3x + 1 Function
Proof:
We will have our result if we can prove:
if 

then there exists a k such that

Setting the two left-hand sides equal and multiplying through by the larger denominator, we 
get:

which implies

Since 22 ≡ 1 mod 3, this congruence holds, hence k exists. 

An illustration of the truth of Lemma 7.31 is given by the following table, which is derived 
from exponents mapping to the level-3 row {11, 29, 47, 65, ... } in Table 15, “Extensions, under 
one iteration of the 3x + 1 function, of the top rows of all 2-level tuple-sets,” on page 41.  Here m3 
denotes an exponent resulting from a multiple-of-3.

Table 17: Multiples-of-3 in a set of odd-exponent equivalence classes

Minimum 
residue of 
exponent 

equivalence 
class

Exponent 
congruent to 

minimum 
residue

Exponent 
congruent to 

minimum 
residue

Exponent 
congruent to 

minimum 
residue

...

1 7 13 19 ...

3 9 15 21 ...

m3 m3 m3 m3 ...

3 3m⋅ 1+
2ai 1+

------------------------ y=

3 3k⋅ 1+
2ai 1+ 2 3i 2–⋅+
----------------------------- y=

22 3i 2–⋅ 3 3m⋅( ) 22 3i 2–⋅+ 3 3k⋅ 1+=

22 3i 2–⋅ 1mod 3≡
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The Structure of the 3x + 1 Function
Lemma 7.32. Let Ri + 1 be the top row of an (i + 1)-level tuple-set.  Then Ri + 1 is generated by 
exponents of one parity only.

Proof:
Let y be the minimum element of Ri + 1.  Let x be an element of a top row Ri which maps to y 

via an exponent of, say, even parity 2k.  Then we have:

The next element in Ri + 1 is y + 2 • 3(i + 1) - 1 (Lemma 1.0).  So adding 2 • 3(i + 1) - 1 to both 
sides, we get:

The left-hand side is equal to:

or 

thus showing that y + 2 • 3(i + 1) - 1 is mapped to from an element of row Ri and via an exponent of 
even parity.  A similar argument applies to odd exponents. The result follows by repetition of the 
argument for successive elements of row Ri + 1. 

Is There a Fixed Upper Bound on the Smallest Generating Exponent for Any Top Row?
We will now consider a phenomenon exhibited by the first part of Table 15, “Extensions, 

under one iteration of the 3x + 1 function, of the top rows of all 2-level tuple-sets,” on page 41.  
The phenomenon is that each top row in a 3-level tuple-set is generated by (among other expo-
nents) an exponent which is ≤ 4.  The details are summarized  in the following table.

3x 1+
22k

--------------- y=

3x 1+
22k

--------------- 2 3 i 1+( ) 1–⋅+ y 2 3 i 1+( ) 1–⋅+=

3x 1 22k 2 3 i 1+( ) 1–⋅ ⋅+ +
22k

---------------------------------------------------------------

3 x 22k 2 3i 1–⋅ ⋅+( ) 1+
22k

---------------------------------------------------------
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The Structure of the 3x + 1 Function
The generalization of this phenomenon turns out to be true.

Lemma 7.35.  Let Ri + 1 be the top row of any (i + 1)-level tuple-set.  Let  

be the set of minimum residues of all exponent congruence classes (i.e., equivalence classes) 
whose exponents map to Ri + 1.  (By Lemmas 7.1 and 7.3 we know that each such class is a residue 
class mod 2 • 3 (i + 1) - 1 .)  Then at least one element of     ≤ 4.

Proof:
The following is an edited version of a proof by Michael O’Neill.

By Lemma 5.0 we know that the exponents mapping to a given tuple-set are either all even or 
all odd.  In the following we deal with the even case; the odd case is similar.

