
The Structure of the 3x + 1 Function
.Section 2.  Recursive “Spiral”s

Definitions 

Recursive “Spiral”
A recursive “spiral” is the infinity of domain elements that map to a given range element in 

one iteration of the 3x + 1 function, as established in the proof of Lemma 5.0.  (See Fig. 4.)  Each 
range element in the infinity of elements in turn sets up a recursive “spiral”, etc.  Thus the infinite 
set of all “spiral”s relative to a given range element are a self-similar structure ([4], p. 34). 

The recursive “spiral” structure has been independently discovered by at least two researchers 
besides the author, although the author is not aware of anything in the literature that explicitly 
deals with this structure.

     

 Fig. 4.  Recursive “spirals” structure of computations produced by the 3x + 1 function.
  Bold-faced numbers are range elements (21 and 453 are multiples of 3, hence not range ele-

ments).  Partial “spirals” surrounding the base elements 1 and 85 are shown.  The line connecting 
1813 to 85 is marked with a 26  because ((3 • 1813) + 1)/ 26 = 85.  The line connecting 453 to 
1813 is marked  (85 • 24) because 453 + (85 • 24) = 1813. The exponents of 2 are not always even, 
of course. The “spiral” of numbers (not shown) mapping to 341 has odd exponents.

Level i and Base Sequence of “Spiral”
Let y be a range element, e.g., 1.  We define y to be at  level 0 relative to y.  We now define all 

x that map to y in a single iteration to be at level 1 relative to y.  (Warning: no suggestion is 
intended that the term level as defined here is the same as the term level as defined above for 
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The Structure of the 3x + 1 Function
tuple-sets, although, as we shall see, there is a strong relationship between the two terms.) We 
define all domain elements of level 1 iterations that map to y to be level 1 elements.  These ele-
ments constitute a sequence (a “spiral” in Figure 4).  Specifically, they constitute a unique base 
sequence (relative to y).  Thus, for example, the base sequence relative to 1 is the sequence {1, 5, 
21, 85, 341, ... }. We define all x that map to a level 1 element in a single iteration to be at level 2 
relative to y, and similarly for level 2 elements.  And so on for all levels i. When y is understood, 
we will sometimes eliminate the phrase, “relative to y”.  The expressions  level i sequence  and  
level i “spiral” thus mean the same thing. 

We define the range element mapped to, in a single iteration, by each element of a “spiral”, to 
be a center element, because it is the center of a “spiral”, as shown in Figure 4.  Often, we will call 
a center element a base element. The infinite set of elements that map to a given base element cor-
responds, in [3] (p. 21), to a predecessor set, although unlike a predecessor set, the infinite set of 
elements that map to a given base element contains no even numbers.

We say that elements of the base 1 sequence map directly to the base element, and that ele-
ments of level i, i > 1, map indirectly to the base element.

We define a path, relative to any base element y, to be a finite sequence of elements of “spi-
rals” at levels i, i - 1, i - 2, ... 0, i ≥ 0,  such that the “spiral” element at level j, 1 ≤ j ≤ i maps 
directly to the element at level j - 1 in a single iteration.  Thus, e.g., <13, 5, 1> is a path.  A path is 
thus the equivalent of a tuple.  Each path defines an exponent sequence, e.g., in the case of our 
example, the sequence {3, 4}.

Some examples of elements at different levels: If y = 1, then 1, 5, 21, 85, 341, ... are level 1 
elements relative to 1.  They also constitute the base sequence relative to 1, the center, or base ele-
ment.   For the center  element (or base element) 5 in this base sequence, the level 1 elements are 
3, 13, 53, 213, 853, ....  These are level 2 elements relative to 1.

We define the set of odd, positive integers lying between any two successive elements of a 
level i sequence to be intervals of that sequence.  Thus, for example, 7, 9, 11, 13, 15, 17, 19, are 
the elements of the second interval in the level 1 sequence, 1, 5, 21, 85,  341, ...  When necessary, 
we number the intervals in a given sequence starting with 0.

Distance Functions on “Spiral”s
The proof of Lemma 5.0 implicitly defines two distance functions on “spirals”: one, between 

any “spiral” element and the base element of the “spiral”, and the other between successive ele-
ments of a “spiral”.  We will refer to these simply as “spiral” distance functions, specifying 
which one we mean as required.  We give these functions in the next lemma.

Lemma 11.0.  (a) The distance between the jth element, j ≥ 1, of a “spiral”, and the base element 
y of the “spiral”, is given by |(2ky - 1)/3 - y|, where k is the jth element in the sequence <1, 3, 5, ..., 
> or the sequence <2, 4, 6, ..., > as established by y.

(b) The distance between successive elements x, x′ of a “spiral” is given by 3x + 1.

Proof:
(a) Follows directly from Lemma 5.0.

(b)(a) By Lemma 5.0 we have
64



The Structure of the 3x + 1 Function
and

so that

and hence

and thus

 

The following  pair of lemmas is of interest because of the presence of the base sequence rela-
tive to 1. 

Lemma 12.1:

where s(j) is the jth element of the base sequence relative to 1.  

Thus, for example:

3x 1+
2j

--------------- y=

3x' 1+
2j 2+

---------------- y=

3x 1+
2j

--------------- 3x' 1+
2j 2+

----------------=

22x 1+ x'=

x' x– 22x 1+( ) x– 3x 1+= =

22 24 26 … 22j+ + + + s j 1+( ) 1– 2 2 s j( )⋅( )⋅= =

22 24+ 20 21 1– 2 2 5⋅( )⋅= = =

22 24 26+ + 84 85 1– 2 2 21⋅( )⋅= = =

22 24 26 28+ + + 340 341 1– 2 2 85⋅( )⋅= = =
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The Structure of the 3x + 1 Function
The proof is given along with the proof of Lemma 12.2.

Lemma 12.2:

where s(j) is the jth element of the base sequence relative to 1.  

Thus, for example:

Proof:
The following proof is by Michael O’Neill.

21 23 25 … 22j 1–+ + + + 2 s j( )⋅( )=

21 23+ 10 2 5⋅( )= =

21 23 25+ + 42 2 21⋅( )= =

21 23 25 27+ + + 170 2 85⋅( )= =

s j( ) 22j 1–
3

----------------=

22j 1– 22j 2– … 1+ + +
3

-------------------------------------------------------=

3 22j 2–⋅ 3 22j 4–⋅ … 3+ + +
3

----------------------------------------------------------------------=
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The Structure of the 3x + 1 Function
EQ1

The proof of Lemma 12.1 follows by multiplying through EQ1 by 4 and the proof of Lemma 
12.2 follows by multiplying through EQ1 by 2.  

Summary of Properties of Recursive “Spiral”s
For readers with limited time, we now provide a table that summarizes our results — both 

those above and those to follow — on recursive “spiral”s.   
Note: some table-rows may have the same content as other rows, though under different prop-

erties.  This redundancy is deliberate, the purpose being to aid understanding and to make the 
looking up of properties easier.

Table 1: Some important properties of recursive “spiral”s

Property Value of property Reference

Self-similarity Each element of a “spiral” is 
the base element of a “spiral” 
each element of which is the 
base element of...