The main thing to prove is that every third exponent is left out of the sequence of exponents 
mapping to a given top row.  Let x, x′ be two numbers that map, by successive even exponents, to 
the top row Ri + 1 whose minimum element is r0.  Then:

and

Table 18: Minimum exponents generating level-3 top rows

Level-3 top row generated

Minimum exponent in 
equivalence class of 

exponents generating level-
3 top row by, respectively, 

the level-2 top rows 
{1, 7, 13, ...}, {5, 11, 17, ...}

{1, 19, 37, ...} 2, 4

{5, 23, 41, ...} 3, 5

{7, 25, 43, ...} 4, 6

{11, 29, 47, ...} 1, 3

{13, 31, 49, ...} 6, 2

{17, 35, 53, ...} 5, 1

min ai 1+{ }Ri 1+
{ }

min ai 1+{ }Ri 1+
{ }

3x 1+
22m

--------------- k2 3i⋅ r0+=
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The Structure of the 3x + 1 Function
Subtracting, we get:

which implies

Dividing by 3, we get:

which gives

or 

This implies that successive even powers of two map numbers that have successive residues 
mod 3, so every third exponent is forbidden.

To see what happens when every third exponent is removed, consider the three possibilities 
for the case where there are 18 possible exponents (which is the number of equivalence classes of 
exponents mapping from a 3-level top row to a 4-level top row):

Table 19: All possiblites of even exponents through 18 mapping from a level-3 top row to a 
level-4 top row

2 4 6 8 10 12 14 16 18

2 4 8 10 14 16

2 6 8 12 14 18

4 6 10 12 16 18

3x' 1+
22m 2+
---------------- k′2 3i⋅ r0+=

3x 1+
22m

--------------- 3x' 1+
22m 2+
----------------– k2 3i⋅ r0+( ) k′2 3i⋅ r0+( )–=

4 3x⋅ 4 3x'– 1–+ 22m 3+ 3 k k'–( )=

4x 1 x'–+ 22m 3+ 3i 1– k k'–( )=

4x 1+ x' mod 3≡

x 1+ x' mod 3≡
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The Structure of the 3x + 1 Function
Obviously, in each case all of the available exponents must be used to provide 6 different 
exponents, so the least element in the set of exponents must be ≤ 4.  It can easily be seen that this 
applies to odd exponents and levels other than 3. 

Instances of this lemma can be seen in Table 15, “Extensions, under one iteration of the 3x + 1 
function, of the top rows of all 2-level tuple-sets,” on page 41 and Table 16, “Extensions, under 
one iteration of the 3x + 1 function, of some top rows of 3-level tuple-sets,” on page 42.

Lemma 7.36.  Let Ri be the top row of an i-level tuple-set and let r0i be its  first element.  Then the 
the first element, r0(i + 1), of the (i + 1)-level top row R(i + 1) mapped to by Ri via the exponent ai+1 
is given by:

where j is chosen to make the exponent positive.

Proof:
The following is an edited version of a proof by Michael O’Neill.

The mapping of Ri to R(i + 1) is expressed by the following equation:

This gives:

where g is an integer whose actual structure is irrelevant.

Now we multiply through by 

where j is chosen to make the exponent positive.  This gives:

r0 i 1+( ) 2 j 2 3i 1–⋅( ) ai 1+–( ) 3r0i 1+( ) 3i–( )mod 2 3i 1–⋅( )≡

3 k0i 2 3i 1–⋅( ) r0i+( ) 1+

2ai 1+
------------------------------------------------------------- ki 1+ 2 3i⋅( ) r0 i 1+( )+=

3r0i 1 2ai 1+ r0 i 1+( )–+ ki 1+ 2ai 1+ 1+ 3i⋅( ) k0i 2 3i⋅( )– g 2 3i 1–⋅( )= =

2 j 2 3i 1–⋅( ) ai 1+–( )

2j 2 3i 1–⋅( ) ai 1+– 3r0i 1+( ) 2j 2 3i 1–⋅( )r0 i 1+( )– g 2 3i⋅( )2j 2 3i 1–⋅( ) ai 1+–=
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And since 

this gives:

Note that k3 must be odd, since k33i + 1 is even (a power of 2).  We now have:

which, since k3 and r0(i + 1) are odd, and since, if x is odd, 

gives us our result, namely:

Lemma 7.38.  Let A = {a2, a3, ..., ai ) be an exponent sequence, and let a = a2 + a3 +... + ai.  Let 
r be as defined in the proof of Lemma 6.0.  Then the smallest element r0i  of the top row of the 
tuple-set TA is given by

Proof:
The following is an edited version of a proof by Michael O’Neill.

We begin with an equation whose right-hand side represents the top row (see proof of Lemma 
6.0):

It will turn out that x is irrelevant.

2j 2 3i 1–⋅( ) 1mod 3i≡

2j 2 3i 1–⋅( ) ai 1+– 3r0i 1+( ) k33i 1+( )r0 i 1+( )– g 2 3i⋅( )2j 2 3i 1–⋅( ) ai 1+–=

2j 2 3i 1–⋅( ) ai 1+– 3r0i 1+( ) k33i 1+( )r0 i 1+( )( ) mod 2 3i⋅( )≡

x3i 3i mod 2 3i⋅( )≡

r0 i 1+( ) 2 j 2 3i 1–⋅( ) ai 1+–( ) 3r0i 1+( ) 3i–( )mod 2 3i 1–⋅( )≡

r0i 2j 2 3i 1–⋅( ) a– r 3i–( ) mod 2 3i⋅( )≡

3ix r+
2a

---------------- k 2 3i⋅( ) r0i+=
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We perform various manipulations and multiply through by

  
and get:

The first term is a multiple of 2 • 3i and so is congruent to 0 mod 2 • 3i.  Using an argument 
similar to that used in the proof of Lemma 7.36, we arrive at our result:

Next, we ask (looking at Table 15, “Extensions, under one iteration of the 3x + 1 function, of 
the top rows of all 2-level tuple-sets,” on page 41) if it is the case that successive elements of the 
generating sub-row,  generate successive elements of the generated row.  The answer is yes, as 
this next lemma establishes.

Lemma 7.4.  Let x, x + lcm(2 • 3i - 1, 2 • 2ai), where lcm  denotes the least common multiple, i ≥ 
2,  be successive elements of the sub-row R′i of the top row Ri that maps to the top row Ri + 1 via 
the exponent ai.  Then these successive elements map to successive elements of Ri + 1.  In other 
words, any sub-row of a top row Ri maps to an entire top row Ri + 1.

Proof:
The result follows because

which we obtain from the equality

. 

2j 2 3i 1–⋅( ) a–

2j 2 3i 1–⋅( ) a– 3ix 2j 2 3i 1–⋅( ) a– r 2j 2 3i 1–⋅( ) a– r0i–+ 2j 2 3i 1–⋅( ) a– k 2 3i⋅( )=

r0i 2j 2 3i 1–⋅( ) a– r 3i–( ) mod 2 3i⋅( )≡

3 x lcm 2 3i 1–⋅ 2 2ai⋅,( )+( ) 1+
2ai

----------------------------------------------------------------------------- 3x 1+
2ai

--------------- 2 3i⋅+=

3x 2 3i⋅( ) 2ai( ) 1+ +
2ai

-------------------------------------------------- 3x 2 3i⋅( ) 2ai( ) 1+ +
2ai

--------------------------------------------------=
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Lemma 8.0. Let T be a 2-level tuple-set.  Then the first 2-level tuple of T is an n-t-v-1.

Proof:
Consider all tuple-sets defined by an even exponent.  The tuple <1, 1> is in the tuple-set 

defined by the sequence {2 }, the tuple <5, 1> is in the tuple-set defined by the sequence { 4 }, the 
tuple <21, 1> is in the tuple-set defined by the sequence { 6 }, etc., for each even exponent, in 
accordance with Lemma 5.0.  Clearly, each of these tuples is an n-t-v-1.  But each of these tuples 
must be the first 2-level tuple in its tuple-set, because there does not exist an odd, positive integer 
1 − 2 • 3, and therefore by Lemma 1.0 there does not exist a previous tuple in the standard order-
ing of tuples.