Also, for all base points y, the  
infinite set of “spiral”s rela-
tive to y is path-similar to 
every other such infinite set, 
i.e., all paths, as defined by 
finite exponent sequences, 
exist in each such infinite set.

[4], p. 34

Set of elements in a “spiral” {x | x = (2ky - 1)/3}, where y 
is the base element of the 
“spiral” and all k are either 
even or odd, depending on y.
Thus, the number of elements 
in a “spiral” is infinite.

Lemma 5.0

Distance between jth ele-
ment  of a “spiral” and its 
base element y

|(2ky - 1)/3 - y|, where k is the 
jth element of {1, 3, 5, ... } or 
{2, 4, 6, ...}, depending on y.

Lemma 11.0

Distance between successive 
elements x, x′, of  a “spiral”

3x + 1 Lemma 11.0

22j 2– 22j 4– … 1+ + +=
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The Structure of the 3x + 1 Function
Possible Strategies for Proving Conjecture 1 Using “Spiral”s

Strategy of Proving Existence of a Certain Map Between Tuples and Paths in “Spi-
rals”

Probably the most direct approach to a proof of Conjecture 1 using “spiral”s would be by 
proving there exists a one-one onto map between tuples in tuple-sets and finite paths in the infi-
nite set of “spiral”s whose base element is 1.  Such a proof would prove Conjecture 1 because the 
set of all tuple-sets represents the set of all finite computations by the 3x + 1 function.

A major step in the direction of such a proof is outlined in the third section of this paper, 
which shows how tuple-sets and recursive “spirals” can be merged into a single structure.  But at 
this point we will merely set forth several lemmas which may prove of value.

Lemma 13.0.  A bijection exists between tuples and “spiral” elements that eventually map to 1.

The following proof is by Michael O’Neill.

Number of levels in the infi-
nite set of “spiral”s relative to 
any given base element

Infinite Lemma 5.0

In the infinite set of “spiral”s 
relative to any given base ele-
ment, number of paths 
defined by any given expo-
nent sequence A = {a2, a3, ..., 
ai}.

Infinite, i.e., there are an infi-
nite number of paths for each 
exponent sequence, as in 
tuple-sets. 

Lemma 7.0

Congruence classes to which 
base element and “spiral” ele-
ments belong

For all i ≥ 2, and for each base 
element y: 
(1) y is an element of a 
reduced residue class mod 2 • 
3(i + 1) - 1;
(2) the elements of the base 
sequence (i.e., “spiral” having 
y as base element) are ele-
ments of a sequence s of all 
reduced residue classes mod 
2 • 3 (i - 1), with s being 
repeated endlessly over all 
elements of the”spiral”.

Lemma 15.85.

Table 1: Some important properties of recursive “spiral”s

Property Value of property Reference
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Proof:
We can construct the set of “spiral” elements that map to 1 by specializing the result of 

Lemma 5.0 to y = 1. By Lemma 3.24, each finite sequence of exponents gives an infinite set of 
exponents, j = j0 + (2 • 3i-1)t, where j0 is the least positive value and t is a parameter.  The one fine 
point is that we must disallow j0 from being 2,  since that would allow loops of 1s.  We can use the 
next higher j for j0.  If we prevent loops, then the set of j will represent unique odd, positive inte-
gers that map to 1, and these odd, positive integers will be all such odd, positive integers, since all 
possible exponent sequences are used.  This set of odd, positive integers can be indexed by the 
exponent sequence and the parameter t.

Likewise, each tuple-set is generated by a given finite sequence of exponents, and contains an 
infinite set of tuples which can be indexed by a parameter t, as in Lemma 6.0.  So, the whole set of 
tuples can be indexed by exponent sequence and the parameter t, just as for the “spiral” elements.

Clearly, a one-one and onto map is formed by equating the corresponding indices. 

The reason the bijection described in Lemma 13.0 is not the desired mapping that would prove 
Conjecture 1 is that it does not prove that the “spiral” elements that eventually map to 1 are, in 
fact, all the odd, positive integers.  

Strategy of “Filling-in” of  Intervals
1. Consider the range element 1.  
2. Consider the level 1 “spiral” elements that map to 1, i.e., consider the base sequence {1, 5, 

21, 85, 341, ...} and its intervals.  Our goal will be to show that, as the number of levels 
approaches infinity,  all these intervals are eventually “filled in” by odd, positive integers that 
eventually map to 1. To do this, we need to show the following:

3. No element of a higher level sequence is “wasted” by being mapped “on top of” one of the 
base sequence elements.  This is proved in Lemma 13.5.

4. No interval of the base sequence is “skipped  over” by successive elements of a higher level 
sequence once that sequence gets started.  This is proved in Lemma 14.

5. The first elements of higher level sequences don’t increase so rapidly that “holes” are left 
behind them.  This is Conjecture 4.

Lemma 13.5.  For all base sequences, and for all levels i ≥ 2 relative to a base sequence, no ele-
ment of a level i sequence is an element of the base sequence.  Thus, in particular, no level i 
sequence, i ≥ 2, is an element of the base sequence relative to 1, i.e., of the base sequence {1, 5, 
21, 85, 341, ... }.

This Lemma is necessary to ensure that no higher level elements are “wasted” in the filling-in 
process as a result of being mapped “on top of” elements of the base sequence relative to 1.

Proof: 
Assume to the contrary that an element of a higher level sequence is an element of a base level 

sequence, and hence maps to the base element via some exponent j.  
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The Structure of the 3x + 1 Function
Then, by Lemma 5.0, so does every other element of that higher level sequence map to the 
base element via an exponent of the same parity as j.  Hence the higher level sequence is identical 
with the base sequence, contrary to hypothesis.  

Lemma 14.0. For any “spiral” at any level i ≥ 1, the sequence of elements of the “spiral” map to 
successive intervals of the base sequence. 

The following proof is by Michael O’Neill.

Proof:
The base sequence relative to n = 1 is:

where k is even.
The base sequence relative to n  > 1 is:

where k is even or odd depending on n.
The initial element of the base sequence relative to n must fall between some pair of elements 

of the base sequence relative to 1.  Assume that the exponent for the n-sequence is odd (even 
works the same way).  Assume that the 1-sequence interval bracketing its start has exponents k 
and k + 2.  Then:

or

Then multiply by
:

which shows that nesting is preserved. 

2k 1–
3

--------------

2kn 1–
3

-----------------

2k 2+ 1–
3

--------------------- 2n 1–
3

--------------- 2k 1–
3

--------------> >

2k 2+ 2n 2k> >

22j

2k 2j 2+ + 22j 1+ n 2k 2j+> >
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The Structure of the 3x + 1 Function
Of course, this Lemma in no way states what the first interval of the base sequence mapped to 
is.  This Lemma also in no way requires that only one element map to a given interval, but that 
does us no harm as far as a proof is concerned.

The following calculations illustrate the truth of Lemma 14.0:
The base sequence relative to 1 is {1, 5, 21, 85, 341, 1365, 5461, 21845, ...}
The level 1 sequence relative to 5 (level 2 relative to 1) is {3, 13, 53, 213, 853, 3413, 13653, 

...}.  At least the first 7  elements of this sequence are elements of successive intervals of the base 
sequence relative to 1.