Now consider all tuple-sets defined by an odd exponent.  The tuple <3, 5> is in the tuple-set 
defined by the sequence { 1 }, the tuple <13, 5> is in the tuple-set defined by the sequence { 3 }, 
the tuple <53, 5> is in the tuple-set defined by the sequence { 5 }, etc., for each odd exponent, in 
accordance with Lemma 5.0.  Clearly, each of these tuples is an n-t-v-1, since 5  maps to 1.  But 
each of these tuples must be the first 2-level tuple of its tuple-set, because there does not exist an 
odd, positive integer 5 − 2 • 3, and therefore by Lemma 1.0 there does not exist a previous tuple in 
the standard ordering of tuples. 

Lemma 10.0.  Assume a counterexample exists.  Then every tuple-set contains an infinity of n-t-v-
cs and an infinity of n-t-v-1s.

      Proof:
If a counterexample exists, then by Lemma 5.0 there exists an infinity of counterexamples.  

By Lemma 0.4, we can eliminate all multiples of 3 from the infinity of counterexamples and still 
have an infinity of counterexamples y, each of which is now a range element.   Choose any finite 
sequence A of exponents.  For each counterexample range element y, there exists an x which maps 
to y via A with a possible buffer exponent following A, by Lemma 7.0. Since, by definition, a 
tuple-set contains all tuples defined by a given sequence of exponents, it follows that for each y, 
there exists an n-t-v-c in the tuple-set TA.  A similar argument applies for n-t-v-1s. 

The “Last/First” Property
We now define a property of range elements that will be of importance in attempts to prove 

Conjecture 2 (equivalent to Conjecture 1), below. The term “last/first” is an abbreviation for “last 
element of the first i-level tuple in an i-level tuple-set”. 

The “last/first” property of a range element collects the following properties:
(a)  For each range element y (counterexample or not) there is a least i such that y is the last 

element of the first i-level tuple of an infinity of i-level tuple-sets.  This follows from Lemma 3.0, 
i.e., from the fact that for some least i, y is a minimum residue of the reduced residue set mod 2 • 
3i - 1, hence the least element in the top row of an i-level tuple-set.  The fact that this applies to an 
infinity of tuple-sets follows from Lemma 5.0.

(b) Furthermore y is the last element of the first (i + 1)-, (i + 2)-, ...tuple in an infinity of (i + 
1)-, (i + 2), ... -level tuple-sets.  This follows from the fact that y is a minimum residue of the 
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reduced residue sets mod 2 • 3(i + 1) - 1, mod 2 • 3(i + 2) - 1... hence the least element of the corre-
sponding top rows of the corresponding tuple-sets.

(c) Furthermore, every extension of every tuple containing y beginning at level i also defines  
first (i + 1)-, (i + 2)-, ... -level tuples in an infinity of (i + 1)-, (i + 2)-, ... -level tuple-sets.  This fol-
lows from Lemmas 4.0 and 5.0.

We now state and discuss Conjecture 2.

Conjecture 2. Let T be an i-level tuple-set.  Then the first i-level tuple of T is an n-t-v-1.

Discussion of Conjecture 2
Conjecture 2  is equivalent to Conjecture 1 because if Conjecture 2 is true, then the assump-

tion of a counterexample implies, by Lemmas 3.0 and 4.0, that the first i-level tuple in some i-
level tuple-set is both an n-t-v-1 and an n-t-v-c, contradicting the definition of these tuples.

Are there grounds for optimism that Conjecture 2 can be proved?  The author believes there 
are, and that the following are some of them:

1. Lemma 8.0 proves that Conjecture 2 holds for all 2-level tuple-sets.
2. Lemmas 5.0 and 10.0 show that, if a counterexample exists, then not only is there an infin-

ity of counterexamples, but there also is, in each tuple-set,  an infinity of tuples which contain 
counterexamples.  

We remark in passing that if we could prove that at least one tuple-set contained nothing but n-
t-v-1s, or that the assumption of a counterexample implied that at least one tuple-set contained 
nothing but n-t-v-cs, then Conjecture 2 would be proved, because this would mean that (respec-
tively) no n-t-v-c could be a first i-level tuple in an i-level tuple-set, or that no n-t-v-1 could be a 
first i-level tuple in an i-level tuple-set, contradicting Lemma 3.0.

3. A criticism of tuple-sets has been that the lemmas do not discriminate between n-t-v-1s and 
n-t-v-cs.  In others words, that tuple-sets are “too coarse a net” to catch a proof of Conjecture 1.  
However, countering this criticism are two facts: (1) that each i-level tuple-set has one and only 
one first i-level tuple, and (2) that this tuple must be either an n-t-v-1 or an n-t-v-c, but not both.

Lemma 10.5.  Let TA be an i-level tuple-set defined by an exponent sequence A*ai, where i ≥  4, 
“*” denotes concatenation of exponents, A is any exponent sequence of length i - 2, and ai is even 
if  the last exponent of A is odd, and ai is odd if the last exponent of A is even.  Then the first i- 
level tuple of TA is an n-t-v-1.

Proof:
We know that 1 and 5 map to 1.  Since, for all i  ≥ 2, 1 and 5 are minimal elements of the set of 

i-level tuple-set top rows (by Lemma 3.055), and hence are elements of first i-level tuples, and 
since 1 is mapped to by even exponents, and 5 is mapped to by odd exponents, we can apply 
Lemma 7.0 at each level i, being assured that ai is the buffer  exponent that is “forced” by the con-
straints on the last exponent in A.

We will now show how the lemmas in this sub-section might be used to prove that there is no 
minimum counterexample and, hence, that Conjecture 1 is true.
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Strategy of Proving There Is No Minimum Counterexample
Assume a counterexample exists.  Without loss of generality (by Lemma 0.4), let it be the 

minimum counterexample that is a range element, i.e., not a multiple-of-3.  
A minimum counterexample y that is a range element has the following properties: (1) for all 

z resulting from computations of y, z ≥ y; and (2) for all x mapping directly or indirectly to y, x ≥ y.  
Our possible strategy will be to show that no range element has property (2), hence that there is no 
minimum counterexample.

Now, for each i ≥ 2, there exists a finite number of exponent sequences A of length i - 1 having 
the property that the first element x of any tuple defined by such a sequence is less than the last 
element y.  Call this the “less-to-greater” property of a sequence.  For example, all sequences {1, 
1, 1, ..., 1} have this property.  

(See also the discussion of “Conjecture 12. On the Existence of Paths With the “Less-to-
greater” Property” on page 76, as well as “Question 2. On the Number of Sequences, For Each i, 
Having the “Less-to-greater Property” on page 77, and the sub-section,  “A Way to Reduce Com-
putation Time in Computer Testing of Conjecture 1” on page 77.)

We let P(i - 1) denote the (finite) set of all sequences of length i - 1 having the less-to-greater 
property.

 By Lemma 3.0 there exists a level i — call it i — at which our assumed minimum counterex-
ample y  first becomes the last element of the first i-level tuple of an i-level tuple-set (in fact, by 
Lemma 5.0, it becomes such an element in an infinity of tuple-sets).  y is thus a minimum element 
of a reduced  residue class mod 2 • 3i - 1, and, by Lemma 3.055, y remains such a minimum ele-
ment for all larger i, that is, y is a minimum element of a reduced residue class mod 2 • 3(i + 1) - 1, 
2 • 3(i + 2) - 1, 2 • 3(i + 3) - 1, ...  (By known results — see discussion of “Conjecture 4. On the Fill-
ing-in of Intervals in the Base Sequence” on page 70 — we know that i must be > 21.)

By Lemma 5.0, we know that y is mapped to either by all even or by all odd exponents.  Now 
even though no multiples of 3 are present in any i-level rows if i > 1, hence no exponent mapping 
from a multiple of 3 can map to y, we know, by Lemma 7.35 (and Lemma 15.0), that the smallest 
exponent mapping to the row containing y must be ≤ 4.

By Lemma 7.25, for all i  ≥ 2, each i-level top row generates all (i + 1) - level top rows.  
Therefore for each (i + 1) there exists a table in which the top of each column represents a reduced 
residue class mod 2 • 3(i + 1) - 1, and the left-hand end of each row represents a reduced residue 
class mod 2 • 3i  - 1.  (Our convention has been to represent each such class by its minimum ele-
ment.)  The intersection of row Ri  and column Ri + 1 contains the exponent by which the reduced 
residue class Ri  generates the residue class Ri + 1.  Examples of such tables are given in “Generat-
ing Level-(i + 1) Top Rows from Level-i Top Rows” on page 38.