The level 1 sequence relative to 13 (level 3 relative to 1) is {17, 69, 277, 1109, 4437, 17749, 
...}.  At least the first 6  elements of this sequence are elements of successive intervals of the base 
sequence relative to 1.

Lemmas 13. 5 and 14.0 show that any sequence at any level “does the right thing”, namely, it 
doesn’t waste elements, and it adds at least one element to each successive interval of the base 
sequence relative to 1 once the higher level sequence gets started.  The most difficult task, how-
ever, is to prove that first elements of higher level equences increase “sufficiently slowly”, so that 
no element in the base sequence is “skipped over”.  This would have to be proved (Conjecture 4), 
which would, of course, then prove Conjecture 1.

Conjecture 4.  On the Filling-in of Intervals in the Base Sequence
Every interval in the base sequence relative to 1 is eventually filled by elements  that map to 1. 

(The author will pay $100 for the first correct proof or disproof of this Conjecture provided it 
is not trivially implied by another result.)

We must prove that first elements of higher level sequences increase “sufficiently slowly”.  
Lemma 13.5 relieves us of having to worry about higher level sequences providing “too many” 
elements because Lemma 13.5 assures us that higher level sequence elements cannot map on top 
of other sequence elements.  We begin with an observation:

If the exponent aj = 1, the x producing one iteration of the 3x + 1 function will be less than the 
range element y it produces — the only exponent when this occurs.  This is in our favor, of course.  
Otherwise,  x will be greater than the base element, except in the case when y = 1. We need to 
prove, in Conjecture 4, that x will never be “too large”.  Let us consider the “spiral” whose base 
element is 13, namely, the sequence {17, 69, 277, 1109, 4437, 17749, ....}, which produces 13 via 
the exponents 2, 4, 6, 8, 10, 12, ... respectively.  17 is larger than 13, but not a great deal larger.  

An approach to a proof might be to show that the rate of increase of the first elements in each 
level i + 1 sequence  is less than the rate of increase of the number of interval elements in succes-
sive intervals in the base sequence. 

We should keep in mind the following:
The author has heard, from a source he considers reliable, that as of Nov., 1998, Conjecture 1 

had been verified for all odd, positive integers up to about 56 quadrillion, i.e., 56 • 1015.
Since the number of elements in successive intervals of the base sequence relative to 1 are 22, 

24, 26, ... this means that,  at least the first 26 intervals in the base sequence are known to be 
filled with odd, positive integers that map to 1:
71



The Structure of the 3x + 1 Function
Now since, by Lemma 5.0,  the structure of computations mapping to any range element coun-
terexample is similar to that of computations mapping to 1,  it seems plausible that a similarly 
long sequence of intervals must be completely filled in by odd, positive integers that map to the 
base odd, positive integer for the smallest of the counterexamples.  Therefore the odd, positive 
integers that map to 1 must somehow manage to “leap over” this long sequence of filled-in coun-
terexample intervals before the odd, positive integers that map to 1 can “find a place” again.  We 
know this leap must occur because the number of levels is infinite, and the number of odd, posi-
tive integers in a given point of the “spiral” at any level is infinite.  The bounds on the distances 
between successive elements of a sequence, plus Lemma 14.0,  seem to argue against such a thing 
being possible.  Perhaps a proof can be constructed from this observation alone.

Fig. 5.  Illustration of part of the “filling-in” process.

A conjecture that would imply the truth of Conjecture 4 is the following.

Conjecture 5.  Let y be any base element, and let x, x′ be successive elements of the base 
sequence (“spiral”) relative to y.  Then all elements of the interval between x and x′ are filled by 
“spiral” elements at no higher level than 3x + 2 relative to y.

The author will pay $100 for the first correct proof of this Conjecture.  

Fig. 5.3. illustrates portions of levels 0, 1, and 2 relative to the base element 1.

22( )1( ) 22( )2( ) 22( )3( ) … 22( )26( )+ + + + 22( )27 1–
22 1–

------------------------ 1– 254 56 1015⋅< <=

...
1 5 21 85

3 13 53 213

17 69

27
25

2422

21 23
72
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            Fig. 5.3.  Illustration for Conjecture 5.

Strategy of Proving There Is No Minimum Counterexample
We now prove several lemmas which might enable us to prove, using arguments based on the 

recursive “spiral”s structure, that there is no minimum counterexample.

Lemma 15.0.  The parity of exponents mapping from successive range elements of any “spiral” 
alternates.  The alternation sequence is not affected by the presence of multiples-of-3 in the “spi-
ral”. 

Proof:
The following proof is by Michael O’Neill.
The difference between two successive elements of the “spiral” with base element b is:

where, for a given “spiral”, j is either always even or always odd.  Since even (odd) powers of two 
are congruent to 1 (2) mod 3, an even (odd) “spiral” will have the residue sequence 1, 2, 0, 1, 2, 0, 
... (2, 1, 0, 2, 1, 0, ...).  The starting point of the sequence will depend on b.

Nothing maps to an element with residue 0 mod 3.  Here are the elements mapping to the res-
idues 1 and 2:

 1

1 5          21            85           341            1365 ...

1  5   21   85 ...     3  13   53   213 ...   113  453            ...               ...

0

1

level

2   

...

b 2j 2+⋅ 1–
3

---------------------------- b 2j⋅ 1–
3

---------------------– b 2j 4 1–( )⋅
3

----------------------------- b 2j⋅= =

2j 3n 1+( ) 1–
3

---------------------------------- 3 2jn⋅ 2j 1–+
3

-----------------------------------=

2j 3n 2+( ) 1–
3

---------------------------------- 3 2jn⋅ 2j 1+ 1–+
3

------------------------------------------=
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For the right-hand sides to be integral, the first requires j be even and the second requires it 
odd.  So, the exponent sequence for an even (odd) “spiral” will be even, odd, skip, even, odd, 
skip, ... (odd, even, skip, odd, even, skip, ...).  This proves the Lemma.  

The next  lemma shows that, for any given range element y at any level i > 2, the smallest 
exponent produced by a multiple-of-3, is completely predictable.

Lemma 15.5. For each element y of the two top rows {5, 11, 17, 23, ... } and {1, 7, 13, 19, ...} of 
all 2-level tuple-sets, and hence for each y in the range of the 3x + 1 function, the smallest expo-
nent mapping to y by a multiple-of-3 is given by the following table:

Proof:

The proof for each case is similar.  We give the proofs for only two cases.

Case y ≡ 5 mod 3 • 2 • 31 

We begin by observing that 3 maps to 5 via the exponent 1.  Then if y is the kth element from 
5 such that the distance between successive elements is 3 • 2 • 31, then the element that maps to y 
is, by Lemma 1.0 (b), 3 + (3 • 2 • 21)k,  so we write:

Table 2: 

y

Smallest exponent a2 such 
that

 x odd

y ≡ 5 mod 3 • 2 • 31 1

y ≡ 11 mod 3 • 2 • 31 5

y ≡ 17 mod 3 • 2 • 31 3

y ≡ 1 mod 3 • 2 • 31 6

y ≡ 7 mod 3 • 2 • 31 2

y ≡ 13 mod 3 • 2 • 31 4

3 3x( ) 1+
2a2

----------------------- y=
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The Structure of the 3x + 1 Function
hence

This is an equality, and the proof is obtained by simply reversing the sequence of steps.

Case y ≡ 7 mod 3 • 2 • 31 
Since 9 maps to 7 via the exponent 2, we write, again utilizing Lemma 1.0 (b):

hence

This is an equality, and the proof is obtained by simply reversing the sequence of steps.

Lemma  15.75. In the following table, let the values of y be the minimum residues of the reduced 
residue classes mod 18  to which a base element of a recursive “spiral” must belong (see Lemma 
15.5).  Let 1, 2, 3, ..., 20 in the top horizontal column denote exponents.  Then:

(a) the value in the cell defined by any y and any exponent is the minimum residue of the 
reduced residue class mod 18  of the “spiral” element that maps to y in one iteration of the 3x + 1 
function.  Furthermore,

(b) the table holds for all exponents congruent mod 18.  Thus, e.g., if y is a base element that 
is congruent to 7 mod 18, then all “spiral” elements x mapping to y via any exponent congruent to 
10 mod 18, are congruent to 13 mod 18.

Table 3: Description of  all “spiral” elements mapping to any base element y in one iteration 
of 3x + 1 function (see notes immediately following table

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 5 * 13 17 * 7 11 * 1

5 * 13 17 * 7 11 * 1 5 *

7 * 1 5 * 13 17 * 7 11 *

11 7 11 * 1 5 * 13 17 * 7

3 3 3 2 21⋅ ⋅( )k+( ) 1+
21

------------------------------------------------------- 5 3 2 31⋅ ⋅( )k+=

9 32 4k⋅ 1+ + 10 32 4k⋅+=

3 9 3 2 22⋅ ⋅( )k+( ) 1+
22

------------------------------------------------------- 7 3 2 31⋅ ⋅( )k+=

27 32 8k⋅ 1+ + 28 32 8k⋅+=
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The Structure of the 3x + 1 Function
Notes: 
(1) Columns 19 and 20 are included simply to show the repetition of values in columns 1 and 

2, respectively, as required by the Lemma.
(2) “*” denotes “spiral” elements that are multiples of 3. These cannot by mapped to (Lemma 

0.2), although they map to y.

Proof:
(a) Follows directly from calculation.
(b) Follows from the fact that 2k ≡ 2k + (φ(18) = 6) mod 18, for all k ≥ 1. 

Remarks
(1)  The above table describes the infinite set of recursive “spiral”s relative to any base ele-

ment, including base elements which are counterexamples.  Every path in such a set can be repre-
sented by a sequence of cells, as can the “inverse” of any path (in which we begin with the last 
element in the path). 

(2) The above Lemma makes clear that not only does the existence of a counterexample imply 
the existence of an infinity of counterexamples (Lemma 5.0), it also implies the existence of an 
infinity of counterexamples in each of the reduced residue classes mod 18.

(3) The above Lemma also makes clear that, at least up to congruence classes, there is no dif-
ference between the behavior of a counterexample and of a non-counterexample.  Any path 
through a set of infinite “spiral”s whose base element is a counterexample, has a duplicate in a 
path through  a set of infinite “spiral”s whose base element is a non-counterexample. (This fact is 
also implied by the definition of tuple-set.)

(4) The similarity of the above table to the tables summarizing extensions of top rows in 3-
level tuple-sets, in the sub-section “Generating Level-(i + 1) Top Rows from Level-i Top Rows” 
on page 37, suggests that for each 2 • 3i – 1, i ≥ 2, there exists a pair of such tables, one for tuple-
sets and one for recursive “spiral”s.  These tables may make it possible to prove that every tuple  
in every tuple-set is contained in the infinite set of “spiral”s whose base element is 1.  This would 
imply the truth of Conjecture 1.

Lemmas 15.0 and 15.75  suggest a generalization to all i ≥ 2, a generalization which turns out 
to be true, as the next lemma shows. 

Lemma 15.85.  For each i ≥ 2, and for each base element y, the successive elements (ignoring 
multiples of 3) in any “spiral” whose base element is y consist of elements from a fixed sequence 
of all reduced residue classes mod 2 • 3i – 1, the same sequence of classes being repeated endlessly 
in any given “spiral”.

13 17 * 7 11 * 1 5 * 13 17

17 11 * 1 5 * 13 17 * 7 11

Table 3: Description of  all “spiral” elements mapping to any base element y in one iteration 
of 3x + 1 function (see notes immediately following table

y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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Proof:
Follows directly from Lemmas 7.1 and 7.3. 

Lemma 15.87.  For each base element y, and for each exponent sequence A, A maps to an infinite 
number of elements of the base sequence relative to y. 

Proof: Follows directly from Lemma 15.85, which says, in effect, that, for any i ≥ 2, there 
exists an infinity of elements in the base sequence relative to y that are the last elements of i-level 
tuples in the tuple-set TA  defined by A. 

Conjecture 12. On the Existence of Paths With the “Less-to-greater” Property
      Let S be the infinite set of recursive “spiral”s relative to a base element y. For each possible 
base element (i.e., for each range element) there exists such an S.  Let {S} denote the set of all 
such S. Then, by Lemma 15.0,  for each “spiral” in each such S,  one of the following sequences 
describes the successive “spiral” elements:

3, o, e, 3, o, e, 3, o, e, ...;
o, e, 3, o, e, 3, o, e, 3, ...;
e, 3, o, e, 3, o, e, 3, o,...;
3, e, o, 3, e, o, 3, e, o, ...;
e, o, 3, e, o, 3, e, o, 3,...;
o, 3, e, o, 3, e, o, 3, e,...;

where “e” means that even parity exponents map to the “spiral” element, “o” means that odd par-
ity exponents map to the “spiral” element, and “3” means that the “spiral” element is a multiple of 
3, and hence, by Lemma 0.2, no exponents map to it. 

Now in each “spiral” in each  S in {S}, let the value  2n/3  be assigned to each branch which 
represents division by 2n.  Thus, e.g., 2/3 will be assigned to each branch that represents division 
by 2, and 4/3 will be assigned to each branch that represents division by 22 = 4.  Let the value 1 be 
assigned to each 3 in each “spiral”.  The rationale lying behind these values is that, e.g., if (3x + 
1)/21 = y, then x is about (2/3)y (the 1 becomes negligible for large x), and if (3x + 1)/22 = y, then 
x is about (4/3)y (the 1 again neglible for large x).  And so on for all exponents.  

Then, for each S in {S} except the one whose base element is 1, there exists a path (succession 
of branches) from the base element such that, if the branch values are multiplied together, the 
result will be less than 1.  

The author will pay $100 to the first person who proves or disproves this conjecture.
A proof of this Conjecture would constitute a proof of Conjecture 1 because it would mean 

that there is no minimum counterexample.  Since each node (except a multiple of 3) is always 
mapped to by all even or all odd exponents (Lemma 5.0), then the existence, in each S except the 
S having 1 as base element, of a path the product of whose element values is less than 1 would 
mean that, for any assumed minimum counterexample, there is another, smaller counterexample.