Therefore we can proceed as follows:
1.  Choose a k ≥ 1 such that (a) there exists an exponent sequence A of length i + k - 1 having 

the less-to-greater property; (b) the last exponent ai + k of A is of the same parity as that which 
maps to y; and (c) ai + k  ≤ 4.

2.  Now proceed down the y column in the table for i + k to a row Ri + k - 1 containing the expo-
nent ai + k.

3. In the table for i + k - 1, proceed down the column for Ri + k - 1 to a row containing the sec-
ond exponent from the last in A, i.e., the exponent ai + k - 1. 

4.  Continue in this manner down to R1. 
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We would like to argue that this process proves the existance of an x that is less than y, and 
hence that there is no minimum counterexample.

Of course, if this strategy is to work at all, we must show that “each i-level top row generates 
all (i + 1) - level top rows” has the implications we want it to have (see Remark following proof of 
Lemma 7.25).

The Buffer Exponent in the Proof of Lemma 7.1
Next, we investigate the behavior of the buffer exponent (defined in the proof of Lemma 7.1).  

We will begin with the shortest exponent sequence, namely, the exponent sequence A = {a2}.   It 
is clear that, if y = 11, then for any sequence A = {a2}, where a2 is odd, we can find an x that maps 
to y via a2.  (This we knew as soon as we knew the two top rows of all 2-level tuple-sets, namely 
the row {1, 7, 13, 19, ... ], which is defined by even a2, and the row {5, 11, 17, 23, .. }, which is 
defined by odd a2.)  For y = 11, and A= {a2}, where a2 is even, we need buffer exponents. The fol-
lowing table sets forth a few examples.

 

Question 3. For each range element y and each  exponent sequence A of length 1, 2, 3, ..., what is 
the buffer exponent required to have A produce y?  In other words, what is the function g(y, A) = 
ai, where y is a range element, A is an exponent sequence of length i - 2, and ai is the buffer expo-
nent required to guarantee the existence of an x such that x maps to y via A followed by ai (which, 
of course, may be the null exponent). 

The author will pay $75 for the first correct answer to this question.

It should be pointed out that the observations, conjectures, and question in this sub-section 
constitute steps toward “converting” recursive “spiral”s, described in the next section of this 
paper, into tuple-sets.  This statement should become clearer when the reader has read the section 
on recursive “spiral”s.

 

Table 21: Examples of buffer exponents

y, to be produced 
by exponent 
sequence A

Exponent 
sequence, A, 

desired to map to y

x that maps to y 
via sequence A

Buffer exponent 
following A 
required to  
produce y

11 {a2}, a2 odd 7, 29, 117, ... None

11 {2} 9 1

11 {4} 37 1

11 {6} 149 1
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Cycles
We conclude the tuple-sets section of this paper with a few results on cycles, even though 

these do not so far contribute to a possible strategy for proving Conjecture 1.
In the literature on the 3x + 1 Problem, the term “cycle”, or “loop”, denotes the equivalent of  

a tuple in which a domain element repeats.  If we allow x to be an odd, negative integer, then 
known cycles include:

We will refer to the cycles containing the domain elements 1 and -1 as the “trivial cycles”.  A 
simple algebraic argument shows that the only possible cycles of length 1, i.e., the only cycles 
containing only one domain element, are the trivial cycles.

Lemma 3.06.  If a cycle exists, it must be of length at least 17,087,915.

The proof is in (Eliahou 1993).  Note: the author of the present paper does not know if Elia-
hou’s result is based on a definition of the 3x + 1 function in which, if 3x + 1 is even, then 3x + 1/
2 is considered an iteration. 
       Clearly, a cycle of domain elements implies that the sequence of exponents, A, defining the 
cycle must also be cyclical.  However, the existence of a cycle of exponents in A does not neces-
sarily imply a cycle of domain elements, as we shall see in Lemma 3.1.