It is conceivable that a proof might be obtained by showing that the attempt to construct a 
counterexample to what the Conjecture asserts, will never terminate.  This proof might be accom-
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plished in conjunction with a computer program that would generate assignments of the above 
sequences to “spirals”, then test path products.

The answer to the following question might prove useful in proving there is no minimum 
counterexample.

Question 2. On the Number of Sequences, For Each i,  Having the “Less-to-greater Property 
Let P(i) = {p = (t2)(t3)...(ti) | tj = 2h/3, 2 ≤ j ≤ i, h ≥ 1,  p < 1}.  Let |P(i)| denote the cardinality of 
P(i).  What is |P(i)| for each i ≥ 2?

The author will pay $75 for the first correct answer to this question.
Question 2 asks for the number of exponent sequences of length 1, 2, 3, ... such that, for each 

tuple defined by such a sequence, x, the first element of the tuple, is less than y, the last element of 
the tuple.  The p are the path products, as described in Conjecture 12.  It is important to keep in 
mind that different sequences may produce the same path product.  But although each of these dif-
ferent sequences may produce different x, y, for all the sequences it will be the case that x < y.

It is tempting to hope that for some i, |P(i)|  ≥ 2 • 3i - 1, because then (we may hope to argue), 
the number of exponent sequences of length i - 1 that yield path products < 1,  is ≥ the number of 
equivalence classes of buffer exponents (see Lemma 7.1) and thus (we may hope to argue) we can 
be assured that (1) for each y, there exists an exponent sequence such that x, under this sequence, 
yields y, and that (2) x is < y, thus showing that there can be no minimum counterexample.  Unfor-
tunately, we have no reason to believe that if |P(k)|  ≥ 2 • 3i- 1, then there must be at least one 
exponent sequence whose path product is < 1 for each equivalence class of buffer exponents. All 
such exponent sequences could be in the equivalence class whose minimum buffer exponent is 
2 • 3i - 1 - 1.

A Way to Reduce Computation Time in Computer Testing of Conjecture 1
The concept of a path product, along with Lemma 1.0,  leads to the following technique for 

computer testing  of Conjecture 1,  a technique that would appear to  drastically reduce the 
amount of computation time required.  The reasoning is as follows.

If a counterexample exists, then there is a minimum counterexample.  Consider any sequence 
A of exponents such that (a) the path product of the exponents is < 1 and such that (b) the first 
exponent is 1.  These two conditions ensure that the first element of each tuple in the tuple-set TA 
defined by A, is a potential minimum counterexample.  (If the first exponent is not 1, then the sec-
ond element of each tuple is less than the first, hence the first element  cannot be a minimum 
counterexample.)  

Now, let C1 denote the set of all sequences A of length 1 fulfilling conditions (a) and (b).  
(There is only one such sequence, namely {1}.)   Let C2  denote the corresponding set of 
sequences of length 2.  (There are two such sequences, namely, {1, 1} and {1, 2}.)  And similarly 
for C3, C4, ...

The sequences in Ci + 1  are extensions of those in Ci .  Let A be a sequence in Ci, and A′ a 
sequence in Ci + 1 which is an extension of A.  Then, by Lemma 1.0, the distance between first ele-
ments of tuples in A′ consecutive at level (i + 1) (d(1, (i + 1))) is greater than that between  first 
elements of tuples in A consecutive at level i (d(1, i)).  In particular, if the sequence defining  Ci  is 
{a2, a3, ..., ai}, then the distance between first elements of tuples consecutive at level i is given by 
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and the distance between first elements of tuples consecutive at level (i + 1) is given by

Now, for each i, there exists an algorithm to determine Ci, because there is an upper bound on 
the sum of exponents in A such that A can meet condition (a).  For example, 2 2 i  is such a bound, 
because (22/3)(22/3)...(22/3) > 1 (i terms in product).

As of the end of 1998, Conjecture 1 was reported to have been tested for all odd, positive inte-
gers to about 56 quadrillion (56 × 1015).  Therefore a procedure for further testing is as follows: 

(1) Compute C1, and for each A in C1,  make a list of first elements of all tuples in the tuple-
set TA.  (The list is infinite, but is easily described, given the distance function d(1, 1).)  Repeat for 
C2.  If L′ is the list corresponding to the tuple-set TA′, where A′ is an extension of a sequence A in 
C1, then L′  will be a proper subset of L,  and similarly for all i, for the reason given above in con-
nection with the discussion of Ci + 1, Ci. 

(2) Continue this process until a k is reached such that the smallest element in any of the lists 
L for Ck is larger than the largest integer that previous testing has confirmed to satisfy Conjecture 
1.  The elements of all the lists for Ck - 1  are the remaining candidates for smallest counterexam-
ple.  Test these up to the limits of size of integer the testing software allows.

To get a rough estimate of the computation time saved once Ck - 1 is established, we note that 
log2 of 28 quadrillion is 54.  So we need to test a subset of all sequences of length 54.  (But for 
each i + 1, we need only test a proper subset of extensions of sequences of length i.)  The distance 
between successive candidates for testing is therefore at least 2 • 254.

Definition of finite sequence of parities of exponents.  A finite sequence of parities (parity 
sequence) is simply a finite sequence <p1, p2, ..., pn>, where pi is either “even” or “odd”.  Such a 
sequence represents an infinite class of tuple-sets, namely, the class consisting of all tuple-sets 
defined by exponents having the sequence of parities given.  Thus one tuple-set defined by the 
parity sequence <even, odd, odd> is <4, 1, 3>.

Lemma 16.0.  Every finite sequence of parities of exponents occurs in the structure of all “spi-
rals” mapping directly or indirectly to a given base element.

Proof:
Given any finite sequence of parities of exponents, we can, by Lemma 15.0,  always find, in 

any “spiral”, an element u which is mapped to by all exponents of the parity of the last element of 
the sequence.  We can then find, in the “spiral” having u as base element, an element v having the 
parity of the next-to-last element of the sequence, etc. 

Strategy of “Filling-in” of Residue Classes
The top rows of all 2-level tuple-sets are {1, 7, 13, 19, ... } and {5, 11, 17, 23, ... } (Lemma 

3.057).  The elements of the first row are mapped to by all even  exponents, and the elements of 
the second by all odd exponents.  These facts, and Lemma 15.0, suggest a “filling-in” strategy for 
tuple-sets that is analogous to the one described above for recursive “spiral”s.  For, since, by 

d 1 i,( ) 2 2
a2 2

a3 … 2•
ai•••=

d 1 i 1+( ),( ) 2 2
a2 2

a3 … 2•
ai 1+•••=
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Lemma 15.0, the parity of exponents mapping to any base element of a “spiral” alternates, this 
means that any “spiral” in the infinite set of “spirals” whose base element is 1, “fills in” an infinite 
number of “locations” in the above two rows.  For example,  the base sequence relative to 1 is {1, 
5, 21, 85, 341, ... }.  So 1 and 85  “fill in” the locations 1 and 85 in {1, 7, 13, 19, ... }.  5 and 341 
fill in the locations 5 and 341 in {5, 11, 17, 23, ... }.  Elements of every higher-level “spiral” fill in 
additional locations in these two rows.  Each “spiral” fills in an infinite number of locations in 
each of the two rows.

Similar questions regarding this filling-in process arise as for the recursive “spiral”s case.

Strategy of Using a Topology Defined on “Spiral”s
1. We begin by defining a topology for “spirals”.  To do this, we will follow one of the defini-

tions of a topology given in (Encyclopedic Dictionary of Mathematics 1977), Article 408, “Topo-
logical Spaces”.

“Let X be a set.”
We take as our set of “points”, the set of odd, positive integer range elements, or rather, the set 

of 1-tuples containing these odd, positive integers.  This excludes the odd, positive integers that 
are multiples of 3 (Lemma 0.2), but with no loss in generality, since every multiple of 3 maps to a 
range element in one iteration (Lemma 0.4). 

We identify each range element with the 1-tuple containing the range element.  Thus, e.g., the 
range elements 1, 5, 7 are identified with the tuples <1>,  <5>, <7>, respectively.  

Next, we must define the neighborhood system of each point x.  A neighborhood of a point 
(i.e., of a range element) x will be all finite-tuples (a) whose last element is x; (b) all of whose ele-
ments are range elements such that element k  ≥ 1 maps to element k + 1 in one iteration of the 3x 
+ 1 function; and (c) which consist of 1 or 2 or 3 or , ..., or n elements, for any n ≥ 2.  We will 
sometimes refer to such a neighborhood as an (n-1)-neighborhood (because n - 1 is the number of 
iterations represented by the tuple).  Thus, the tuple <3, 5, 1> is an element of the 2-neighborhood 
of <1>. So is the element <5, 1>, and, of course, the element <1>. 

We must now show that such a set of neighborhoods fits the definition of neighborhood sys-
tem as required for a topological space.  

“A neighborhood system for X is a function U that assigns to each point x of X, a family U(x) 
of subsets of X subject to the following conditions:”

“(1) x ∈ U for each U in U(x)”;
This condition  is met because x is an element of the 1-tuple which is an element of all neigh-

borhoods of x by definition.

“(2) If U1, U2 ∈ U(x), then U1 ∩ U2  ∈ U(x);”
If m - 1  ≤  n - 1 then the intersection of an (m -1)-neighborhood and an (n - 1)-neighborhood 

is the (m - 1)-neighborhood of x.

“(3) If U ∈ U(x), and U ⊂  V,  then V ∈ U(x);”
Each (m - 1)-neighborhood is a subset of all (n - 1)-neighborhoods such that (n - 1) ≥ (m - 1).
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“(4) For each U in U(x), there is a member W of U(x) such that U∈ U(y) for each y in W.”  
In other words, for each neighbor U of a point x, there exists a neighborhood W of x such that 

U is a neighborhood of each point in W.
The following table summarizes the proof:

2. The above topology covers all range elements, including those of all counterexamples that 
exist, by Lemma 6.0.  But if a counterexample exists, then all of its neighborhoods are disjoint 
from the neighborhoods of 1.  But by definition of a topological space, all points have at least one 
neighborhood in common, namely, the neighborhood which is the space itself.  Can we therefore 
conclude that no counterexamples exist?

Arguments Against “Approach Via a Topology Based on ‘Spirals’”
Following are some of the arguments that have been made against this approach.

Argument 1. “If a counterexample exists, then you simply have a disconnected topological 
space, which is perfectly possible.”

Reply: But if so, then it is a disconnected space in which no neighborhood of the base element 
1 contains any element of a neighborhood of any counterexample.  Is such a thing possible in a 
topological space, even one that is disconnected?

Argument 2. “In each infinite set of ‘spiral’s relative to a given base element, there exists an 
infinite number of points, namely, range elements in all higher level spirals, that do not have any 
neighborhoods that contain the base element.  Is it possible in a topological space for some points 
not to be contained in any neighborhoods of other points?”

Table 4: Illustration for proof that “Spirals” topology satisfies condition (4) of topological 
spaces 

Neighborhood U of x Neighborhood W of x

1-neighborhood of <x>, i.e., all tuples <x> 
and <w, x>

0-neighborhood of <x>, i.e., the tuple <x>

2-neighborhood of < x>, i.e., all tuples <x>, 
<w, x> and <v, w, x>

1-neighborhood of <x>, i.e., all tuples <x> 
and <w, x>

3-neighborhood of <x>, i.e., all tuples <x>, 
<w, x>, <v, w, x>, <u, v, w, x>

2-neighborhood of <x>, i.e., all tuples <x> 
and <w, x> and <v, w, x>

4-neighborhood of <x> i.e., all tuples <x>, 
<w, x>, <v, w, x>, <u, v, w, x> and <t, u, v, w, 
x>

3-neighborhood of <x>, i.e., all tuples  <x>, 
<w, x>, <v, w, x>

... ...
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Argument 3. “If this were a proof of Conjecture 1, someone would have thought of it long 
ago.”

Reply:  If everyone thought that, then perhaps everyone will overlook a simple solution to the 
Problem.

Argument 4. “Under this topology, a point has several different representations, depending on 
which neighborhood it is considered to be in, e.g., <1>, <5, 1>, etc.  You must show that no loss of 
generality occurs as a result of these multiple representations.”

Reply: But since each iteration of the 3x + 1 function produces one and one result from one 
and only one input, there is no ambiguity about what each representation denotes.

Argument 5. “How do you know you are not defining an infinity of different topologies, and 
then claiming that they are all the same topology?”

Reply: Only because I am following the definition of a topology.

Argument 6. “If this were a proof of Conjecture 1, it would imply that the Halting Problem is 
solvable, which it is not.”

Reply: It would imply the Halting Problem is solvable only if all programs produced computa-
tion structures which were “as self-similar as” the “spiral”s structure is.  But there seem to be 
many programs whose computation structures are not at all as self-similar as that of “spirals”.  For 
example, consider the following program, written in pseudo-Pascal, for computing (successive 
approximations to) π unless a certain condition occurs:

i := 1;
while i > 0 do
begin
     Compute and store the ith digit of the decimal expansion of π.  
     If the previous 50 stored digits are all equal to 5, then 
          begin
          j := 1;
         while j > 0 do  j := j + 1;
         end;
      i := i + 1;
end;

Argument 7. “This proof applies to any base element!  Therefore it does not prove Conjecture 
1.”