Lemma 3.07.  At most one cycle exists having a given sequence of exponents.
     
      Proof : 
      Assume that, in a tuple, the first element u occurs again at level i, i > 2.  But there is no h such 
that (as required by the distance functions defined in Lemma 1.0)

Therefore there can be no other tuple whose first element and ith element are the same.  

Thus we know that there cannot exist another cycle having the sequence of exponents defined 
by the cycle beginning with -17 (see Table 5).  

Table 24: Known Cycles

Sequence of odd integers Corresponding sequence of exponents of 2

1, 1, 1, 1, ... 2, 2, 2, 2, ...

-1, -1, -1, -1, ... 1, 1, 1, 1, ...

-5, -7, -5, ... 1, 2, 1, ...

-17, -25, -37, -55, -41, -61, -91, -17, ... 1, 1, 1, 2, 1, 1, 4, 1, ...

u h 2 3i 1–⋅ ⋅+ u h 2 2a22a3…2ai⋅ ⋅+=
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The fact that there are only a finite number of integers in a cycle in no way implies that the 
existence of a cycle implies only a finite number of counterexamples to Conjecture 1.  See 
Lemma 5.0.

Clearly, no cycle can exist in the sequence of tuple-sets defined by unlimited, successive con-
catenations of any fixed exponent ai, ai > 1, because each iteration under ai produces a result y 
that is less than the argument x.  The following lemma shows that no cycle can  exist in the 
sequence of tuple-sets defined by unlimited, successive concatenations of the exponent 1 either.

Lemma 3.08.  No cycle exists in the sequence of tuple-sets defined by unlimited, successive  con-
catenations of the exponent 1.

Proof:  
Assume such a cycle exists.  By a simple algebraic argument, it must contain at least two ele-

ments.  These elements, a and b, must be the first elements of different tuples in every tuple-set in 
the sequence of tuple-sets established by the successive repetitions of the exponent 1.  But then, at 
some level i, the distance function d(1, i) defined in Lemma 1 must be violated. 

Lemma 3.1.  Let A consist of an infinitely repeating cycle of exponents, i.e., let A = {a2, a3, ...,  am 
= a2, am + 1  = a3, ... }, m ≥ 3.  Τhen, informally, no tuple such that elements don’t repeat when 
elements of A repeat, can be an infinite-tuple.  Formally,  

If ai + 1 = am + i + 1  for all i ≥ 1 and   ≠ , then tj is not an infinite-tuple.

      Proof:
We use an indirect proof.  
Assume that tj is an infinite-tuple in TA.  Since, by hypothesis, elements don’t repeat when ele-

ments of A repeat, this means there exists in TA at least two infinite-tuples.  But this implies that at 
some level i, the distance functions defined in Lemma 1.0 would fail to hold.  Hence the Lemma 
is proved. 

It is obvious that no A containing an infinite repetition of any exponent other than 1 can define 
a tuple-set containing a counterexample, for, in an iteration under such an exponent, x always pro-
duces a y < x.

From Lemma 3.1 we see that, although in an iteration under the exponent 1, x always pro-
duces a y > x, no tuple-set TA contains a counterexample if  A = {a2, a3, ..., ak, 1, 1, 1, ...}, k ≥ 2, 
where a2, a3, ..., ak may, of course, each = 1 also.  A second proof of this statement follows from 
fact that  -1 results in an infinite computation all of whose exponents are 1, hence by Lemma 3.07, 
no other infinite loop can exist in that infinite tuple-set.

If x is replaced by y in Equation (7.1) in the proof of Lemma 7.0, we obtain an equation that 
expresses the existence of a cycle.  If present-day Diophantine equation theory is able to deter-
mine the number of solutions to this modified equation, then the open question of the existence of 
non-trivial cycles is answered.  However, as Michael O’Neill has pointed out to the author,  it 
must be remembered that r and a in the modified equation are not independent variables but short-

tji
tjm i+
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hand for the result of several iterations of the 3x + 1 function.  Hence, it does not seem likely that 
existing Diophantine theory will provide a ready-made answer.
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