Reply:  But part of the definition of a topology is the specification of the set on which the 
topology is to be defined.  This was not done above because the author assumed it was obvious.  
So, the proof works as long as we make clear that the set on which the topology is defined is the 
set of odd, positive integers.”
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Strategy of Using Topological Ideas Developed for the Mathematical Semantics of 
Programming Languages

An approach might be based on the ideas of Dana Scott (co-discoverer, with Christopher Stra-
chey) of the mathematical semantics of programming languages.  In the late sixties, Scott devel-
oped a mechanism for defining certain classes of computable functions as limits of sequences of 
approximations.  It may be possible to define an inverse function G(1, m) of the 3x + 1 function 
and see if, in the limit, it mapped to all the odd, positive integers.  Here, 1 is the terminating point 
we are trying to prove is always reached, and m is a positive integer which is an encoding of an 
“address” of a point on some “spiral”.   G(1, m) returns the odd, positive integer at that address.  
At least one mathematician has remarked that if this approach could yield a proof of Conjecture 1, 
someone would have discovered the proof long ago.  
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Section 3.  A Single Structure Combining Tuple-sets and Recursive 
“Spirals”

It is natural to ask if tuple-sets and recursive “spirals” can be combined into a single structure.  
This would increase the likelihood of our proving Conjecture 1 by the “Strategy of Proving Exist-
ence of a Certain Map Between Tuples and Paths in “Spirals”” on page 68.   The author must con-
fess that he spent an inordinate amount of time trying to discover such a mapping by trying to 
figure out where, in the infinite set of “spirals” having base element 1, each tuple “belonged” — 
in other words, by trying to map tuples onto paths in this set of “spirals”.  A much better idea ini-
tially (which, after the fact, is obvious) is to proceed in exactly the opposite direction: to try to dis-
cover where, in the set of all tuple-sets, each infinite set of “spiral”s (regardless of its base 
element) “belongs” or “fits in”.  If we view the matter in this way, we see immediately that each 
element (except a multiple of 3) of each  tuple in each tuple-set is the base element of an infinite 
set of recursive “spirals”!  (Recall that multiples of 3 only occur at level 1 in any tuple-set.)  An 
awesome structure, indeed!  Of course, we still retain the converse goal, namely, that of discover-
ing where, in the set of infinite “spirals” whose base element is 1, each tuple in  each tuple-set 
“belongs” or “fits in”, always keeping in mind that, if a counterexample exists, this goal will not 
be achievable, in which case our goal then becomes that of discovering where, in the set of all 
possible infinite sets of “spiral”s, each tuple in each tuple-set belongs, or fits in.

In any case, we can say, now that we know how recursive “spirals” fit into tuple-sets, that 
recursive “spiral”s show how tuple-sets are related to each other, and that answers a question 
which has confronted the author since he first discovered tuple-sets.

 As an aid in  conceiving the structure resulting from the insertion of an infinite set of “spirals” 
at each element of each tuple in each tuple set defined by a sequence of length ≥ 2, we may imag-
ine each infinite set of “spiral”s as lying in a plane perpendicular to the page, the page containing 
(some of) the tuples in a tuple-set.  The base element (which is a tuple element) of each infinite set 
of spirals is, in turn, an element of another infinite set of “spiral”s, namely, that established by the 
tuple element mapped to by the base element tuple element in accordance with the sequence of 
exponents that define the tuple-set.

But to show where tuples fit into “spirals”, we need to “split the nodes”, i.e., “split the base 
elements” in each infinite set of “spirals” having a given base element.  That is, we must remem-
ber that each element of a tuple in a tuple-set (except the first element) is mapped to by only one 
element and, in turn, may or may or may not have one or more extensions in that tuple-set.  In an 
infinite set of “spirals”, on the other hand, an infinite set of elements maps to each base element 
(node) (unless the node is a multiple of 3).  So in order to bring the form of such an infinite set 
into closer conformity with the form of tuple-sets, we must “split” each node (base element) y into 
an infinite set of nodes each of which is equal to y.  An example is shown in the following figures.
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Fig 7. Example of the merging of tuple-sets and recursive “spiral”s: first stage.
1, 3, 5, 7, ... are exponents of 2.  
The line 5, 11, ... represents the top row of every 2-level tuple-set defined by an odd exponent.
The other lines running diagonally into the page to the right represent bottom rows of 2-level 

tuple-sets.  
Thus, e.g., we see the first two tuples in each of the tuple-sets defined by A = {1}, {3}, {5}, 

{7}.  These tuples are, respectively, <3, 5> and <7, 11>; <13, 5> and <29, 11>; <53, 5> and <117, 
11>, and <213, 5> and <469, 11>.
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Fig 7. 5. Example of the merging of tuple-sets and recursive “spiral”s: second stage, 
showing the “splitting of nodes” in recursive “spiral”s (see Fig. 7.).

Finding “Locations” of Range Elements in Tuple-sets
We can now attempt to correlate the “locations” (defined below) of a given odd, positive inte-

ger  u in the set of all tuple-sets, with its “locations” in the set of all recursive “spirals” relative to 
a given base element, in particular, the base element 1.  If this correlation allows us to show that 
every assumed counterexample has a “location” in the infinite set of recursive “spirals” having 
base element  1 (which would be a contradiction) then we will have proved Conjecture 1.

To begin our search for this correlation, let us ask a seemingly meaningless question, namely, 
“Where is the integer n mod m?” To show that, from the right point of view, the question is not 
meaningless, we recall the fundamental fact of elementary congruence theory, namely, that for 
each non-negative integer n, and for each modulus m (also a non-negative integer), there exists an 
r such that n ≡ r mod m, where r is a minimum residue mod m.  This congruence in turn means 
that there exists a non-negative integer k such that n = r + km.   

We can therefore say that, for each modulus m, each n has a “location” which is defined by the 
ordered triple (r, k, m).  (This definition is a case of “what” = “where”: what the value of a vari-
able n is, is a function of where it is, i.e., of its location (r, k, m).)

Now, the distance functions established in Lemmas 1.0 and 1.1 in  effect tell us that each 
sequence A of exponents, A = {a2, a3, ..., ai}, establishes a sequence of moduli, namely, the mod-
uli
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where lcm denotes the least common multiple.
Let y be a range element in any tuple in the tuple-set  TA.  Then for each of these moduli, y has 

an address, (rj, kj, mj), where 1 ≤ j ≤ i.  This is the same thing as saying that y is an element of 
many tuples in  TA, which is the same thing as saying that y is an element of many “spiral”s 
defined by elements of tuples in TA.  (Note: as of yet, we do not know a general formula for com-
puting the rj  except in the case of j = i.)

Thus we would like to define a function F which, for any tuple-set TA, and for any range ele-
ment y, will return  all the locations of y in TA, i.e., all the tuples containing y,  and the index in 
each tuple of y, each such location being simultaneously the location of an element in a recursive 
“spiral”.  Formally, F(A, j, y) = (rj, kj, mj), where A = {a2, a3, ..., ai}, 1 ≤ j ≤ i, y is any range ele-
ment, and (rj, kj, mj) is as defined above.  Clearly, any given y has an infinite number of locations, 
even if i is fixed, because y is mapped to by an infinity of exponents, hence y is an element of a 
different tuple in each of an infinity of tuple-sets.

Let us consider a few examples of the function F.  If a2 is any even exponent, then
 

and

 (Note that a value of (rj, 0, mj) means that r is a minimum residue mod mj.)
For A = {2, 1, 1}, j = 3, y = 29, we have 

F(A, 3, 29) = (11, 1, 2 • 3(3 - 1)).
Now let us ask: What is the unique characteristic of any counterexample?  Answer: that it 

never appears in the infinite set of “spiral”s whose base element is 1.  Thus if we can use the func-

mi 2 3i 1–⋅=

mi 1– lcm 2 3i 2– 2, ai⋅( )=

mi 2– lcm 2 3i 3– 2, ai 1– 2ai⋅( )=

m1 2 2a22a3…2ai⋅=

F a2{ } 1 1, ,( ) 1 0 2 2
a2•, ,( )=

F a2{ } 2 1, ,( ) 1 0 2 32 1–•, ,( )=
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tion F to show that every assumed counterexample is an element of the infinite set of spirals hav-
ing base element 1, this contradiction will give us a proof of Conjecture 1.

We conclude with the observation that each element y in the infinite set of recursive “spiral”s 
relative to a given base element, also has a “location” if it is in that infinite set — a location  that 
can be specified by the sequence of exponents that lead from the base element to y. Note that this 
sequence is the reverse of the sequence that would lead to the base element from y in a tuple-set. 

Thus, we can label each of the elements in an infinite set of recursive “spiral”s relative to a 
base element, by one or more of the “location”s of that element in one or more tuple-sets, and, 
conversely, we can label any element of a tuple by one or more of the “location”s  of that element 
in the infinite set of recursive “spiral”s relative to one or more base elements.

List of Possible Strategies for Proving Conjecture 1
Following is a list of possible strategies for proving Conjecture 1 using tuple-sets and recur-

sive “spiral”s.  Some of these strategies are closely related.

Table 5: Most Promising Strategies (in the Author’s Opinion) for Proving Conjecture 1 (See 
index under “strategy...” for page numbers of discussion of each strategy)

Possible Strategy

The “Pushing-Away” Strategy

The “Filling-in” Strategy

Proving that the first i-level tuple of every i-
level tuple-set is an n-t-v-1

Proving that at least one tuple-set containts 
only n-t-v-1s, or only n-t-v-cs

Proving there is at least one i-level first tuple 
of an i-level tuple-set which is both an n-t-v-1 
and an n-t-v-c, a contradiction

Proving that, for all i, the last element of the 
first i-level tuple of all i-level tuple-sets maps 
to 1

Finding a map from the set of tuples in all 
tuple-sets, to the set of paths in the infinite set 
of “spiral”s whose base element is 1
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Table 6: Less Promising Strategies (in the Author’s Opinion) for Proving Conjecture 1  (See 
Index under “strategy....” for page numbers of discussion of each strategy.)

Possible Strategy

Proving there is no minimum counterexam-
ples (using recursive “spiral”s)

Defining a topology on “spiral”s and showing 
it allows only one infinite set of “spiral”s, 
namely, that whose base element is 1

Employing some of the ideas of Dana Scott’s 
mathematical semantics of programming lan-
guages
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Appendix A — Proof of Lemma 1.0

Proof:
The proof is by induction.

Proof of Basis Step for Parts (a) and (b) of Lemma 1.0
Let tj and ts be the first and second tuples, in the obvious linear ordering of tuples based on 

their first elements, which are consecutive at level i = 2 in TA.  (See Fig. 3 (1).)

Fig. 3 (1).  Illustration for proof of Basis Step of Lemma 1.0.

Then we have:

                                                                                                                                                 (3.0.1)

                                                       

level

1

2

3

4

d(2, 2) = 2.31

tuple tj

tuple ts

(1, 2) = 2
a 2d

3tj1
1+

2a2
----------------- tj2

=
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and since, by definition of d(1, 2),

we have:

                                                                                                   (3.0.2)

Therefore, since, by definition of d(i, i), 

we can write, from (1.0.1) and (1.0.2):

By elementary algebra, this yields:

Now d(2, 2) must be even, since it is the difference of two odd numbers, and furthermore, by 
definition of tuples consecutive at level i, it must be the smallest such even number, whence it fol-
lows that d(2, 2) must = 3 · 2,  and necessarily 

A similar argument establishes that d(2, 2) and d(1,2) have the above values for every other 
pair of tuples consecutive at level 2.

Thus we have our proof of the Basis Step for parts (a) and (b) of Lemma 1.0.

Proof of Induction Step for Parts (a) and (b) of Lemma 1.0

Assume the Lemma is true for all levels h, 2 ≤ h ≤ i.

ts1
tj1

d 1 2,( )+=

3 tj1
d 1 2,( )+( ) 1+

2a2
-------------------------------------------- ts2

=

tj2
d 2 2,( )+ ts2

=

3tj1
1+

2a2
----------------- d 2 2,( )+

3 tj1
d 1 2,( )+( ) 1+

2a2
--------------------------------------------=

2a2d 2 2,( ) 3 d 1 2,( )⋅=

d 1 2,( ) 2 2
a2•=
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Let  tj, tk be tuples consecutive at level i, and let tj, tf  be tuples consecutive at level i+1.  (See 
Fig. 3 (2).)

Fig. 3(2).  Illustration for proof of Induction Step of Lemma 1.0.

Then we have:

and since, by definition of d(i, i), 

level

1

2

3

i

i + 1

tuple
tj

tuple
tk

tuple
tf

d(i+1,i+1) = 2·3i

tji

tji 1+

3tji
1+

2ai 1+
----------------=

d(i, i)=2·3i-1

d(1, i) =

2 2a22a3…2ai⋅

tfi 1+
tji 1+

d i 1 i 1+,+( )+=

tfi
tji

g 2 3i 1–⋅ ⋅+=

3tji
1+

2ai 1+
---------------- tji 1+

=
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 for some g ≥ 1, we have:

                                                                                            
                                                                                                                                              

                                                                                                                                              
Thus, since

 we can write:

This yields, by elementary algebra:

As in the proof of the Basis Step, d(i+1, i+1) must be even, since it is the difference of two odd 
numbers, and furthermore, by definition of tuples consecutive at level i+1, it must be the smallest 
such odd number.  Thus d(i+1, i+1) must = 3 · d(i, i), and 

 Hence

Now g is the number of tuples consecutive at level i that must be “traversed” to get from tj to 
tf.  By inductive hypothesis, d(1, i) for each pair of these tuples is:

tfi
tji

g d i i,( )⋅+=

3 tji
g d i i,( )⋅+( ) 1+

2ai 1+
------------------------------------------------- tfi 1+

=

tji 1+
d i 1 i 1+,+( )+ tfi 1+

=

3tji
1+

2ai 1+
---------------- d i 1+ i 1+,( )+

3 tji
gd i i,( )+( ) 1+

2ai 1+
--------------------------------------------=

2a i 1+( )d i 1+ i 1+,( ) 3 gd i i,( )⋅=

g d• i i,( ) must 2
ai 1+ d i i,( )=

g 2
ai 1+=
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hence, since 

we have

A similar argument establishes that d(i+1, i+1) and d(1, i+1) have the above values for every 
pair of tuples consecutive at level i+1.

Thus we have our proof of the Induction Step for parts (a) and (b) of Lemma 1.0.  The proof of 
Lemma 1.0 is completed. 

d 1 i,( ) 2 2
a2 2

a3 • … 2
ai•••=

g 2
ai 1+=

d 1 i 1+,( ) d 1 i,( ) 2
ai 1+•=
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